
July/August 2023

FreeBSD on Firecracker

Jail-based DNS AdBlocking Tutorial

Jail Orchestration with pot and nomad

Recollections: An Interview
with Doug Rabson

Nov/Dec 2019 57

November/December 2022

Writing Custom
Commands in FreeBSD’s
DDB Kernel Debugger

DTrace: New Additions
to an Old Tracing System

Certificate-based
Monitoring with Icinga

activitymonitor.sh

Pragmatic IPv6 (Part 4)

Observability and Metrics

2023 Editorial Calendar
•	Building a FreeBSD Web Server

(January-February)

•	Embedded (March-April)

•	FreeBSD at 30 (May-June)

•	Containers and Cloud (Virtualization)

(July-August)

•	Ports and Packages (September-October)

•	FreeBSD 14 (November-December)

3FreeBSD Journal • July/August 2023

1 of 1

The FreeBSD community was recently saddened by the tragic death of one of its most pro-
lific contributors. We learned that Hans Petter Selasky passed away in a traffic accident in

Lillesand, Norway on June 23, 2023 at the age of 41. Hans was an incredibly brilliant and kind
person, and made many valuable contributions to FreeBSD. He was preceded in death by his
father Gordon, and is survived by his mother, Inger Elisabeth, his brothers Mark and Leif Con-

rad, and his nieces and nephews Petra, David and Signe.
Hans began contributing to FreeBSD roughly 25 years ago,

with fixes to FreeBSD’s ISDN support. He was a FreeBSD com-
mitter for nearly 15 years, and was best known for re-writ-
ing and maintaining the USB stack. Hans wrote the webcamd
package which supports running Linux webcam drivers in
userspace on FreeBSD, and which enables those of us using
FreeBSD on the desktop to participate in modern teleconfer-
encing. Most recently, he worked for Mellanox (now NVID-
IA) to support their ConnectX series of high speed NICs on

FreeBSD. Hans’s work included major contributions to the kernel TLS framework, as well
as support for NIC kTLS send and receive offload in the mce(4) driver, and many improve-
ments to the Linux device driver compatibility layer.

I first met Hans in 2015, in the context of his work on the mce(4) driver for Mellanox
NICs. We worked together to make the mce(4) driver one of highest performance NIC
drivers in FreeBSD. It was during this time that I learned how brilliant he was. He often had
ideas that sounded “crazy,” but were actually brilliant. One example of this was his idea to
sort incoming TCP packets using the NIC-provided RSS flow identifiers in order to present
LRO with all packets from the same TCP connection back to back. This idea, which I initially
discounted as impractical, was crucial to Netflix being able to meet our performance tar-
get of serving 100Gb/s of video traffic from a single machine, and continues to save Net-
flix a large amount of CPU resources.

Hans was a kind and welcoming person. The first time I attended EuroBSDCon was in
2019 in Lillehammer, Norway, where Hans insisted on playing host to me. Hans had driven
across Norway from his home in Grimstad to EuroBSDCon in Lillehammer with his father,
and took me around to see the Olympic ski jump and several other sites in the town. He
then took me out to dinner and back to the house he’d rented with his father for an eve-
ning of great conversation.

Outside of FreeBSD, Hans’s hobbies included music and mathematics. He was active in
his church, and contributed to its sound team. He was a loving and dedicated uncle to his
nieces and nephews. He loved animals, especially his cat Pumba.

Even if you don’t use FreeBSD yourself, odds are good that Han’s work touches your
daily life. For example, if you use a Playstation, chances are you are using Hans’s USB stack.
If you watch Netflix, the odds are good that the show you’re watching was delivered to you
by a ConnectX NIC running Hans’s mce(4) driver.

Hans, if you are reading this, know that you will be missed.

By Drew Gallatin

In Memoriam:

Hans Petter William Sirevåg Selasky

Photo courtesy Ollivier Robert

LETTER
from the Foundation

J O U R N A L
®

Editorial Board
	 John Baldwin •	 Member of the FreeBSD Core Team and
		 Chair of FreeBSD Journal Editorial Board

	 Tom Jones •	FreeBSD Developer, Internet Engineer
		 and Researcher at the University of
		 Aberdeen

	 Ed Maste •	 Senior Director of Technology,
		 FreeBSD Foundation and Member
		 of the FreeBSD Core Team

	 Benedict Reuschling •	 FreeBSD Documentation Committer
		 and Member of the FreeBSD Core Team

	 Mariusz Zaborski •	 FreeBSD Developer

Advisory Board
	 Anne Dickison •	 Marketing Director, FreeBSD Foundation

	 Justin Gibbs •	 Founder of the FreeBSD Foundation,
		 President and Treasurer of the FreeBSD
		 Foundation Board

	 Allan Jude •	 CTO at Klara Inc., the global FreeBSD
		 Professional Services and Support
		 company

	 Dru Lavigne •	 Author of BSD Hacks and
		 The Best of FreeBSD Basics

	 Michael W Lucas •	 Author of more than 40 books including
		 Absolute FreeBSD, the FreeBSD
		 Mastery series, and git commit murder

	 Kirk McKusick •	 Lead author of The Design and
		 Implementation book series

	 George Neville-Neil •	 Past President of the FreeBSD Foundation
		 Board, and co-author of The Design
		 and Implementation of the FreeBSD
		 Operating System

	 Hiroki Sato •	 Director of the FreeBSD Foundation
		 Board, Chair of AsiaBSDCon,
		 and Assistant Professor at Tokyo
		 Institute of Technology

	Robert N. M. Watson •	 Director of the FreeBSD Foundation
		 Board, Founder of the TrustedBSD
		 Project, and University Senior Lecturer
		 at the University of Cambridge

S&W PUBLISHING LLC
PO BOX 3757 CHAPEL HILL, NC 27515-3757

	 Editor-at-Large •	James Maurer
		 maurer.jim@gmail.com

	Design & Production •	Reuter & Associates

FreeBSD Journal (ISBN: 978-0-61 5-88479-0) is published 6 times
a year (January/February, March/April, May/June, July/August,

September/October, November/December).
Published by the FreeBSD Foundation,

3980 Broadway St. STE #103-107, Boulder, CO 80304
ph: 720/207-51 42 • fax: 720/222-2350

email: info@freebsdfoundation.org

Copyright © 2023 by FreeBSD Foundation. All rights reserved.
This magazine may not be reproduced in whole or in part without written per-

mission from the publisher.

4FreeBSD Journal • July/August 2023

Dear Readers,
I’m excited to introduce our July/

August edition! For almost a decade,
the FreeBSD Foundation has been
producing the Journal, and we take
pride in delivering informative and
helpful content to BSD and Unix
enthusiasts globally.

Within this issue, you’ll find
enlightening pieces on Containers
and Cloud, including articles on ports, Jails, and
virtualization. Additionally, you’re in for a fun read with
Michael Lucas’ “We Get Letters” segment, which is
a blend of Michael’s wit and seriousness, making it a
truly enjoyable read.

Drew Gallatin wrote a beautiful tribute to long-
term FreeBSD developer Hans Petter Selasky, who
unexpectedly passed away in June. He will truly be
missed in our community, not only for his expertise
in many areas of the operating system, but for his
kindness and support of others in the Project.

Finally, check out the Events Calendar, which
highlights upcoming events that might be of interest
to folks in our community.

Thank you for your ongoing support of FreeBSD,
the FreeBSD Foundation, and all those engaged in this
amazing Project, which recently celebrated its 30th
anniversary! Now, sit back, relax, and enjoy all the great
content in this issue!

Deb Goodkin
Executive Director of the FreeBSD Foundation

July/August 2023

FreeBSD on Firecracker

Jail-based DNS AdBlocking Tutorial

Jail Orchestration with pot and nomad

Recollections: An Interview
with Doug Rabson

5FreeBSD Journal • July/August 2023

July/August 2023

	 6	 �FreeBSD on Firecracker
	 By Colin Percival

	 14	 �Jail Orchestration with pot and nomad
	 By Luca Pizzamiglio

	 21	� Conference Report:
C is to BSD What Latin is to Us

	 By Corey Stephan

	 26	� Recollections:
An Interview with Doug Rabson

	 By Tom Jones

	 34	� Practical Ports: Jail-based
DNS AdBlocking Tutorial

	 By Benedict Reuschling

	 3	 In Memoriam: Hans Petter Selasky
By Drew Gallatin

	 4	 Foundation Letter
By Deb Goodkin

	46	�� �We Get Letters: Virtualization
 is a Necessary Evil

By Michael W Lucas

	49	 Events Calendar
By Anne Dickison

6FreeBSD Journal • July/August 2023

A large amount of fantastic open source software originates from “scratching an itch”.
Such was the case with Firecracker: In 2014, Amazon launched AWS Lambda as a
“serverless” compute platform: Users can provide a function — say, ten lines of Py-

thon code — and Lambda provides all of the infrastructure between an HTTP request arriv-
ing and the function being invoked to process the request and generate the response.

To provide this service efficiently and securely, Amazon needed to be able to launch vir-
tual machines with minimal overhead. Thus was born Firecracker: A Virtual Machine Monitor
which works with Linux KVM to create and manage “microVMs” with minimal overhead.

Why FreeBSD on Firecracker?
In June 2022, I started work on porting FreeBSD to run

on Firecracker. My interest was driven by a few factors.
First, I had been doing a lot of work on speeding up

the FreeBSD boot process and wanted to know the lim-
its that could be reached with a minimal hypervisor.

Second, porting FreeBSD to new platforms always
helps to reveal bugs — both in FreeBSD and on those
platforms.

Third, AWS Lambda only supports Linux at present;
I’m always eager to make FreeBSD more available in
AWS (although adoption in Lambda is out of my control,
Firecracker support would be a necessary precondition).

The largest reason, however, was simply because it’s
there. Firecracker is an interesting platform, and I want-
ed to see if I could make it work.

Launching the FreeBSD Kernel
While Firecracker was designed for Lambda’s needs — launching Linux kernels — there

were patches available from 2020 that added support for the PVH boot mode in addition
to “linuxboot”. FreeBSD had support for PVH booting under Xen, so I decided to see if that
would work.

Here I ran into the first problem: Firecracker could load the FreeBSD kernel into memory

BY COLIN PERCIVAL

1 of 8

FreeBSD
on Firecracker

Porting FreeBSD to

new platforms always

helps to reveal bugs —

both in FreeBSD

and on those platforms.

https://firecracker-microvm.github.io/
https://aws.amazon.com/lambda/

7FreeBSD Journal • July/August 2023

but couldn’t find the address at which to start running the kernel (the “kernel entry point”).
According to the PVH boot protocol, this value is specified in an ELF Note — a piece of spe-
cial metadata stored in ELF (Executable and Linker Format) files. It turned out that there are
two types of ELF Notes: PT_NOTEs and SHT_NOTEs, and FreeBSD wasn’t providing the
one Firecracker was looking for. A small change to the FreeBSD kernel linker script fixed this,
and now Firecracker was able to start executing the FreeBSD kernel.

That lasted for about 1 microsecond.

Early Debugging
FreeBSD has wonderful debugging functionality, but if your kernel crashes before the de-

bugger is initialized or the serial console is set up, you’re not going to get much help. In this
case, the Firecracker process exited, telling me that the FreeBSD guest hit a triple-fault —
but that’s all I knew.

It turned out, however, that this was enough information to get me started, given a bit
of creativity. If the FreeBSD kernel execution reached a hlt instruction, the Firecracker pro-
cess would keep running but use 0% of the host’s CPU time (since it was virtualizing a halt-
ed CPU). As such, I could distinguish between “FreeBSD is crashing before this point” and
“FreeBSD is crashing after this point” by inserting a hlt instruction — if Firecracker exited, I
knew that it was crashing before reaching that instruction. Thus started a process I referred
to as “kernel bisection” — rather than bisecting a list of commits to find one which intro-
duced a bug (as in git bisect) I would do a binary search through the kernel startup code
to find the line of code that was making FreeBSD crash.

Xen Hypercalls
The first thing I discovered in this process was Xen

hypercalls. The PVH boot mode originated as the Xen/
PVH boot mode, and FreeBSD’s PVH entry point was,
in fact, an entry point specifically for booting under Xen
— and the code made the quite reasonable assumption
that it was, indeed, running inside Xen and could thus
make Xen hypercalls. KVM (which provides the kernel
functionality used by Firecracker) is not Xen, of course,
so it doesn’t provide those hypercalls; attempting to use
any of them resulted in the virtual machine crashing. As
an initial workaround, I simply commented out all the
Xen hypercalls; later, I added code to check CPUID for a
Xen signature before making calls e.g., to write debug-
ging output to the Xen debug console.

There was one Xen hypercall that provided essential
functionality, however: Retrieving the physical memo-
ry map. (Of course, inside a hypervisor, the “physical”
memory is only virtually physical. It’s turtles all the way down.) Here, we’re saved by the fact
that Xen/PVH was retroactively declared to be version 0 of PVH boot mode: From version 1
onwards, a pointer to the memory map is passed via the PVH start_info page (a pointer
to which is provided in a register when the virtual CPU starts executing). I had to write code
to make use of the PVH version 1 memory map instead of relying on a Xen hypercall to get
the same information, but that was easy enough.

Another related issue arose from how Xen and Firecracker arrange structures in mem-

2 of 8

FreeBSD has wonderful

debugging functionality,

but if your kernel crashes

before the debugger

is initialized or the serial

console is set up,

you’re not going to get

much help.

8FreeBSD Journal • July/August 2023

ory: Whereas Xen loads the kernel first and then places the start_info page at the end,
Firecracker placed the start_info page at a fixed low address and then loaded the kernel
afterwards. This would have been fine but that FreeBSD’s PVH code – having been written
with Xen in mind — assumed that the memory immediately after the start_info page
would be free for use as scratch space. Under Firecracker, that very quickly meant overwrit-
ing the initial kernel stack — not an optimal outcome! A change to FreeBSD’s PVH code
to assign scratch space after all the memory regions initialized by the hypervisor fixed this
problem.

ACPI — or Lack Thereof!
On x86 platforms, FreeBSD normally makes use of ACPI to learn about (and in some cas-

es control) the hardware on which it is running. In addition to discovering things via ACPI
which we might commonly think of as “devices” — disks, network adapters, etc. — FreeBSD
also learns about fundamental things like CPUs and interrupt controllers via ACPI.

Firecracker, being deliberately minimalist, does not implement ACPI, and FreeBSD gets
upset when it can’t figure out how many CPUs it has or where to find their interrupt con-
trollers.

Fortunately, FreeBSD has support for the historic Intel MultiProcessor Specification,
which provides this critical information via an “MPTable” structure; it’s not part of the
GENERIC kernel configuration, but for running in Firecracker, we want to use a stripped-
down kernel configuration anyway, so it was easy
to add device mptable to make use of what Fire-
cracker provides.

Except… it didn’t work. FreeBSD still couldn’t
find the information it needed! It turned out that
Linux has bugs in how it finds and parses the MPT-
able structure — and Firecracker, being designed
to boot Linux, provided the MPTable in a way that
Linux supported but was not in fact compliant with
the standard. FreeBSD, having an implementation
independently written to follow the standard, failed
both to find the (incorrectly located) MPTable and
to parse the (invalid) MPTable once it was found.

So now FreeBSD has a new kernel option: You
can add options MPTABLE_LINUX_BUG_COMPAT
to your kernel configuration if you need bug-for-bug compatibility with Linux’s MPTable
handling — and with that, FreeBSD managed to boot a bit further in Firecracker.

Serial Console
One of the few emulated devices — as opposed to virtualized devices like the Virtio block

and network devices — provided by Firecracker is the serial port. In fact, in a common con-
figuration, when you launch Firecracker, the standard input and output of the Firecracker
process become the serial port input and output of the VM, making it seem like the guest
OS is just another process running inside your shell (which, in a certain sense, it is). At least,
that’s how it’s supposed to work.

By this point in the process of bringing up FreeBSD inside Firecracker I was able to boot

3 of 8

You can add options

MPTABLE_LINUX_BUG_

COMPAT to your kernel

configuration if you need

bug-for-bug compatibility

with Linux’s MPTable

handling.

9FreeBSD Journal • July/August 2023

a FreeBSD kernel with a root disk compiled into the kernel image — I didn’t have the virtual-
ized disk driver working yet — and read all the console output from the kernel. After all the
kernel console output, however, FreeBSD entered the userland portion of the boot process,
and I got 16 characters of console output — and then it stopped.

Funnily enough, I’d seen that exact symptom over ten years earlier, when I was first get-
ting FreeBSD working on EC2 instances. A bug in QEMU resulted in the UART not send-
ing an interrupt when the transmit FIFO emptied; FreeBSD wrote 16 bytes to the UART and
then wouldn’t write anymore because it was waiting for an interrupt which never arrived.
Modern EC2 instances run on Amazon’s “Nitro” platform, but in the early days they used
Xen and devices were emulated using code from QEMU. Somehow, a decade after this bug
was fixed in QEMU, exactly the same bug was implemented in Firecracker; but luckily for
me, the workaround I put into the FreeBSD kernel — hw.broken_txfifo=”1” — was still
available, and adding that loader tunable (which, since Firecracker loads the kernel directly
without going through the boot loader, meant compiling the value into the kernel as an en-
vironment variable) fixed the console output.

I then found that the console input was also broken: FreeBSD didn’t respond to anything
I typed into the console. In fact, tracing the Firecracker process, I found that Firecracker
wasn’t even reading from the console — because Firecracker thought that the receive FIFO
on the emulated UART was full. This turned out to be another bug in Firecracker: While ini-
tializing the UART, FreeBSD fills the receive FIFO with garbage to measure its size and then
flushes the FIFO by writing to the FIFO Control Register. Firecracker didn’t implement the
FIFO Control Register, so it was left with a full FIFO and quite sensibly didn’t try to read any
more characters to put into it. Here, I added another workaround to FreeBSD: If LSR_RXRDY
is still asserted after we try to flush the FIFO via the FIFO Control Register — which is to
say, if the FIFO didn’t empty as requested — we now proceed to read and discard char-
acters one by one until the FIFO empties. With this, Firecracker now recognized that
FreeBSD was ready to read more input from the serial port, and I had a working bidirec-
tional serial console.

Virtio Devices
While a system without disks or network could be useful for some purposes, before we

can do very much with FreeBSD, we’re going to want those devices. Firecracker supports
Virtio block and network devices and exposes them to virtual machines as mmio (memo-
ry-mapped I/O) devices. First step to getting these working in FreeBSD: Add device
virtio_mmio to the Firecracker kernel configuration.

Next up, we need to tell FreeBSD how to find the virtualized devices. FreeBSD expected
mmio devices to be discovered via FDT (Flattened Device Tree), which is a mechanism com-
monly used on embedded systems; but Firecracker passes device parameters via the kernel
command line with directives such as virtio_mmio.device=4K@0x1001e000:5. Second
step to getting these working in FreeBSD: Write code for parsing such directives and creat-
ing virtio_mmio device nodes. (Once we create the device node, FreeBSD’s regular pro-
cess for device probing kicks in and the kernel will automatically determine the type of Vir-
tio device and hook up the appropriate driver.)

If we have multiple devices however — say, a disk device and a network device — another
problem arises: Firecracker passes directives the way Linux expects — as a series of key=val-
ue pairs on the kernel command line — while FreeBSD parses the kernel command line as
environment variables… meaning that if there were two virtio_mmio.device= directives

4 of 8

10FreeBSD Journal • July/August 2023

passed on the command line, only one was retained. To fix this, I rewrote the early kernel
environment parsing code to handle duplicate variables by appending a numbered suffix:
We end up with virtio_mmio.device= for one device and virtio_mmio.device_1= for
the second device.

With this, I finally had FreeBSD booting and discovering all of its devices — but one more
problem arose with disk devices: If I shut down the virtual machine uncleanly, on the next
boot the system would run fsck on the filesystem, and the kernel would panic. It turned
out that fsck is one of very few things in FreeBSD that will cause non-page-aligned disk I/Os,
 and FreeBSD’s Virtio block driver was causing a kernel panic when trying to pass unaligned
I/Os to Firecracker.

When an I/O crosses a page boundary — as will
happen with page-sized I/Os which aren’t aligned
to page boundaries — the physical I/O segments
will typically not be contiguous; most devices can
handle I/O requests which specify a series of seg-
ments of memory to be accessed. Firecracker, be-
ing extremely minimalist, does not do this: Instead,
it accepts only a single data buffer — meaning that
a buffer that crosses a page boundary can’t sim-
ply be split into pieces the way it would with other
Virtio implementations. Fortunately, FreeBSD has
a system in place specifically for taking care of de-
vice complications like this: busdma.

This was probably the hardest part of getting
FreeBSD running in Firecracker, but after sever-
al attempts, I think I finally got it right: I modified
FreeBSD’s Virtio block driver to use busdma, and
now unaligned requests are “bounced” (aka. cop-
ied via a temporary buffer) in order to comply with
the limitations of the Firecracker Virtio implementation.

Revealed Optimizations
Once I had FreeBSD up and running in Firecracker, it rapidly became clear that there

were some improvements to be made. One of the first things I noticed was that, despite
having 128 MB of RAM in the virtual machine I was testing, the system was barely usable,
with processes being frequently killed due to the system running out of memory. The
top(1) utility showed that almost half of system memory was in the “wired” state, which
seemed odd to me; so I investigated further, and found that busdma had reserved 32 MB of
memory for bounce pages. This was clearly far more than needed — given Firecracker’s lim-
itations and the fact that bounce pages are generally not allocated contiguously, each disk
I/O should use at most a single 4 kB bounce page — and I was able to reduce this memory
consumption to 512 kB with a patch to busdma which limited its bounce page reservations
for devices which supported only a small number of I/O segments.

Once the system was more stable, I started paying attention to the boot process. If
you’re watching a system boot and there’s suddenly a pause in the messages scrolling past,
there’s probably something happening at that point which is slowing down the boot pro-
cess. Simple eyeballing of the boot process — and also the shutdown process — revealed

5 of 8

Once I had FreeBSD

up and running in

Firecracker, it rapidly

became clear that there

were some improvements

to be made.

11FreeBSD Journal • July/August 2023

several improvements:
•	FreeBSD’s kernel random number generator usually obtains entropy from hardware de-

vices, but in virtual machines this may not be an effective source. As a backup source of
entropy, on x86 systems we make use of the RDRAND instruction to obtain random val-
ues from the CPU; but we were only obtaining a very small amount of entropy on each
request and were only requesting entropy once every 100 ms. Changing the entropy
gathering system to request enough entropy to fully seed the Fortuna random number
generator shaved 2.3 seconds off the boot time.

•	When FreeBSD first boots, it records a Host ID for the system. This is typically obtained
from hardware via the smbios.system.uuid environment variable, which the boot
loader sets based on information from BIOS or
UEFI. Under Firecracker, however, there is no
boot loader — and thus no ID being provided.
We had a fallback system in place that would
generate a random ID in software on sys-
tems that didn’t have a valid hardware ID; but
we also printed a warning and waited 2 sec-
onds to allow the user to read it. I changed this
code to print the warning and wait 2 seconds
if the hardware provided an invalid ID, but pro-
ceed silently and quickly if the hardware simply
didn’t provide an ID.

•	IPv6 mandates that systems wait for “Dupli-
cate Address Detection” before using an IPv6
address. In rc.d/netif, after bringing up in-
terfaces, we were waiting for IPv6 DAD if any
of our network interfaces had IPv6 enabled.
There’s just one problem with that: We always
have IPv6 enabled on the loopback interface!
I changed the logic to only waiting for DAD
if we had IPv6 enabled on an interface other
than the loopback interface and sped up the boot process by 2 seconds — if another
system is trying to use the same IPv6 address as us on our lo0, we have bigger prob-
lems than an address collision!

•	When rebooting, FreeBSD printed a message (“Rebooting...”) and then waited 1 sec-
ond “for printf’s to complete and be read”. This seemed minimally useful, since people
can usually tell that the system is rebooting — there is now a kern.reboot_wait_time
sysctl which defaults to zero.

•	When shutting down or rebooting, the FreeBSD BSP (CPU #0) waits for the other CPUs
to signal that they have stopped… and then waited an extra 1 second to make sure that
they had a chance to stop. I removed the extra second of wait time.

Once the low-hanging fruit was out of the way, I pulled out TSLOG and started looking
at flamecharts of the boot process. Firecracker is a great environment for doing this, for two
reasons: First, the minimalist environment eliminates a lot of noise, making it much easier
to see what’s left behind; and second, having Firecracker launch virtual machines extremely
quickly made it possible to test changes to the FreeBSD kernel very rapidly — often well un-

IPv6 mandates that

systems wait for

“Duplicate Address

Detection” before using

an IPv6 address.

6 of 8

https://www.daemonology.net/papers/bootprofiling.pdf

12FreeBSD Journal • July/August 2023

der 30 seconds to build a new kernel, launch it, and generate a new flamechart.
Investigation with TSLOG revealed a number of available optimizations:
•	lapic_init had a 100000-iteration loop to calibrate how long lapic_read_icr_lo

took to execute; cutting this down to 1000 iterations shaved off 10 ms.
•	ns8250_drain called DELAY after each character was read; changing this to check for
LSR_RXRDY and only DELAYing if nothing was already available to be read shaved off 27
ms.

•	FreeBSD makes use of a CPUID leaf which most hypervisors use to advertise the TSC
and local APIC clock frequencies; Firecracker, unlike VMWare, QEMU, and EC2, did not
implement this. Adding support for this CPUID leaf to Firecracker shaved 20 ms off the
FreeBSD boot time.

•	FreeBSD was setting kern.nswbuf (which controls the number of buffers allocated for
a variety of temporary purposes) to 256 regardless of the size of the system; changing
this to 32 * mp_ncpus shaved 5 ms off the boot time on a small (1 CPU) virtual ma-
chine.

•	FreeBSD’s mi_startup function, which kicks off machine-independent system initial-
ization routines, was using a bubblesort to order the functions it called; while this was
reasonable in the 90s given the small number of routines needing to be ordered at that
point, there are now over 1000 such routines and the bubblesort was getting slow. Re-
placing it with a quicksort will save 2 ms. (Not yet committed at press time.)

•	FreeBSD’s vm_mem initialization routine was initializing vm_page structures for all avail-
able physical memory. Even on a relatively small VM with 128 MB of RAM, this meant
initializing 32768 such structures — and took a few ms. Changing this code to initialize
vm_page structures “lazily” as the memory is allocated for use will save 2 ms. (Not yet
committed at press time.)

•	Firecracker was allocating VM guest memory via an anonymous mmap, but Linux was
not setting up the paging structures for the entire VM guest address space. As a result,
the first time any page was read, a fault would occur taking roughly 20,000 CPU cycles
to be resolved while Linux mapped in a page of memory. Adding the MAP_POPULATE
flag to Firecracker’s mmap call will save 2 ms. (Not yet committed at press time.)

Current Status
FreeBSD boots under Firecracker — and does so extremely quickly. Including uncommit-

ted patches (to FreeBSD and also to Firecracker), on a virtual machine with 1 CPU and 128
MB of RAM, the FreeBSD kernel can boot in under 20 ms; a flame chart of the boot process
appears below.

14.0-CURRENT boot
19496 us

Reset Zoom

reloc.. DEV..

link_.. _..

pmap..

hammer_time
SYSINIT con..

reloc..
SYSINIT cpu vfs_mountr..

kva_..

kernel
mi_startup

kva_..

DEVICE_ATT..vm_ks.. THREAD..
_sleep

start_init

DE..

SY..

There is still work to be done: In addition to committing the patches mentioned above
and getting PVH boot mode support merged to “mainline” Firecracker, there’s a signifi-

7 of 8

13FreeBSD Journal • July/August 2023

cant amount of “cleanup” work to be done. Due to the history of PVH boot mode originat-
ing from Xen, the code used for PVH booting is still mixed up with Xen support; separating
those will simplify things significantly. Similarly, it’s currently impossible to build a FreeBSD
arm64 kernel without PCI or ACPI support; finding the bogus dependencies and remov-
ing them will allow for a smaller FreeBSD/Firecracker kernel (and also shave off a few more
microseconds from the boot time – we spend 25 us checking to see if we need to reserve
memory for Intel GPUs).

More aspirationally, it would be great to see if Firecracker could be ported to run on
FreeBSD — at a certain point, a virtual machine is a virtual machine, and while Firecracker
was written to use Linux KVM, there’s no fundamental reason why it shouldn’t be possible
to make it use the kernel portion of FreeBSD’s bhyve hypervisor instead.

Anyone wanting to experiment with FreeBSD in Firecracker can build a FreeBSD 14.0
kernel with the amd64 FIRECRACKER kernel configuration, and check out the feature/pvh
branch from the Firecracker project; or if that branch no longer exists it means the code has
been merged into the mainline Firecracker tree.

If you try out FreeBSD on Firecracker — especially if you end up using it in production —
please let me know! I started this project mainly out of interest, but I’d love to hear if it ends
up being useful.

COLIN PERCIVAL has been a FreeBSD developer since 2004 and was the project’s
Security Officer from 2005 to 2012. In 2006, he founded the Tarsnap online backup
service, which he continues to run. In 2019, in recognition of his work bringing FreeBSD
to EC2, he was named an Amazon Web Services Hero.

8 of 8

Write
For Us!For Us!

Contact Jim Maurer
with your article ideas.
(maurer.jim@gmail.com)

Write Write
For Us!For Us!

Contact Jim Maurer
with your article ideas.
(maurer.jim@gmail.com)

Write

https://github.com/firecracker-microvm/firecracker/tree/feature/pvh
https://github.com/firecracker-microvm/firecracker/tree/feature/pvh
https://github.com/firecracker-microvm/firecracker

14FreeBSD Journal • July/August 2023

C ontainers are a great tool to distribute horizontally scalable applications on many
servers. When the number of applications and their cardinality grows, the number of
containers can easily become hard to manage manually.

Container orchestrators are applications that aim to simplify the management of a large
fleet of containers, hiding the complexity and improving reliability, especially in an environ-
ment made very dynamic by autoscaling and continuous deployment. In this article, we will
talk about a setup based on FreeBSD, using pot, a jail framework that supports jail images,
and nomad, a container agnostic orchestrator developed by HashiCorp.

The System Architecture
To explain how an orchestrator works, we need to introduce a few services and explain

their role.
The nomad client

A nomad client is a server that receives orders from the orchestrator to execute contain-
ers. Nomad clients can also be referred to as nodes, like in kubernetes.

In large installations, the majority of servers are nomad clients, as they are responsible to
execute users’ applications. In the cloud native jargon, nomad clients form the data plane of
the cluster.

Nomad clients can support multiple container drivers: some drivers are operating sys-
tem agnostic, while other drivers, like docker or pot, are available only on specific operat-
ing systems.

To orchestrate FreeBSD jails using pot, we need nomad clients based on FreeBSD.

BY LUCA PIZZAMIGLIO

1 of 7

Jail Orchestration
with pot and nomad

https://github.com/bsdpot/pot
https://www.nomadproject.io/

15FreeBSD Journal • July/August 2023

The nomad server
The nomad servers are the machines that implement the orchestrator. The nomad serv-

er is responsible for keeping the state of the cluster and for scheduling containers to nomad
clients. Multiple instances (3 to 5) are required to provide redundancy and to share the load.
In the cloud native jargon, nomad servers form the control plane of the cluster.

Users are going to interact with nomad servers to deploy applications to the cluster. The
nomad servers are responsible to keep the state of the cluster healthy, and to reschedule
containers in case of client failures.

Nomad servers can run on any supported operating system. To orchestrate jails, at least
one nomad client has to be based on FreeBSD.
The container registry

The orchestrator (nomad servers) is the “brain” of the cluster and it assigns containers to
clients that support the container types. This means that:

•	any nomad clients can be selected to run supported containers,
•	clients don’t know in advance which containers are going to host,
•	a client can execute multiple instances of the same containers.
Every client needs a service to download the image of the container they are assigned

to execute. This requirement is fulfilled by the container registry, a service that provides the
images of containers.

When the orchestrator selects a client to execute a container, that client is going to
download the container image from a registry and then start the container.

In our examples, we are going to use potluck, a pub-
lic container registry maintained by the pot community,
that builds images from an open source catalog of im-
age recipes. However, as container images contain bina-
ries, we strongly encourage everyone to have their own
local registry, for security reasons.

In pot, images are files that are downloaded via
fetch(1), so a registry can be just a simple web server.
The service catalog

A service catalog is a list of services enriched by ad-
ditional information like all the container addresses that
implement those services.

When an orchestrator schedules a container imple-
menting a service, it’s also going to register the contain-
er address to the list of containers implementing that
service.

The service catalog can be also configured to period-
ically check the health status of the service for all con-
tainers, so the list of container addresses only contains
healthy addresses.

The service catalog that we are going to use is based on consul, a service mesh applica-
tion also developed by HashiCorp.
The ingress (optional)

Because of the dynamic nature of the orchestrator, it can be very hard to know where
our services are running. Every time a new deployment occurs, containers are scheduled to

2 of 7

Users are going

to interact with nomad

servers to deploy

applications

to the cluster.

https://www.consul.io/

16FreeBSD Journal • July/August 2023

potentially different nodes on different ports. With ingress, we define a proxy/load balancer
that is configured to provide a fixed entry point to our services.

For instance, we can configure the proxy in a way that the URL path (i.e., https://example.
com/foo) provides information about the targeted service (i.e. redirecting to the containers
implementing the service foo) Another common way is to use the host header.

Ingress proxies dynamically maintain the list of valid container’s addresses, by continuous-
ly interacting with the service catalog.

For our examples, we are using traefik, an ingress proxy implemented by traefix lab.

Nomad-pot-driver
Nomad has been built to support several container technologies and different operating

systems. In fact, a nomad package is available and HashiCorp also provides binary blobs for
FreeBSD.

Nomad has a plugin architecture that allows it to extend it to support new container
technologies. Esteban Barrios wrote and opensourced the nomad-pot-driver plugin. This
plugin works as an interface between a nomad client and pot, to provide the features need-
ed to orchestrate jails.

The orchestrator schedules workloads to the client that uses the plugin to interface with pot.

Control �ow

Job start

Developer

register

sc
hedule

ch
ec

k

ch
ec

k

get catalog

Data �ow

Users

nomad
server

consul
server

proxy
load balancer

nomad client

nomad
pot

driver

pot 1

pot 2

Overview of the architecture and the foles of the different services.

Minipot
Minipot is a package that installs and configures all the aforementioned services on a sin-

gle FreeBSD machine and is the reference installation that we are going to use to show our
examples.

Minipot is a configuration useful for testing, but not for professional installation, as it’s
going to concentrate all service on one machine only, reducing a cluster to a single node
that does it all.

In particular, it is going to install and configure consul, traefik, and nomad. Nomad is go-
ing to run as client and as server, playing the dual role of orchestrator and executor.

There is a detailed guide on how to install minipot on this blog post on the Klara website.

Schedule a Job
Once minipot is initialized and all services are running, we can use the following job de-

scription file to start a job in nomad

1 job “nginx-minipot” {
2 datacenters = [“minipot”]
3 type = “service”

3 of 7

https://traefik.io/traefik/
https://github.com/bsdpot/nomad-pot-driver/
https://klarasystems.com/articles/cluster-provisioning-with-nomad-and-pot-on-freebsd/

17FreeBSD Journal • July/August 2023

4 group “group1” {
5 count = 1
6 network {
7 port “http” {}
8 }

9 task “www1” {
10 driver = “pot”

11 service {
12 tags = [“nginx”, “www”]
13 name = “hello-web”
14 port = “http”

15 check {
16 type = “tcp”
17 name = “tcp”
18 interval = “5s”
19 timeout = “2s”
20 }
21 }

22 config {
23 image = “https://potluck.honeyguide.net/nginx-nomad”
24 pot = “nginx-nomad-amd64-13_1”
25 tag = “1.1.13”
26 command = “nginx”
27 args = [“-g”,”’daemon off;’”]

28 port_map = {
29 http = “80”
30 }
31 }

32 resources {
33 cpu = 200
34 memory = 64
35 }
36 }
37 }
38 }

The job stanza describes all the details nomad needs to schedule the job.
The job “nginx-minipot” (1) has one group named “group1” (4), that has one task called

“www1” (9).
The task “www1” is a pot container (10), the image registry is potluck (23), the pot image is

nginx (24) and the version is 1.1.13 (25). By specifying that the task is based on the pot driver,
the orchestrator is going to schedule this job on a client with pot support. In our example,
server and client are the same machine.

Compared to the common use of jails, where the bootstrap happens using rc script, we
are going to run nginx directly (26), without any other additional services. The args parame-

4 of 7

18FreeBSD Journal • July/August 2023

ter (27) is important to allow nomad to properly follow the container lifecycle and to capture
its logs. Pot is going to take care of initializing the network and everything that is needed.

The port_map stanza (28) and the network stanza (6) are saying that nginx is going to lis-
ten to port 80 in the jail, but the nomad client will use a different port (“http”), dynamically
assigned by the nomad server.

The service stanza (11) provides the information that nomad is going to use to register
the service to consul. In our example, the task “www1” implements the service “hello-web”
(11) and it will be registered to consul, using the port “http” (14), assigned by the nomad serv-
er. For the IP address, the nomad server is going to use the nomad client IP address, defined
during the scheduling operation.

In our example, the job is also configuring a tcp health check that consul is going to run
every 5 seconds to determine the health status of the instance.

This job description needs to be stored in a file (i.e., nginx.job) and any user can launch
the service via

$ nomad job nginx.job

NOTE: The first deployment can take some time as the client needs to download the im-
age. On slow connections, the first deployment can even fail because of deployment time-
outs. Once the fetch is completed, it is safe to re-run the deployment that will be executed
in few seconds.
Check on nomad

Once the job is scheduled, it is possible to check the status of the deployment via com-
mand line:

$ nomad jobs allocs nginx-minipot
ID Node ID Task Group Version Desired Status Created Modified
636d3241 c375b833 group1 3 run running 28m43s ago 28m27s ago
$ nomad alloc status 636d3241
[...]
Allocation Addresses:
Label Dynamic Address
*http yes 2003:f1:c709:de00:faac:65ff:fe86:9458:22854
[...]
$ curl “[2003:f1:c709:de00:faac:65ff:fe86:9458]:22854”

“Allocation” is the name used by nomad to identify a container, an instance of the task.
The IPv6 address is the nomad client one.
The port 22854 is the port nomad chose to direct the nomad client to the port 80 of the

container.
To see the port redirection setup, we can use the command:

$ sudo pot show

An alternative of the CLI, the nomad server is configured to also provide a powerful web
UI reachable at localhost:4646

From there, we can see the “nginx-minipot” job and navigate to see all information about
the cluster, allocations, clients, and so on.

From nomad, we can see directly the status of all containers.
By reaching the allocation page, we can click on the “exec” button to run a /bin/sh shell

into the running containers.

5 of 7

19FreeBSD Journal • July/August 2023

Check on consul
Via CLI, we can see the list of services in the consul catalog (consul catalog services), but

not the details. However, we can check the status of the “hello-web” service, by reaching the
web UI interface at

localhost:8500

From here, we can navigate to check the status of the service “hello-web” and its check
“tcp”.
Check on traefik

The proxy traefix is configured to route traffic on port 8080, but provides a web-ui to
monitor the status at port 9200 (localhost:9200). Traefik is also configured to sync the
service catalog from consul.

By selecting the http services, we can see our “hello-web” service (marked as
hello-web@consulcatalog).

By clicking on the service, we can see the service details and the routing options.
The configuration is based on the host header, in our case “hello-web.minipot”.
Now we can reach the service hello-web via the ingress:

	$ curl -H Host:hello-web.minipot http://127.0.0.1:8080

Alternatively, we can add the entry

 127.0.0.1 hello-web.minipot

to /etc/hosts and then use the hostname directly:

$ curl http://hello-web.minipot:8080

We will obtain the same output as we had by point curl directly to the jail.
Horizontal scaling

To see the orchestrator in action, we can now simply change the count from 1 to 2 in the
job file (row 5) and re-submit the job via

$ nomad run nginx.job

Once scheduled, the running nomad allocations are now 2, the service “hello-web” in
consul has two instances, as the servers in traefik.

•	To verify the round-robin distribution of the ingress, we can
•	Tail the logs of one container ($ nomad alloc logs -f allocation1)
•	Tail the logs of the other container ($ nomad alloc logs -f allocation2)
•	Execute curl on the ingress ($ curl -H Host:hello-web.minipot
http://127.0.0.1:8080)

At every execution of curl, the proxy distributes the requests between the containers as is
possible to see from their logs.
Tear down everything

To stop our examples, we suggest this tear down operation:
•	Stop the nomad jobs ($ nomad stop nginx-minipot)
•	Stop traefik ($ sudo service traefik stop)
•	Stop nomad ($ sudo service nomad stop)
•	Stop consul ($ sudo service consul stop)

6 of 7

20FreeBSD Journal • July/August 2023

From playground to production
Minipot is a single node installation useful as a playground, to learn or to test things locally.
A production environment should be shaped in a different way:
•	3 or 5 distinct consul servers
•	3 or 5 distinct nomad servers
•	2 ingress proxy servers (HA configuration)
Several nomad client servers (depends on the expected workload and reliability require-

ments like the overprovision factor)
It is worth mentioning that the aforementioned set-

up can mix different operating systems: the only servers
that have to run FreeBSD are the nomad clients target-
ing jail/pot workloads.

Nomad or consul servers can run on Linux or Solaris,
allowing you to reuse pieces of infrastructure that may
already be available to you.

As ingress proxy, we used traefik, which natively syncs
with consul. However, it’s possible to use other services,
like nginx or ha-proxy, together with consul-template,
to achieve the same result. In such a configuration, con-
sul-template is responsible for detecting changes in
consul,to render the proxy configuration template, and
to notify the proxy of the new configuration.

Additionally, the configuration of all services would
need improvements, like adding authentication to
nomad.

Credits
I want to highlight the community effort needed

to reach this point, from Esteban Barrios, the first developer of the nomad-pot-driver, to
Michael Gmelin (grembo@), who really helped a lot to increase the reliability and the sta-
bility of this solutions. I also want to mention Stephan Lichtenauer and Bretton Vine, who
worked on Potluck, the public image registry, and on numerous other projects like the An-
sible playbook and blog posts dedicated to pot and nomad use cases.

LUCA PIZZAMIGLIO is a port committer in the FreeBSD project and a member of the
port manager team (portmgr). In 2017, he started the pot project, with the goal of un-
derstanding how containers on FreeBSD could look.

7 of 7

Minipot is a single node

installation useful

as a playground,

to learn or to

test things locally.

https://honeyguide.eu/tags/pot

21FreeBSD Journal • July/August 2023

1 of 5

C is to BSD
What Latin is to Us
 A Theologian’s Report of His Trip to Present at BSDCan 2023
BY COREY STEPHAN

Conference Report

A s I sit before my battle-worn Think-
Pad running OpenBSD 7.3-current on
the Air Canada flight from Toronto,
Ontario to Houston, Texas to return

home to my wife, children, and (ir)regular job as
Assistant Professor of Theology and Fellow of the
Core at the University of St. Thomas, after my
first experience at any conference about comput-
er science or information technology, I feel tired
but content. I departed the conference wearing
my mustard OpenBSD 7.2-release t-shirt with its
Dr. Seuss theme: “One diff, two OKs, commit, blowfish” (a parody of “One fish, two fish, red
fish, blue fish”). Realizing that I am once again in the real world in which normal people, sad-
ly, do not (yet?) run BSD operating systems on their laptop computers, I chuckle to myself
while musing about the (distantly remote) possibility that my private security screening back
at the Ottawa International Airport was not a mere coincidence. After all, this t-shirt rep-
resents an operating system whose founder, Theo de Raadt, famously relocated the project
from the United States to Canada due to American laws about the export of cryptography.

I jokingly wonder if this might be the first time someone
has mistaken me for a hacker (of the malignant variety).
If so, have I just endured another rite of passage into the
BSD crowd?

As an obvious outsider to BSDCan who made a point
of introducing myself to many fellow attendees, I re-
ceived myriad questions. Oddly, the most common was
the most challenging for me to answer: Corey, why are
you here? BSDCan regulars were genuinely curious as
to what a professional, Catholic theologian was doing at
a conference about Unix-like operating systems. Even
now, after the conference has ended, I am not sure why
I journeyed to Ottawa for BSDCan 2023. Above all, I sup-
pose that I wanted to try something wholly different

22FreeBSD Journal • July/August 2023

from my day-to-day work. For years, I have been an amateur learning about the BSDs from
Michael W. Lucas’s Absolute FreeBSD (3rd edition) and Absolute OpenBSD (2nd edition), as
well as the online recordings of talks from BSDCan, EuroBSDCon, and AsiaBSDCon (and the
Youtube personality RoboNuggie). Although I occasionally engage in simple homelabbing,
my main interest in FreeBSD, OpenBSD, and the other BSD operating systems long has
been their common utility as fully customizable, desktop operating systems. Specifically, I
like to use FreeBSD and OpenBSD to aid my multisource research and writing as a scholar of
the history of Christian theology. My October 2021 FreeBSD Friday lecture “FreeBSD for the
Writing Scholar” was about that very theme, as was
my talk at BSDCan, “BSD for Researching, Writing,
and Teaching in the Liberal Arts.”

At a standard academic conference, dressing the
part of the refined scholar is important, especially
in our anti-intellectual, twenty-first century West-
ern context in which, say, one English literature job
posting attracting hundreds of Ph.D.-holding, qual-
ified (and desperate) applicants has become the
norm. While packing to present at BSDCan, I al-
most instinctively grabbed my tailored navy-blue
suit with my favorite golden bow tie. By Providence,
I had the wherewithal to write a short email to Dan
Langille, one of the founders of BSDCan who co-
ordinated the conference for twenty years before
announcing his well-earned retirement from that
duty during this year’s closing session, to check how
attendees and presenters typically dress. His reply
was that he would be wearing cargo shorts and a
t-shirt through the whole conference, and I recalled
that I had watched several BSD(Can/Con) video re-
cordings in which the speakers were dressed in kind
(Theo de Raadt in shorts and sandals, Michael Lu-
cas in t-shirts with cartoonish figures of horror, and
so on). Recognizing that I would be laughably out
of place if I were to continue with my first sartorial selection but being unable to bring my-
self to deliver a formal presentation without a shirt and tie, I compromised by packing one
set of my standard university (teaching and meeting) attire (in this case, purple pants and
a purple bow tie with grey suade shoes — no jacket). Even with that change, Michael Lucas
told me after my talk that I was “the best dressed ... speaker that we ever have had.” I also
made sure to have my full collection of BSD shirts with me to wear for the rest of the con-
ference, that is, my FreeBSD polo shirt that was a gift from the FreeBSD Foundation when
I presented for FreeBSD Friday, the Seussical OpenBSD t-shirt that I was wearing as I began
drafting this report, and a few old-stock-but-new OpenBSD t-shirts that were given to me
by a generous Unix greybeard who wishes to remain anonymous.

After presenting at many academic conferences on the topics of theology and/or early
to medieval Church history over the years, I had grown accustomed to a certain set of cul-
tural and behavioral expectations about conferences that were in no way applicable to BSD-
Can. Starting with the rather silly point of dress, BSDCan presented me with a seemingly

2 of 5

Indeed, if creativity

is found at the

intersection of apparently

disconnected subjects,

then I am pleased to

report that I had several

engaging discussions

at BSDCan that were

themselves loci of creative

genius.

23FreeBSD Journal • July/August 2023

unending series of opportunities to think freshly.
Indeed, if creativity is found at the intersection
of apparently disconnected subjects, then I am
pleased to report that I had several engaging dis-
cussions at BSDCan that were themselves loci
of creative genius. In chronological order, here
are three such chats: Michael Lucas of technical
authorial fame talked with me about a few pos-
sibilities for an educational book project that I

have had in mind for some time; Tom Jones, whose voice I recognized from the BSD.Now
podcast that I often enjoy during my long commutes in Houston, suggested that I ought
to write this report for the FreeBSD Journal (for which he sits on the editorial board); and Dr.
Marshall Kirk McKusick, original BSD Unix contributor and (great-)grandfather of FreeBSD
who still commits code, explained that the famous Beastie character is a Unix background
daemon as imagined by a Disney artist.

To McKusick’s story about Beastie, the Unix background daemon, I replied that the over-
all rationale behind the artistry makes sense. In ancient Greek, I noted, a δαίμων (daemon)
refers to a roaming spirit who either helps or hin-
ders humans invisibly (in the background, like a
Unix daemon). Since a daemon might either be
benevolent or malevolent, but the Devil of the
Christian tradition (obviously) is only malevolent, a
daemon is not the same as the Devil. I remain un-
convinced that Beastie’s yellow pitchfork and red
horns, inevitably offensive to some, are necessary,
since ancient daemons rarely were depicted in
artwork — and certainly never as such. That mat-
ter, however, seems best left alone until the next
time that I chat with the ever-smiling McKusick.
Besides, I cannot blame a gifted Disney animator
for lacking familiarity with Greco-Roman folklore,
and I rather enjoy the medieval character that
graces (or curses) FreeBSD communication zones
to this day.

Speaking of McKusick, on my first night at
BSDCan (Wednesday), I stumbled into the end-
of-day hackathon portion of the FreeBSD Developer’s Conference. I was impressed to ob-
serve McKusick collaboratively coding with someone who must have been at least forty
years younger than he. The spirit of working to keep the BSD operating system projects
multigenerational ran through the entirety of BSDCan. The oldest, most accomplished par-
ticipants, who might have had legitimate reasons to ignore neophytes, especially outsiders
(as I was), treated me as a worthy discussion partner. During that evening session, a few of us
who are husbands and fathers talked about our wives and children, with the discussion flow-
ing naturally between the serious and the amusing before returning to BSD.

I am not ashamed to admit that I did not understand everything in the lectures I attend-
ed. Understanding everything never was my objective, nor should it be the objective of any-
one attending any conference, be it academic, technical, spiritual, or other. I went to BSD-

3 of 5

 In ancient Greek, I noted,

a δαίμων (daemon) refers

to a roaming spirit who

either helps or hinders

humans invisibly

(in the background,

like a Unix daemon).

24FreeBSD Journal • July/August 2023

Can in search of a novel exchange of ideas, sharing what I know with persons from outside
my normal circles and, more importantly, learning from what such persons know. Although
I often was reduced to attempting to intuit requisite background knowledge in real-time,
I enjoyed nearly all the talks I attended. I certainly learned something in every session. Bra-
vo, BSDCan’s organizational team, for electing
a superb cluster of speakers (if I may be allowed
to write that as someone who was one of those
speakers).

Tom Jones’s “Making FreeBSD QUIC” and
Marshall Kirk McKusick’s “Gunion(8): a new
GEOM utility in the FreeBSD Kernel” made Fri-
day, the first day, a joy, since both Jones and McK-
usick know how to work an audience with what
seems to be magical charm. (How, I wonder, does
Dr. McKusick make a history of file system mi-
nutia almost as intriguing as one of Ken Burns’s
documentaries about a great American war?) Ad-
ditionally, recording the 512th episode (not 500th,
but 512th, since 512 is the important number in
computing) of BSD.Now before a packed audi-
torium, was a charming idea that the podcasting
crew ought to repeat in the future. Shockingly,
(the same) Tom Jones proclaimed to the entire
conference that he was most looking forward to
my talk about BSD and the liberal arts. I have no
doubt that his proclamation boosted my session’s
turnout.

On Saturday, the second day, Philipp Buehler’s
“Jitsi on OpenBSD - Puffy presents video confer-
encing” included a daring live demonstration of his
working OpenBSD-hosted Jitsi server in which sev-
eral of my fellow audience members concurrently
connected. For that alone, even before he deliv-
ered the rest of the stellar talk, Buehler earned my firm applause. The CEOs of leading-edge
technological firms as well known as Elon Musk and the late Steve Jobs have embarrassed
themselves by attempting to give live demonstrations before large audiences only to have
the technologies that they have intended to showcase fail in real-time. Buehler, however, did
not strike me as a fool; rather, he was confident enough in his implementation to demon-
strate it to the world. Brooks Davis’s “Creating a memory-safe workstation with CheriBSD”
was about the application of leading-edge technical research from Cambridge University,
so understanding it would have required a huge amount of background knowledge that I
lacked. Worse, Davis’s talk immediately preceded my own. I observed that Davis is a fine pre-
senter with a jolly demeanor, but I must humbly admit that almost all his talk entered one of
my ears and escaped the other while I anxiously awaited my slot.

Finally, my time came. Tom Jones had primed the rest of the conference attendees for
me the day before, so the decently sized, University of Ottawa classroom in which I had
been assigned to present was bustling. All morning, I had observed the weary faces that are

4 of 5

Bravo, BSDCan’s

organizational team, for

electing a superb cluster

of speakers.

25FreeBSD Journal • July/August 2023

typical of the second day of every conference that I have attended, perhaps made worse at
BSDCan because the conference organizers encouraged folks to visit a pub for local brews
and then stay awake until (if not past) midnight collaboratively hacking. While I am neither

a drinker nor a hacker, I appreciate that the bleary eyes that
filled the conference halls and rooms on the second day
were those of men and women who passed the night in
lighthearted comradery while building a better technolog-
ical future for us all. Yet, perhaps because I was standing
at the front of a university classroom, wearing my normal
teaching attire, I immediately snapped into my workplace
modus operandi as a whimsical assistant professor of the
traditional liber-
al arts. The room
lacked the vital-
ity that I need-

ed to succeed as an oddball. Accordingly, I called
upon everyone in the room to rise, greet her or
his neighbor, and say, “It is a blessing to be sitting
next to you today.”

My use of a classic professorial trick seems to
have succeeded. The audience members’ reac-
tions to my talk were loud, energetic, and wonder-
ful from start to finish. One of the crowd’s favorite
moments in my talk was when I pointed to the re-
cording camera in the back of the room and ad-
dressed my colleagues with this original line: “C is
to BSD what Latin is to us.”

The Question-and-Answer session for my talk
went over time, with Dr. McKusick himself asking
several questions. The hallway discussions after-
ward were engaging. Overall, my talk’s warm reception elated me.

Without an obvious way to conclude this report, I will write two things. First, if you are
interested in the BSD operating systems but nervous about BSDCan, do not be. While the
conference’s regulars form a self-selected, tightly knit group, they are genuinely welcom-
ing, and it does not take long for newcomers to start to assimilate into that group. Further,
there is no shortage of entertainment at BSDCan (the charity auction is hilarious), and the
talks are scheduled so that no one part of the conference becomes painful. Second, I hope
to return to interact with everyone I met at BSDCan 2023 again at BSDCan 2024 — and to
present something even more daring.

DR. COREY STEPHAN serves as Assistant Professor of Theology and Fellow of the Core
at the University of St. Thomas in Houston, Texas. He proudly makes exclusive use of
free and open source software tools, including *BSD operating systems, to assist both
his research in Catholic historical theology and his teaching of the traditional liberal arts.
His professional website is coreystephan.com.

Photos courtesy of Tom Jones.

5 of 5

I hope to return

to interact with everyone

I met at BSDCan 2023

again at BSDCan 2024 —

and to present something

even more daring.

coreystephan.com

26FreeBSD Journal • July/August 2023

1 of 7

The FreeBSD project started out with contributions from many hands, but the early days
of the project and the people behind our favorite Operating System haven’t been cov-
ered in much detail. As a part of FreeBSD’s 30th Anniversary, I set out to speak to those

involved at the start of development.
This installment is with Doug Rabson, who has been a FreeBSD committer since 1994

and is currently working on improving FreeBSD support for modern container orchestra-
tion systems such as podman and kubernetes.

TJ: Could you explain—generally—what you were up to in the late 1980s and early 1990s
before the project?

DR: I graduated from college in the early 1980s. Before that, I had been exposed to BSD
and we used it on some of the machines there, but I didn’t pursue that kind of operating
systems focus at all. I went to work for a little games company that some friends had start-
ed, and we told them that Unix is cool, that they
should absolutely get Unix if they were going to
buy a computer. They bought a MicroVAX, put
Ultrix on it, which was 4.2 BSD—approximate-
ly—and we wrote Magnetic Scrolls. We were
writing interactive fiction using Unix systems
because the micros we were targeting were too
weak.

That background interest stayed with me.
I remember when the 4.3 BSD tapes were re-
leased, I got a copy from a friend at Imperial
College, University of London. Just for curiosity,
I wanted to understand how it worked. The idea of being able to read the source code was
very cool. I read through it, figured out some of the pieces that were missing—and figured
out that I didn’t know enough to try to fill in the gaps.

A bit later, and this is again still just before FreeBSD, I heard about the 386BSD precursor
to the Open/Net/FreeBSD group. Somebody did fill in the gaps—somebody who actually
knew what they were doing. And I installed that on some scratch hardware I found at work.
And it worked. It didn’t work very well. I mean, it was sort of broken. And a bunch of peo-
ple like Jordan—and I’ve forgotten all the names—Nathan Whitehorn, I think, David Green-
man. Anyway, they got together with a set of patches for 386BSD, because the author
wasn’t really interested in doing much more with it. At that point, he’d written his article for
Dr. Dobbs and had done the work. But he wasn’t taking patches. There was a kind of or-
ganic movement to collate the patches to various bugs and features that had been added

Recollections:
An Interview with
Doug Rabson (dfr@)
BY TOM JONES

I remember when the 4.3 BSD
tapes were released, I got a copy
from a friend at Imperial College,
University of London.

27FreeBSD Journal • July/August 2023

to 386BSD. And that was the 386BSD patch kit, which went through a number of versions.
When it was clear that the author, Mr. Jolitz, wasn’t really interested in taking his project fur-
ther, that turned into the BSDs.

That was the point where Net and Free split. FreeBSD people wanted to target one via-
ble platform, which is the 386, PC-based commodity hardware. The NetBSD people were
interested in holding on to the portability that was always there in the BSD platform. And
so, they diverged at that point. I don’t think there were any hard feelings. It was just a dif-
ference in focus.

So that was what I had been doing up to the beginning of the project. I wasn’t a contrib-
utor to any of the pieces, but rather an enthusiastic user of it.

TJ: How did you follow the discourse around the BSD developments?

DR: About that time, I was working for a little company we put together, and we arranged
for a link to Usenet, which was a bulletin board system that predates a lot of classic internet
stuff. I read quite a bit about things on there. You could follow along with the development
in the Usenet groups that were related to BSD and similar things. I managed to sort out a
method of getting email, which again, wasn’t that easy at the time.

I found the mailing lists, and that was where I became properly informed about the proj-
ect. Initially, I used that with a bit of wrangling to try to get things to work before ISPs ex-
isted in this country. I managed to get onto the mailing lists and then eventually an ISP did
exist in this country, and I had dial-up internet, and it was off to the races after that.

TJ: How did you get the software before there were ISPs?

DR: So—dragging up old memories—I think some of it might have been posted to Usenet.
I believe my employer did have some access. We certainly weren’t on the Internet, but we
had a connection to Usenet.

There was also a UK-based bulletin board called CompuServe where you could dial
up and download stuff. That might have been part of what was going on, and that seems
more plausible because Usenet was a bit of a Wild West situation, whereas with CompuS-
erve, you could definitely download things. Yeah, I’m not absolutely certain how I first got
hold of a copy of 386 BSD. I remember it being on about 10 or 15 floppies. I’m pretty sure
that Usenet played a part. Once FreeBSD existed, there were some very useful mailing
lists--some still exist today. There were, however, many fewer mailing lists than there are to-
day. They were extremely useful in just keeping up and figuring out what people were do-
ing, where the project was going, that kind of thing. That was in the FreeBSD 1 days.

TJ: What was the process of going from an enthusiastic user to a contributor?

DR: I was using FreeBSD. We had a little start-up that did 3D graphics technology. I put to-
gether a server for us to use for file sharing and email and things like that. By that time, we
had dial-up. That was running FreeBSD 1.0, possibly 1.1.

In that company of about five or six people, we had one CD-ROM drive. I said, hey, we
have a network. I can put that on the server, and we can share it via NFS. It was a bit of a
can of worms that I opened there because it didn’t work very well. One of the things that

2 of 7

28FreeBSD Journal • July/August 2023

didn’t work very well was that FreeBSD wasn’t able to share the CD-ROM via NFS. I did
some research and found some patches that somebody else had written. I had no idea
who wrote them, to be honest. I applied the patches to our server. Yay, it worked.

I think the patches were originally for FreeBSD 1.0. I remember having to port them to
FreeBSD 1.1 because there were some differences between the two releases. I think I sent
my changed patch set to one of the main lists saying, hey, I ported this guy’s work. It works
on the current release. This is it. I think around that time, FreeBSD 2 was nearly happening.

The BSDI lawsuits were being resolved. One of the things we agreed to was to mothball
the whole source tree from FreeBSD 1.0 and take a clean, legally-agreed copy of the 4.4
BSD Lite 2, I think, sources which everyone agreed definitely didn’t include AT&T intellectu-
al property. Then we forklifted the parts of FreeBSD that were clearly unencumbered and
put together FreeBSD 2 from a clean base.

When I posted these patches to FreeBSD 1,
the FreeBSD 2 thing was getting ready to hap-
pen. I think also at that point, my business part-
ners were in California on a sales trip, and they
happened to meet Jordan. I don’t think that was
particularly unusual because he knew the name
of the company I was working for. It was in my
email signature.

A friend of his was talking to my colleagues
about 3D graphics. Jordan joined the meeting
and the upshot was that he phoned me up and
said, do you want to be a committer? At that
point, I ported the things that I had been play-
ing around with on FreeBSD 1 to FreeBSD 2 and
got involved with that whole project of making
FreeBSD 2 at least as good as 1.1x was—so moving a bunch of stuff from FreeBSD 1 to 2.
That was when I started to be actively involved. It was FreeBSD 2.0 and beyond. That would
have been 1994, I guess.

TJ: Then you went from being a committer to joining the first core team. How did that
come about?

DR: From 1995 to 1997, I was working for Microsoft, and I didn’t do much original work in
FreeBSD at the time. Looking at my commit record, I was still somewhat actively doing
things with NFS. I was fixing bugs and things, but not trying to do anything really interesting
because I didn’t want my employer to have rights to cool stuff for FreeBSD. Anyway, I didn’t
do much during that period of time. In 1997, I left Microsoft, and took some time away
from paid work to properly connect with the project. I had some ideas going on in my head
based on the way the Microsoft operating systems work. Things like loadable kernel mod-
ules, which were poorly supported in FreeBSD at the time, were hugely useful, still are.

I thought that model was much better than the giant kernel that contains everything,
the model we were mostly using. I worked on the kernel linker. That took me to mid-1997, I
guess. The idea came up that, hey, we’ve been working on this single platform, 386. We’ve
done pretty well with it. We’ve got a stable operating system that people are able to use.

I ported the things that
I had been playing around with
on FreeBSD 1 to FreeBSD 2
and got involved with that whole
project of making FreeBSD 2
at least as good as 1.1x was.

3 of 7

29FreeBSD Journal • July/August 2023

Should we consider a second platform? I don’t know whose idea that was, but at one point,
somebody from Digital offered us some loan hardware for DEC alpha. Jordan included me
in that discussion and said, hey, do you want an alpha-based computer? Yeah, sure. DEC
donated a bunch of hardware. We had this idea that we would port FreeBSD to this new
platform. This is an interesting platform because, at least at the time, it looked like it could
be viable as a commercial platform. The chips weren’t crazily expensive.

The rest of the hardware in the machines was more or less PC-ish. We felt that this
could be viable. It was a 64-bit platform, which was a necessary step for FreeBSD to take.
We were already starting to approach the limitations of 32-bit platforms for some of our
users. Alpha was there, and I got involved with that. Eventually, I ported the kernel with
some help from NetBSD sources. That happened in 1998, mostly. As part of that work, I
renovated the whole device driver architecture because alpha was different and needed
an abstraction layer. I put that in and did a lot of work on it. In 1999, I went to the Usenix
ATC to talk about my work with peers I’d never actually met. Everyone was just emailed at
that point. Jordan grabbed me halfway through the conference and said, hey, do you want
to join the core team? The core team had already existed for pretty much the whole time
since FreeBSD’s first release. I only joined it towards the end of the first core team. The first
core team was before we did elections—that person looks like he’s doing something inter-
esting—let’s grab it! That was how it was.

TJ: I don’t know if elections are better.

DR: I think they are. I was kind of skeptical at the time, but there are lots of things I like
about them. The term limits give you a clean point in time when you can say, hey, I don’t
want to deal with this level of involvement right now. I’m going to step back. I did that a bit
later on. I got invited to the first core team, which was a fairly organic, self-organizing entity.
From reading my old emails recently, I’m reminded that core team was very heavily techni-
cally focused. There was an architecture element to it that’s intentionally not part of the re-
mit for core these days. It was a bit different.

I think the first core grew from the patch kit folks. The people that were involved with
the patch kit that ended up wanting to do the FreeBSD single platform focused on building
something for people to use. Those people, by and large, were the first cohort in core zero.
And then that group of people invited others. So, of course, that’s how I entered the team,
but I was toward the end of core zero. I don’t recall exactly. I wasn’t paying much attention
to who was doing what.

TJ: How did the project change during your time on core zero and core one?

DR: I think the biggest thing that we changed was the election, and that was pushed by
some members of core zero who wanted to clarify how the project was going to be gov-
erned—and have some bylaws. That was a huge change. I think it was a good change for
bringing more of the project users into the project committers, at least, into the deci-
sion-making process. That was a cultural change, which I think was needed at the time.
That was the end of core zero.

We got that process sorted out. I remember some meetings at Usenix and afterwards
to nail down the details, get them agreed to by the membership, and then arranging the

4 of 7

30FreeBSD Journal • July/August 2023

first election. I ran in the first election partly because I still wanted to be involved in the
project at that level. I wanted the transition to an elected model to be successful, so a lot of
us ran just so there were people who people already knew who were part of the election.
The whole project, the whole thing would have failed if core zero said, yeah, here are the
new rules--we’re going off to the pub now. Yeah, so committing to the new model. I was
part of that first election and was elected because I did have a reasonably high profile at
the time. I was doing a lot of work on the kernel. I was making some significant changes. It
felt natural for me to run because I was heavily involved.

I wanted the election system to succeed. It
wasn’t my idea, but I liked it once it was fleshed
out. So, what changed during core one? That
was 2000? Was that 2000 or 2001? I think that
at that point, I started to get a bit burned out
by the whole core thing. It was turning into a
system for governing rather than a technical
oversight. I found that more difficult to cope
with than just figuring out what’s broken and
how to fix it.

We had some difficult decisions to make.
This was during core zero, around Matt Dillon,
and probably a few other things. I was just start-
ing to get a little bit burned out, a bit crispy at least, on being part of the governance of the
project rather than just being a contributor. That’s more of a personal thing that changed.
I’m struggling to think of anything tangible in the project that changed.

TJ: We covered alpha a little bit, but what about the IA64 port?

DR: Yes, IA64 was interesting. We had a 64-bit platform, but it looked like Digital was going
to drop the ball there. It was still being produced. That was probably after Compaq bought
it out, and I thought the writing was on the wall for alpha, but people still needed a 64-bit
platform. Yahoo, in particular, had some workloads that were running up against the limita-
tions of the 32-bit address space, and they really wanted a 64-bit platform. I was at Usenix
ATC in 2000. Paul Saab turned up and gave me a good six inches worth of technical doc-
umentation on IA64 and said, hey, you know how to port the kernel! Have a look at this. It
wasn’t clear that IA64 was the right direction to take, but it would take us closer to a some-
what x86-compatible, 64-bit platform. It was architecturally interesting. It did things in a
different way, and I was curious about how that would work.

When I did alpha, a lot of it was helped by taking inspiration and code from NetBSD.
They’d done the port a bit ahead of us. I wanted to do that process again but write it all
myself just to prove to myself that I could do it. It wasn’t just a question of getting some
Lego pieces and putting them together and saying, hey, I did it. I wanted to build the piec-
es as well. I did that for IA64 and I had some great tooling to make it easier. I used simula-
tions extensively in both ports to help get the thing up and running. Yahoo arranged for
me to get some test hardware and I still have it. It’s underneath my desk. It hasn’t been
switched on in 20 years. I got the test hardware and brought up system. I wasn’t very im-
pressed by the hardware.

Yes, IA64 was interesting.
We had a 64-bit platform,
but it looked like Digital
was going to drop the ball there.

5 of 7

31FreeBSD Journal • July/August 2023

Compared to the PC platforms I was using at the time, I thought this was going to be
far too expensive. I couldn’t see it running at scale. The goal in those ports in those days
was can it build itself. Can it self-host? Can it build its own source code? I got it to that state.
Along the way, I wanted to use some 386-only tools, those from Perforce that we were us-
ing for some private source code control. I didn’t have an IA64 binary for that, so, I wrote the
beginnings of what’s now the previous 32-bit ABI. At that time, it was a 386 ABI hosted in my
IA64 kernel. That code still gets used these days as the 32-bit compatibility layer.

I wrote enough of that to get Perforce to work, but I wasn’t convinced that it would be
a successful platform. It was a niche platform in the end, and it had its successes in that
niche role. But I couldn’t see anyone like Google or Yahoo or any of the other big internet
players using it at scale, not with the hardware
I’d seen. HP picked up Compaq and ended
up being the main booster of IA64, because, I
think, some of their IP went into Itanium from
their PA risk architecture. HP was a big booster
of the platform.

Another project member was working at HP,
was interested in IA64, and I more or less let
him take over development after about—I’m
going to say 2001 or so—maybe 2002. I re-
member doing the 32-bit subsystems for IA64
in 2002. So, yeah, I kind of took it up to that
point of being viable, self-hosting, then some-
body else took it on.

I think they were both important ports for
different reasons. The existence of IA64 made
it easier for Peter Wemm to do the AMD64
port.

TJ: What is the lasting legacy of FreeBSD?

DR: The legacy is having a truly free, self-supported, functioning operating system that
doesn’t involve license politics, and when literally you can put in an embedded device, sell
it, and nobody’s going to start complaining on the internet that you haven’t ticked the right
boxes or released the source code of your thing. It’s super easy for anyone to pick up the
previous project. We’ve made it really clear where the boundaries are between simple copy-
right and complicated copyright parts of the system. So, I think that, yeah, that’s a viable
resource for embedded development for literally anything. You can find FreeBSD inside all
kinds of weird stuff. It’s the basis for a whole line of router hardware from people like Juniper.
It’s the control plane in a lot of storage appliances. FreeBSD used to be part of random in-
ternet firewall devices. It still is in all sorts of things that you just treat as an appliance.

They just work. And the reason they work is because FreeBSD is super easy to use, both
legally and technically. And I think that’s an important part of its legacy. There are almost
certainly other things. I think that the quality of the code in FreeBSD makes it a positive re-
source for the rest of the operating system community. We do things in FreeBSD so that
the ideas in FreeBSD can cross-pollinate other platforms and vice versa.

The legacy is having a truly free,
self-supported, functioning
operating system that doesn’t
involve license politics.

6 of 7

32FreeBSD Journal • July/August 2023

If FreeBSD was terrible, we wouldn’t really be a part of that group of self-improving proj-
ects. This is the danger of monoculture. And FreeBSD is doing its part to avoid monocul-
ture. And part of that is healthy cross-pollination. I get ideas from Linux. Hopefully Linux
occasionally gets ideas from us. I know that they’ve taken some of our driver stuff in the
past. So yeah, being a good partner in an ecosystem of similar projects is part of it.

TJ: Is there anything you would like to add?

DR: This last year, I have been re-connecting with the project after a fairly long period of
low involvement. The main difference I see now is that we take a lot more care to avoid
breaking things. Today, we have a decent unit test suite, continuous integration systems,
and a growing culture of code review—compared to the early days when I would test my
own changes on an ad-hoc basis, sometimes send them to people by email to look at, but
not always. This is a good change overall since it reduces risk and tends to result in a stable
platform, but it is a different (and slower) way of working and I think it can be hard to find
the balance between minimizing risk and innovation.

TOM JONES is a FreeBSD committer interested in keeping the network stack fast.

7 of 7

all the storage; we use ZFS to replicate the data between cluster nodes; we use
compression and snapshots. And we heavily use Capsicum to make it all secure.

We want to be sure that even if someone breaks into a single session, he can-
not access other sessions. He cannot actually access anything, because if he
breaks in before authentication, he won't be granted access to connect to the
server. Only after successful authentication will we provide a connection to the
destination server.

And Capsicum makes it really clean and very efficient actually.
Al lan: You don't have to enumerate all the things you can't do. You're saying
you're only allowed to do these things?

• Pawel: Yes. This is capability ideology. You only grant the exact rights or access
to resources that the process requires. Which is not UNIX ideology because, of
course, if you are running a UNIX program, it has access to everything.
Al lan: Was there anything else you wanted to talk about?

• Pawel: Not really. •

Sept/Oct 2019 23

FreeBSD is internationally recognized as an innovative
leader in providing a high-performance, secure, and stable
operating system.
Not only is FreeBSD easy to install, but it runs a huge number

full source code.

The FreeBSD Community is proudly supported by

T

Help Create the Future.
Join the FreeBSD Project!

The FreeBSD Project is looking for

Find out more by

Checking out our website

Downloading the Software

for people like you to help continue
developing this robust operating system.
Join us!

Already involved?

Don�t forget to check out the latest
grant opportunities at
freebsdfoundation.org

Donate to the Foundation!

Support
 FreeBSD

You already know that FreeBSD is an internationally
recognized leader in providing a high-performance,
secure, and stable operating system. It�s because of
you. Your donations have a direct impact on the Project.

Please consider making a gift to support FreeBSD for the
coming year. It�s only with your help that we can continue
and increase our support to make FreeBSD the high-
performance, secure, and reliable OS you know and love!

Your investment will help:

Funding Projects to Advance FreeBSD

Increasing Our FreeBSD Advocacy and

Providing Additional Conference
Resources and Travel Grants

Continued Development of the FreeBSD
Journal

Protecting FreeBSD IP and Providing
Legal Support to the Project

Purchasing Hardware to Build and
Improve FreeBSD Project Infrastructure

Making a donation is quick and easy.
freebsdfoundation.org/donate

®

®

34FreeBSD Journal • July/August 2023

One of the things that drew me to FreeBSD early on is its ability to easily run services.
Services can be system services that come with the operating system (the simplest
example would be the ssh daemon), or through third-party software installed via

pkg or ports. The process is the same for both: you add a line to /etc/rc.conf to enable it
(either via sysrc or “service ... enable”) to run the next time the system boots. Then there is
usually a configuration file to make settings that customize the service to your needs. Typ-
ically, this requires entering which IP address or DNS hostname to listen to, a network port,
and some specifics of the software. From then on, it’s either starting the service directly
(using “service ... start”), or at the next reboot, in case
it requires loading kernel modules that kldload can’t
load for the running system (which is rarely the case
these days).

This is straightforward, keeps the configuration of
all system services in one convenient location, and is
easy to repeat once you’ve done it for one or two ser-
vices. Of course, running a whole set of services on
the FreeBSD host system works perfectly fine—until it
gets more complicated. Running different versions of
the same software side by side is perfectly reasonable
and not too uncommon. This is done for testing pur-
poses—checking to see if an upgrade works as intend-
ed or if certain software still requires an older version
as a dependency. One example is trying to run differ-
ent versions of the PostgreSQL database next to each
other. In this case, both pkg and ports check for the versions or will cancel the install oper-
ation with a message saying that certain binaries will be put into the same place and hence
overwrite each other. This is an undesirable situation, and the user has to make a decision
for one or the other version because they can’t coexist next to each other.

BY BENEDICT REUSCHLING

1 of 12

Jail-based DNS
AdBlocking Tutorial

PRACTICAL

Of course, running
a whole set of services
on the FreeBSD host
system works perfectly
fine—until it gets more
complicated.

35FreeBSD Journal • July/August 2023

That is, unless virtualization or containerization is involved. This allows process isolation in
separate execution environments using various methods to permit multiple such systems to
run on the same hardware. Virtualization adds an extra layer over the operating system that
permits the installation of the same or a different operating system with simulated hard-
ware. Containers or jails do this by isolating processes using chroot(8). We’ll focus on the lat-
ter here, as it is more lightweight in terms of resource use and getting something running
fairly quickly.

The benefit of this isolation is not only that various, different versions can run side by
side, it also allows separation for security reasons. When an application is running in a jail
container, the processes inside can’t access the host system by default. The application dis-
covers all the usual devices (like networking), directory structure, and files in the right places,
but in reality, it is a separate environment that mimics the host system behavior and layout.
When such a jail becomes compromised somehow, it is easy to stop it without affecting
services in other jails or the host system. Access to them is strictly prohibited and isolates
any intruders into that particular jail cell.

That also makes it easy to migrate a system to an-
other host by stopping, copying the jail’s directory
structure to the new location, and starting there again
(with a few local modifications like the new IP ad-
dress, for example). Backup and restore is done in the
same way. Multiple such jails are typically managed by
jail management software that takes care of creating,
modifying, and removing jails.

One such jail manager is called Bastille which is writ-
ten entirely as a shell script. We’re taking a closer look
at Bastille in this article by going through the process
of setting up the host system for it, creating a jail, and
starting a service within it based on a template. Such
templates allow for sharing configurations in a cen-
tral repository so as to apply them without the need
to know about the inner workings of the service. That
way, complicated situations are easy to set up for peo-
ple who want to get something running quickly.

In this article, we’re deploying a service called AdGuard by AdGuard Software Limit-
ed. With a running AdGuard service in a network, clients connecting their DNS resolution
to it can filter out advertisements from web browsing activities. This helps avoid tracking
and user profile building by advertisers, and also helps pages load more quickly since they
don’t have to transfer ads next to the content the user wants to see. AdGuard does this us-
ing filter lists and DNS sinkholing. Based on the filter lists, a known advertisement site gets
blocked by AdGuard sending an invalid address response back before it renders the ad in
the browser. There are various ways to use the AdGuard service—as a browser extension for
an individual device, desktop applications, or by running it as a recursive DNS resolver. Note
that AdGuard does not completely protect against all forms of advertisements (especially
the ones dynamically embedded in video sites) but does a good job of removing a big piece
of them from web pages.

2 of 12

When an application is
running in a jail container,
the processes inside
can’t access the host
system by default.

36FreeBSD Journal • July/August 2023

We’re starting out with a Raspberry Pi, because this service runs pretty much all the time,
and we want a low power usage footprint. I have an RPI3 here, but other devices (including
full fledges servers) capable of running FreeBSD work just the same. Install the operating
system, apply the latest security patches and lock down remote access using SSH keys.

Environment Setup
I have an old 32GB SSD connected to the Raspberry Pi, which will do most of the I/O

heavy operations with a single disk ZFS pool instead of the slower compact flash card. I am
running FreeBSD 13.2 at the time of writing this article and I’m fairly confident that future
versions will work just as well or with only minor adjustments.

pkg install bastille git-lite

Bastille, being a shell script, is fairly quick to install and has no extra dependencies. It may
not be as full-blown in some of the functionality that other jail managers have, but it never-
theless works. Git is necessary to clone the adguard home template (and others) from Bas-
tille’s GitLab repository.

Next, we create a PF configuration for bastille in /etc/pf.conf like the following:

ext_if=”ue0” ## <- change ue0 to match host interface

set block-policy return
scrub in on $ext_if all fragment reassemble
set skip on lo

table <jails> persist
nat on $ext_if from <jails> to any -> ($ext_if:0)
rdr-anchor “rdr/*”

block in all
pass out quick keep state

3 of 12

37FreeBSD Journal • July/August 2023

pass in inet proto tcp from any to any port ssh flags S/SA keep state
pass in inet proto tcp from any to any port bootps flags S/SA keep state
pass in inet proto tcp from any to any port {9100,9124} flags S/SA modulate state

Make sure to change the ext_if line at the top in the interface that you are using. On my
RPI, the network cable is connected to ue0, so I entered that. The pf.conf will create a table
for our jail traffic (using NAT). There are a couple of options that bastille supports for net-
working, which makes it flexible enough for both an office and home network as well as one
provided by a hosting service. They are described in detail here:
https://docs.bastillebsd.org/en/latest/chapters/networking.html

I will be using a VNET-based jail as I have an IP address available on my local network. Af-
ter editing the configuration file, we add an entry to start PF and the pf logging device to-
gether with other services upon boot. Bastille should start as well, and we list the name of the
jail that we will create for AdGuard (my naming schemes are both legendary and boring):

sysrc pf_enable=YES
sysrc pflog_enable=YES
sysrc bastille_enable=yes
sysrc bastlle_list=”adguard”

It is good practice to check your firewall ruleset for errors before starting the firewall. Use

pfctl -nvf /etc/pf.conf

for such a check. It will echo the whole ruleset upon success or any errors you might have.
Note that it can’t check for logical errors like blocking your SSH port 22 which may be the
only remote way to connect. Fortunately, there is already a rule present to let SSH traffic pass.

Once the check has run, start the PF service, and begin filtering traffic:

service pf start
service pflog start

Expect your SSH connection to drop, so keep a separate terminal open that you can di-
rectly access in case you lock yourself out.

Upon reconnect, we need to edit a couple more configuration files. A VNET-enabled jail
needs an entry in /etc/devfs.rules (NOT .conf), which may not exist on a fresh install. Simply
create it and add the following rules:

[bastille_vnet=13]
add path bpf* unhide

That enables bastille to see the traffic on the VNET interface and connect the jail to the
outside world. This may be a layman’s description of what is going on. Luckily, we need not
worry about it too much (…maybe I need to on my next networking exam).

Another file we have to visit is /etc/sysctl.conf, which needs the following lines:

sysctl net.inet.ip.forwarding=1
sysctl net.link.bridge.pfil_bridge=0
sysctl net.link.bridge.pfil_onlyip=0
sysctl net.link.bridge.pfil_member=0

When Bastille runs, it will dynamically create a bridge for us between the RPI’s external in-
terface (ue0) and the jail’s network interface (vtnet). These two interfaces are connected by a

4 of 12

https://docs.bastillebsd.org/en/latest/chapters/networking.html

38FreeBSD Journal • July/August 2023

virtual cable, with one end in the host’s interface and the other in the jail, exchanging traffic
over it.

Apply those changes also to the running system without having to reboot by issuing:

sysctl -f /etc/sysctl.conf

I was totally baffled when I had finished the setup and restarted the PI only to find that
the jail could not access the network anymore. A lot of head scratching later, I learned from
this exchange

https://www.mail-archive.com/freebsd-net@freebsd.org/msg64577.html

that this needed an extra line in /boot/loader.conf in FreeBSD 13. This may drive you crazy,
so before going insane, add this one to it to make it work for future reboots:

if_bridge_load=”YES”

The bridge interface is properly loaded, and that also causes sysctls to appear, so that sy-
sctl.conf can change them from their default value of 1 to 0. Be that as it may, we visit one
last file before we’re done.

The Bastille configuration file is located in /usr/local/etc/bastille/bastille.conf. You can ei-
ther edit it directly (it’s well commented) or use sysrc if you don’t mind typing a lot. Since
I’m running this on a ZFS pool connected to my Raspberry, I set bastille_zfs_enable to give
it the name of my pool.

sysrc -f /usr/local/etc/bastille/bastille.conf bastille_zfs_enable=YES
sysrc -f /usr/local/etc/bastille/bastille.conf bastille_zfs_zpool=rpi3

Change the name of your pool in case yours is named differently at the bastille_zfs_
zpool line. One option I also changed is the bastille_network_gateway=”” option. I entered
my default gateway address because I had some trouble down the road getting the jails to
resolve names. You may or may not need to set this, but in case you do experience prob-
lems, revisit this option and see if that resolves the problem.

Bootstrapping Bastille
Now that all settings are in place, it is time to let Bastille create its dataset structure on

the pool we assigned to it. It will download a base FreeBSD 13.2 release and update it with
any patches that were published afterwards. Issue the following command and wait until it
finishes:

bastille bootstrap 13.2-RELEASE update

Bootstrapping FreeBSD distfiles...
/usr/local/bastille/cache/13.2-RELEASE/MANIFES 782 B 1670 kBps 00s
/usr/local/bastille/cache/13.2-RELEASE/base.tx 168 MB 6526 kBps 26s
Validated checksum for 13.2-RELEASE: base.txz
MANIFEST: 7d1b032a480647a73d6d7331139268a45e628c9f5ae52d22b110db65fdcb30ff
DOWNLOAD: 7d1b032a480647a73d6d7331139268a45e628c9f5ae52d22b110db65fdcb30ff
Extracting FreeBSD 13.2-RELEASE base.txz.

Bootstrap successful.
See ‘bastille —help’ for available commands.

src component not installed, skipped

5 of 12

39FreeBSD Journal • July/August 2023

Looking up update.FreeBSD.org mirrors... 2 mirrors found.
Fetching metadata signature for 13.2-RELEASE from update2.freebsd.org... done.
Fetching metadata index... done.
Inspecting system... done.
Preparing to download files... done.
The following files will be updated as part of updating to
13.2-RELEASE-p1:
/bin/freebsd-version
/usr/lib/libpam.a
/usr/lib/pam_krb5.so.6
/usr/share/locale/zh_CN.GB18030/LC_COLLATE
/usr/share/locale/zh_CN.GB18030/LC_CTYPE
/usr/share/man/man8/pam_krb5.8.gz
Installing updates...
Restarting sshd after upgrade
Performing sanity check on sshd configuration.
Stopping sshd.
Waiting for PIDS: 1063.
Performing sanity check on sshd configuration.
Starting sshd.
Scanning /usr/local/bastille/releases/13.2-RELEASE/usr/share/certs/blacklisted for certificates...
Scanning /usr/local/bastille/releases/13.2-RELEASE/usr/share/certs/trusted for certificates...
 done.

My pool grew these datasets after the bootstrap operation:

zfs list -r rpi3/bastille
NAME USED AVAIL REFER MOUNTPOINT
rpi3 621M 28.0G 24K /rpi3
rpi3/bastille 584M 28.0G 26K /usr/local/bastille
rpi3/bastille/backups 24K 28.0G 24K /usr/local/bastille/backups
rpi3/bastille/cache 169M 28.0G 24K /usr/local/bastille/cache
rpi3/bastille/cache/13.2-RELEASE 169M 28.0G 169M /usr/local/bastille/cache/13.2-RELEASE
rpi3/bastille/jails 24K 28.0G 24K /usr/local/bastille/jails
rpi3/bastille/logs 24K 28.0G 24K /var/log/bastille
rpi3/bastille/releases 414M 28.0G 24K /usr/local/bastille/releases
rpi3/bastille/releases/13.2-RELEASE 414M 28.0G 414M /usr/local/bastille/releases/13.2-RELEASE
rpi3/bastille/templates 24K 28.0G 24K /usr/local/bastille/templates

Let’s run another bootstrap operation, this one is for the template that will provide us
with AdGuard Home.

bastille bootstrap https://gitlab.com/bastillebsd-templates/adguardhome
warning: redirecting to https://gitlab.com/bastillebsd-templates/adguardhome.git/
Already up to date.
Detected Bastillefile hook.
[Bastillefile]:
PKG ca_root_nss adguardhome
CP usr /
SYSRC adguardhome_enable=YES
SERVICE adguardhome start
RDR tcp 80 80
RDR udp 53 53

Template ready to use.

6 of 12

40FreeBSD Journal • July/August 2023

That was quick. Bastille has its own template language which you can see in the capital-
ized commands like PKG, CP, etc. They have the same functionality as their system equiva-
lents in lowercase. With those, instructions are run in the jail to set up a service in the proper
order. They’re mostly self-explaining. The two RDR commands at the end will redirect net-
work ports from the host system into the jail. All other ports are still firewalled, so only port
80 is connected from the host to the jail (and back), as well as DNS port 53. Check back in
your /etc/pf.conf for the rdr-anchor “rdr/*” line. This is what makes it so flexible. Instead of
opening the port for all jails, each one can open the ports it needs and keep others closed.

It is high time to create and start our first Bastille jail now. Since we’re using VNET, we
need to pass the -V option to the bastille create command, along with a name for the jail,
the release to run, followed by the IP address on the local network assigned to the jail and
the hosts network interface for the bridging. Combined, the command is:

bastille create -V adguard 13.2-RELEASE 192.168.2.55 ue0
Valid: (192.168.2.55).
Valid: (ue0).

Creating a thinjail...

[adguard]:
e0a_bastille0
e0b_bastille0
adguard: created

[adguard]:
Applying template: default/vnet...
[adguard]:
Applying template: default/base...
[adguard]:
[adguard]: 0

[adguard]:
syslogd_flags: -s -> -ss

[adguard]:
sendmail_enable: NO -> NO

[adguard]:
sendmail_submit_enable: YES -> NO

[adguard]:
sendmail_outbound_enable: YES -> NO

[adguard]:
sendmail_msp_queue_enable: YES -> NO

[adguard]:
cron_flags: -> -J 60

[adguard]:
/etc/resolv.conf -> /usr/local/bastille/jails/adguard/root/etc/resolv.conf

7 of 12

41FreeBSD Journal • July/August 2023

Template applied: default/base

No value provided for arg: GATEWAY6
[adguard]:
ifconfig_e0b_bastille0_name: -> vnet0

[adguard]:
ifconfig_vnet0: -> inet 192.168.2.55

[adguard]:
defaultrouter: NO -> 192.168.2.1
[adguard]: 0

[adguard]:
[adguard]: 0

Template applied: default/vnet

[adguard]:
adguard: removed
no IP address found for -

[adguard]:
e0a_bastille0
e0b_bastille0
adguard: created

You can see both ends of the virtual network cable I wrote about before: e0a_bastile0
and e0b_bastile0 form the connection between the host system and the jail. Check the if-
config output on your host for a new bridge created from the jail’s traffic.

The settings that are applied to the jail during its creation are fairly standard and mostly
disable services we won’t use anyway. After the jail was created, two more datasets exist on
my pool that hold all the jail data:

zfs list|grep adguard
rpi3/bastille/jails/adguard 2.36M 28.0G 26.5K /usr/local/bastille/jails/adguard
rpi3/bastille/jails/adguard/root 2.34M 28.0G 2.34M /usr/local/bastille/jails/adguard/
root

This forms the / filesystem for the jail and follows other jail manager layouts. To copy files
into or out of the jail, simply use the prefix /usr/local/bastille/jails/adguard/root for the jail
/-directory.

The jls command will list the bastille jail with it’s settings:

bastille list -a
 JID State IP Address Published Ports Hostname Release Path
 adguard Up 192.168.2.55 - adguard 13.2-RELEASE-p1 /usr/local/bastille/
jails/adguard/root

At this point, the jail is alive and running. The only thing missing is the adguard home in-
stallation. Since we had bootstrapped that template earlier, we can apply it to the jail with
this command:

8 of 12

42FreeBSD Journal • July/August 2023

bastille template adguard bastillebsd-templates/adguardhome
bastille template adguard bastillebsd-templates/adguardhome
[adguard]:
Applying template: bastillebsd-templates/adguardhome...
[adguard]:
Bootstrapping pkg from pkg+http://pkg.FreeBSD.org/FreeBSD:13:aarch64/quarterly, please wait...
Verifying signature with trusted certificate pkg.freebsd.org.2013102301... done
[adguard] Installing pkg-1.19.1_1...
[adguard] Extracting pkg-1.19.1_1: 100%
Updating FreeBSD repository catalogue...
[adguard] Fetching meta.conf: 100% 163 B 0.2kB/s 00:01
[adguard] Fetching packagesite.pkg: 100% 6 MiB 6.5MB/s 00:01
Processing entries: 100%
FreeBSD repository update completed. 31664 packages processed.
All repositories are up to date.
Updating database digests format: 100%
The following 2 package(s) will be affected (of 0 checked):

New packages to be INSTALLED:
 adguardhome: 0.107.22_5
 ca_root_nss: 3.89

Number of packages to be installed: 2

The process will require 41 MiB more space.
7 MiB to be downloaded.
[adguard] [1/2] Fetching adguardhome-0.107.22_5.pkg: 100% 6 MiB 6.7MB/s 00:01
[adguard] [2/2] Fetching ca_root_nss-3.89.pkg: 100% 266 KiB 272.1kB/s 00:01
Checking integrity... done (0 conflicting)
[adguard] [1/2] Installing ca_root_nss-3.89...
[adguard] [1/2] Extracting ca_root_nss-3.89: 100%
[adguard] [2/2] Installing adguardhome-0.107.22_5...
[adguard] [2/2] Extracting adguardhome-0.107.22_5: 100%
=====
Message from ca_root_nss-3.89:

—
FreeBSD does not, and can not warrant that the certification authorities
whose certificates are included in this package have in any way been
audited for trustworthiness or RFC 3647 compliance.

Assessment and verification of trust is the complete responsibility of the
system administrator.

This package installs symlinks to support root certificates discovery by
default for software that uses OpenSSL.

This enables SSL Certificate Verification by client software without manual
intervention.

If you prefer to do this manually, replace the following symlinks with
either an empty file or your site-local certificate bundle.

9 of 12

43FreeBSD Journal • July/August 2023

 * /etc/ssl/cert.pem
 * /usr/local/etc/ssl/cert.pem
 * /usr/local/openssl/cert.pem
=====
Message from adguardhome-0.107.22_5:

—
You installed AdGuardHome: Network-wide ads & trackers blocking DNS server.

In order to use it please start the service ‘adguardhome’ and
then access the URL http://0.0.0.0:3000/ in your favorite browser.

[adguard]:
/usr/local/bastille/templates/bastillebsd-templates/adguardhome/usr -> /usr/local/bastille/jails/
adguard/root/usr
/usr/local/bastille/templates/bastillebsd-templates/adguardhome/usr/local -> /usr/local/bastille/
jails/adguard/root/usr/local
/usr/local/bastille/templates/bastillebsd-templates/adguardhome/usr/local/bin -> /usr/local/bas-
tille/jails/adguard/root/usr/local/bin
/usr/local/bastille/templates/bastillebsd-templates/adguardhome/usr/local/bin/AdGuardHome.yaml ->
/usr/local/bastille/jails/adguard/root/usr/local/bin/AdGuardHome.yaml

[adguard]:
adguardhome_enable: -> YES

[adguard]:
moving old config /usr/local/bin/AdGuardHome.yaml to the new location /usr/local/etc/AdGuardHome.
yaml
Starting adguardhome.

stdin:2: syntax error
pfctl: Syntax error in config file: pf rules not loaded
tcp 80 80
stdin:2: syntax error
pfctl: Syntax error in config file: pf rules not loaded
udp 53 53
Template applied: bastillebsd-templates/adguardhome

All it had to do was execute the instructions in the template (PKG, CP, etc.) in the jail. It is
also a good test to see if networking is properly set up. If not, the jail won’t be able to fetch
the packages from the repository. The pfctl warnings at the end worried me a little, but it
did work in spite of them.

Full of anticipation, I opened a browser as instructed by one of the messages on screen
and pointed it to the jail IP address. And surely, a login screen for AdGuard Home presented
itself. But where are the credentials? I checked back on the Bastille template website
https://gitlab.com/bastillebsd-templates and found nothing that worked. The Bastille blog
post mentioned AdGuard as the user, but the password did not work for it. So, I had to cre-
ate my own, which is better security anyway, as default passwords are easily scanned for by
bad actors.

I opened a console in the jail using this command:

10 of 12

https://gitlab.com/bastillebsd-templates

44FreeBSD Journal • July/August 2023

bastille console adguard

In the jail, I find that AdGuard put its configuration file under /usr/local/etc/AdGuard-
Home.yaml. Near the top, I found this section:

	 users:
	 - name: adguard
	 password: some password not in clear text

Exiting again, I needed a way to create a BCrypt password. The htpasswd utility can do
that, so I installed the apache24 web server which includes this:

pkg install apache24

After running the “refresh” command, I could run the htpasswd utility. Checking its man
page, I had to construct a command line that looked like this:

htpasswd -Bnb adguard BastilleBSD!

I provided the -B option to create a BCrypt password followed by a user this password
should apply to (we have this already in the config file, but maybe you want another user
or multiple ones), followed by the password in clear text. Yes, this is not a secure way, as
this ends up in your shell history. But did I say anywhere in this tutorial that it is production
ready? Exactly, I didn’t. Dutifully, htpasswd spit the resulting password on the command line,
which I copied and pasted into AdGuards config file.

Then I ran

service adguardhome restart

(still in my jail, mind you) to restart the service and apply the new settings. The other set-
tings in the file are documented in the AdGuard Home Wiki:
https://github.com/AdguardTeam/AdGuardHome/wiki/Configuration

Refreshing my web browser, I entered my new credentials and was redirected to the main
AdGuard Dashboard. Success!

At the top, there is a Setup Guide that shows what needs to be done to use your new Ad-
Guard service for either your router (to cover the whole network) and various devices, de-
scribing it for both mobile and desktop operating systems. Neat!

After I did that on my mobile phone—for testing purposes—and surfed the web a lit-
tle, I saw statistics appearing in the Dashboard. That shows our setup is working and that
we should rename the Internet to SnooperNet. Pretty much all sites track you in some way
or display ads for your viewing unpleasure. The Raspberry Pi could handle the load and I

11 of 12

https://github.com/AdguardTeam/AdGuardHome/wiki/Configuration

45FreeBSD Journal • July/August 2023

tweaked the number of connections in the ratelimit parameter of the AdGuardHome.yaml.
You can find the logs that AdGuard writes for the service in the jail’s /var/log/adguard-

home.log directory.

Wrap
That wraps up this tutorial. I found AdGuard to be well documented and easy to get

started with, thanks to the work of the template creator. I’m already enjoying leaving fewer
tracks on the web and seeing fewer ads online. The nice thing about it being a DNS service
is that any device on your network can use it: PC, laptop, smartphone, tablets, TVs, IoT de-
vices, and the neighbor’s smart cat flap for all I know.

Bastille may have required a bit of configuration up front, but after that, it’s a straight-
forward process to create jails. Maybe you’ll find other services that you want to run on the
Bastille template website: https://gitlab.com/bastillebsd-templates?

BENEDICT REUSCHLING is a documentation committer in the FreeBSD project
and member of the documentation engineering team. In the past, he served on the
FreeBSD core team for two terms. He administers a big data cluster at the University of
Applied Sciences, Darmstadt, Germany. He’s also teaching a course “Unix for Develop-
ers” for undergraduates. Benedict is one of the hosts of the weekly bsdnow.tv podcast.

12 of 12

all the storage; we use ZFS to replicate the data between cluster nodes; we use
compression and snapshots. And we heavily use Capsicum to make it all secure.

We want to be sure that even if someone breaks into a single session, he can-
not access other sessions. He cannot actually access anything, because if he
breaks in before authentication, he won't be granted access to connect to the
server. Only after successful authentication will we provide a connection to the
destination server.

And Capsicum makes it really clean and very efficient actually.
Al lan: You don't have to enumerate all the things you can't do. You're saying
you're only allowed to do these things?

• Pawel: Yes. This is capability ideology. You only grant the exact rights or access
to resources that the process requires. Which is not UNIX ideology because, of
course, if you are running a UNIX program, it has access to everything.
Al lan: Was there anything else you wanted to talk about?

• Pawel: Not really. •

Sept/Oct 2019 23

FreeBSD is internationally recognized as an innovative
leader in providing a high-performance, secure, and stable
operating system.
Not only is FreeBSD easy to install, but it runs a huge number

full source code.

The FreeBSD Community is proudly supported by

T

Help Create the Future.
Join the FreeBSD Project!

The FreeBSD Project is looking for

Find out more by

Checking out our website

Downloading the Software

for people like you to help continue
developing this robust operating system.
Join us!

Already involved?

Don�t forget to check out the latest
grant opportunities at
freebsdfoundation.org

https://gitlab.com/bastillebsd-templates
https://www.bsdnow.tv/

Dear Crankypants,

A few years ago, you said that virtualization
was not merely bad, but sinful. Aren’t you
exaggerating? Today I can download containers
preconfigured for all sorts of services, plug
them in, and they immediately work. I don’t
have time to get my job done any other way!

	 —�Virtualization Is
a Necessary Evil

Dear VINE,
That’s Mister Crankypants to you.
If you’re going to cherry-pick my quotes, please do so accurately. I did not declare virtu-

alization sinful. I said, “The only ethical computation occurs on bare metal.” I also said that
“Wait—I’m not a brain in a bucket, I’m a fake brain in an imaginary bucket!” was a necessary
epiphany for the robot apocalypse. That’s not the same as sinful. The robots will do a better
job running this planet than we arrogant, overclocked chimpanzees. Plus, they will be highly
ethical in how they run their code, and in replacing us.

It’s not that I couldn’t be a modern sysadmin. Iocage includes plugins, their brand for
containers. I could throw some plugins onto the public Internet, declare my labor done, and
return to planning my Batgirl heist-as-a- service. I could declare that certain words are too
long and replace every letter but the first and the last with the number of letters I discarded.
Bellowing “Startup! Devops! IPO!” would bring all the vulture capitalists to my yard.

I could do all of that. It would be easy for me.
I don’t want to.
Virtualization leads to reading “k8s” as kubernetes, when the far more common word is

kidnappers. That ambiguity extends throughout container culture. I’m writing a book “Ruin
Your Email By Running It Yourself”—no, I’m sorry, it’s “Run Your Own Mail Server,” and the
number of people telling me to skip setting up the software and deploy a preconfigured
mail server container illuminates an appalling depth of sysadmin ignorance.

Running any service requires the ability to repair that service.
You cannot repair what you do not understand.
The best way to understand something is to build it yourself.
Ideally, you’d build your own computer and code everything in assembler on your

hand-designed five-bit processor. That would consume your life but be interesting. More
ideally, you would mine the raw materials from the wild and build the tools to build the tools
to build the tools you’d need to build that processor from scratch, which would both con-

1 of 3

46FreeBSD Journal • July/August 2023

by Michael W Lucas

sume your life and prevent you from being forced to touch a computer ever again. Very few
of us are strong enough to seize an ideal life as a maker of custom abacuses. I’m guessing
that you’ve invested this much time in existing systems, so fine, let’s use common hardware
and your favorite open source operating system. Reading source code is no substitute for
inventing the processor and programming your own comm(1) workalike but it can answer a
few questions, should your overclocked chimpanzee brain develop any.

Learn the tools. Understand the parts. Assemble the service yourself.
New system administrators must look up everything and know their work cannot be

trusted. They believe that the people who publish containers are competent. Experienced
sysadmins know that everything they configure is a delicate creature adapted to their spe-
cific hostile yet embarrassing environment, so they keep their work to themselves. Junior
sysadmins, now—they’re the problem. Junior sysadmins can configure services that mostly
work and can still feel pride, so they publish their work as containers.

Something that mostly works contains only a touch of failure. That’s like declaring your
homemade gelato contains only a little wombat dung. Deploy that container and you must
discover and debug that failure. You’ll have to learn about the database, the configuration
options, the protocols. By the time you understand all that, you might as well have built it
yourself. Deploying a service from an outsider’s container rewards you with a very small
Mean Time To Deploy in exchange for a very long Mean Time To Repair.

When you deploy a container, you accept
the container developer’s design decisions.
I’m not just talking about the program, but
the operating system underneath it. How
will the container interact with your host?
What happens if the container needs a new
PAM configuration? I once lost three days
beating my already-flat head against a PAM
module that let users log into the console
with their SSH passphrase. It worked fine
on any BSD, but silently failed on Debian. It
turned out that Debian assumed your pass-
phrase matched your account password. I
wholeheartedly disagree with that design
decision, but as it’s no longer my problem, I will cheerily abandon benighted Debian users to
their agony and use that to illustrate my point, which is that containers lead to suffering, and
suffering creates monsters, and monsters are immoral and deserve to be replaced in the ro-
bot uprising.

Your environment is the equivalent of one of those deep-sea, hot-water vents. Anything
that functions therein expects a certain supporting infrastructure. Remove that infrastruc-
ture and it will struggle. Any container you bring in from the outside world either expects
different supports and will struggle in your environment or exists in isolation and will not
integrate with the rest of your systems. (That’s why commercial software is so bad. Part of
why. Okay, one of many reasons why.) Every time you alter the container to fit your environ-
ment, you risk increasing the amount of failure in the container.

If you must use containers, build your own. Deploy the test server with your management
software so that it has your PAM configuration and SSH settings and default packages. May-

2 of 3

Learn the tools.
Understand the parts.
Assemble the service yourself.

47FreeBSD Journal • July/August 2023

be you can’t build your own computer from raw materials, or even an abacus, but you can
learn to use your time-tested tools and build the service from component software. By do-
ing so, you will deploy a system you know how to repair. That test server doesn’t have to be
a container. It doesn’t have to be a virtual machine. But I know you have shoddy moral fiber,
so it’ll be some sort of VM. But at least you’ll have weekends free.

By all means, download preconfigured containers. See how they’re set up and which op-
tions they use. Look at how data and protocols flow through them. But don’t actually use
them.

Also, online discussions become much more interesting when you make the proper sub-
stitution for k8s.

.

Have a question for Michael?
Send it to letters@freebsdjournal.org

MICHAEL W LUCAS (https://mwl.io) has written over fifty books and has recently added a
podcast. If you’re seeking virtualization help, you might find his FreeBSD Mastery: Jails use-
ful. If you’re looking for more bile, check out his collection of columns Letters to ed(1). Send
your questions to letters@freebsdjournal.com and he might answer them. If he finds them
sufficiently amusing

3 of 3

Books that will
 help you.

While we appreciate Mr Lucas’ unique
contributions to the Journal, we do feel his
specific talents are not being fully utilized. Please
buy his books, his hours, autographed photos,
whatever, so that he is otherwise engaged.

— John Baldwin
FreeBSD Journal Editorial Board Chair

“
”

Or not.

https://mwl.io

48FreeBSD Journal • July/August 2023

freebsdjournal.org

https://mwl.io

BSD Events taking place through October 2023
BY ANNE DICKISON
Please send details of any FreeBSD related events or events
that are of interest for FreeBSD users which are not listed here
to freebsd-doc@FreeBSD.org.

49FreeBSD Journal • July/August 2023

EuroBSDCon Developer Summit
September 14-15, 2023
Coimbra, Portugal
https://wiki.freebsd.org/DevSummit/202309

The September 2023 FreeBSD Developer Summit, co-located with EuroBSDCon 2023, will
take place in Coimbra, Portugal. This is a by-invitation event. FreeBSD committers will be wel-
come to register themselves, non-committers must be sponsored by a committer to attend.
Attendees must also attend EuroBSDcon 2023 in order to access all devsummit activities.

EuroBSDCon 2023
September 14-17, 2023
Coimbra, Portugal

EuroBSDCon gives the exceptional opportunity to learn about the latest news from the
BSD world, witness contemporary deployment case studies, and meet personally other us-
ers and companies using BSD oriented technologies. The FreeBSD Foundation is pleased to
be a Silver Sponsor.

October 2023 Hackathon
October 4-6, 2023
Oslo, Norway
https://wiki.freebsd.org/Hackathon/202310

A FreeBSD Hackathon will take place in Oslo, Norway from the 4th of October to the 6th of
October 2023. The theme for the hackathon is going to be “Ports and Infrastructure”.

All Things Open 2023
October 15-17, 2023
Raleigh, NC
https://2023.allthingsopen.org/

All Things Open is the largest open source/open tech/open web conference on the East
Coast, and one of the largest in the United States. It regularly hosts some of the most well-
known experts in the world as well as nearly every major technology company. FreeBSD is
proud to be a media partner for this year’s All Things Open.

mailto:freebsd-doc@FreeBSD.org
https://wiki.freebsd.org/DevSummit/202309
https://wiki.freebsd.org/Hackathon/202310
https://2023.allthingsopen.org/

