
18 FreeBSD Journal • May/June 2023

Early FreeBSD Ports
BY DOUG RABSON

From its inception, FreeBSD focused on providing solid sup-
port for the i386 architecture. The PC platform was com-
monly available and relatively inexpensive and concentrating

our existing resources on this helped to make FreeBSD on i386
stable and performant. However, after a few years, we decided to
broaden our support; the first target was the DEC Alpha platform
which was a good choice given its 64-bit architecture. A few years
later, we added IA-64 support, then being positioned by Intel as a
successor to the i386.

FreeBSD on Alpha
In early May of 1997, Jordan Hubbard asked for volunteers to

work on porting FreeBSD to the DEC Alpha platform. The Alpha
was a 64-bit, load/store architecture, which was quite different
to i386 with more registers and a RISC instruction set. Available
hardware used the familiar PCI and ISA bus interfaces.

I volunteered for the project. Clem Cole at DEC loaned us
some hardware which arrived in July 1997 (apart from Peter
Wemm’s machine which I seem to remember got lost in cus-
toms). At this point, I think it started to sink in how much work this
project was going to take, with changes needed in many different
areas.

Drivers
Device drivers in FreeBSD, especially for ISA, were going to

need changes to support the new architecture where hardware
access was quite different. To make this work and share as much
code as possible between i386 and Alpha, we needed an abstrac-
tion layer.

I had some ideas for this which eventually turned into FreeBSD’s
newbus framework. My plan for this was to discover devices
automatically, starting from the top-level system device bus which
was typically PCI and ISA for both i386 and Alpha. The kernel
would dynamically build a tree of devices and then match these
with available drivers. I also wanted to be able to combine this with
earlier work on the Kernel Linker (KLD) to allow drivers to be added
after the initial boot. I worked on a prototype for this in late 1997

but didn’t get as far as supporting any ‘real’ hardware drivers.
File Formats

In 1997, FreeBSD was using the a.out file format which was a
very simple 32-bit format. Most other Unix-like systems were
using ELF format by this time which provided more flexibility and
already supported 64-bit platforms including Alpha.

Moving to the new format involved changes in the build system
to support the new format and also to support dynamic linking,
which is implemented in userland using the Runtime Linker
(RTLD). Lots of people worked on this including John Polstra,
Jordan Hubbard, Peter Wemm and myself over several months in
early 1998.
Booting

This was initially an area of uncertainty for the project. The
Alpha ‘pre-boot’ environment was fragmented with Digital Unix
(DUX) and VMS using the SRM Console, NT using AlphaBIOS and
Linux using both of these as well as their own MILO.

Any operating system on Alpha needs something called
PALcode to handle virtual page translation, caches, interrupts and
transitions between user-mode and kernel-mode. There were var-
iants of PALcode for DUX, NT and VMS. While the DUX PALcode
was likely to be our best choice, it wasn’t clear if we could use it
without an expensive licence. As it turned out, all the Alpha hard-
ware we ended up supporting had support for the SRM Console
which came with DUX PALcode, so this ceased to be a problem.

The i386 boot code was limited in size to just 7.5k. The limit came
from the UFS filesystem format which reserves an 8k area for the
bootstrap, and we needed a 512 byte sector from that to allow the
PC BIOS to boot. This was just enough to read the a.out format
kernel file from the root filesystem into memory and start it.

Alpha would have a similar limit; the SRM Console used the first
sector of the disk to identify a contiguous range of sectors to load,
which left 7.5k from the UFS boot area in the same way as i386.
On Alpha, the 7.5k limit probably wasn’t going to be enough due
to the lower code density of the RISC architecture and the extra
complexity needed for the ELF format. We ended up rewriting
the bootstrap so that the 7.5k boot stage loaded a larger boot
program (in modern FreeBSD systems this is /boot/loader). This
gave us enough flexibility to fully support booting ELF format
kernels on both i386 and Alpha as well as other new features such
as pre-loading kernel modules, network booting, and more. Mike
Smith worked on the multi-stage boot and Peter Wemm imple-
mented module pre-loading. Somewhere along the way, a Forth
interpreter was added—I think Jordan Hubbard was responsible
for that.
Userland

When we started this project, the FreeBSD source tree was not
set up for easy cross-compiling. This made building user-mode
utilities a little challenging. John Birrell worked on getting most
of the FreeBSD source tree to build on a NetBSD host and had a
system with a fairly complete FreeBSD userland running with a
NetBSD kernel.

The NetBSD system call interface was a little different from
FreeBSD, so John’s early userland work used NetBSD’s ABI. A
native FreeBSD kernel would need utilities that used the FreeBSD

Device drivers in FreeBSD,
especially for ISA, were going
to need changes to support
the new architecture where
hardware access was quite
different.

19FreeBSD Journal • May/June 2023

ABI, but this was a significant step forward. Once we had a work-
ing kernel, it was a relatively straightforward process to move
from the hybrid NetBSD/FreeBSD system to a working native
FreeBSD system.
Kernel

This was probably the largest part of the project and involved
filling in all the machine-dependent parts of the kernel which
provide low-level support for virtual memory, interrupt handling,
process context switching etc.

I approached this by building an Alpha cross compiler and just
attempting to build a kernel, seeing what failed to compile, then
filling in the gaps, either with empty stubs or by importing code
from NetBSD where it was similar enough to work for FreeBSD.
This was a fairly tedious process which took several days, but
eventually ended with a non-functional kernel binary.

The next, longer, part of the port was to attempt to run this ker-
nel, seeing how far it got until something broke and then fix that
problem before trying again. To run each test, I used a tool called
SimOS. This simulated an Alpha-based computer complete with
simulated hardware such as disks and serial ports. SimOS support-
ed debugging the simulated kernel with gdb; this was extremely
helpful since I was able to single step through the very early kernel
initialization process which sets up the kernel virtual memory,
etc. before moving onto the machine-independent initialization
sequence.

To shorten the porting process, I used code from NetBSD/
alpha where it made sense. Unfortunately, I omitted the NetBSD
copyright in a few places. This had to be fixed in public after the
code was committed which was quite embarrassing. This is one of
the very few times where FreeBSD’s commit history was altered—
we removed the revisions with incorrect copyrights.

One area where using NetBSD code wasn’t going to work was
in the virtual memory support where FreeBSD was quite differ-
ent. The Alpha page tables were similar to i386 with a tree-based
structure using three levels (where i386 used two levels at the
time). I copied the i386 code and changed it to add the extra level.

Initial support for Alpha was committed in July 1998 with sup-
port for the SimOS emulator and real hardware support followed
over the next few months. The release notes for FreeBSD 3.0
mention this: ‘A port to the DEC Alpha architecture has entered
“ALPHA” (haha) status’.

FreeBSD on IA-64
This project got started in 2000 when Paul Saab brought a set

of IA-64 documentation to Usenix ATC and asked me if I would be
interested in porting to this new platform. At the time, Yahoo! was
a large-scale user of FreeBSD on i386 and some of their workloads
were running up against limitations of the 32-bit platform.

The IA-64 architecture was interesting in several ways. The
instruction encoding was in 128-bit instruction bundles, each of
which contained up to three 41-bit instructions which may exe-
cute simultaneously. This allowed for a large register set with 128
general purpose registers and 128 floating point registers.

The general-purpose registers are divided into two groups--32
‘static’ registers and 96 ‘stacked’ registers which the processor
would allocate from a large pool of registers and automatically
save and restore on function call and return. Each register is 64
bits plus one NaT (‘Not a Thing’) bit used for speculative execu-
tion.

Conditional execution is via 64 predicate registers which are
each a single bit and hold the result of compare instructions. Each

instruction can be conditionally executed based on the value of a
predicate register.

Indirect branches (e.g., function pointers) are supported using 8
branch registers which can help with branch prediction.

Virtual memory management is controlled by a Virtual Hash
Page Table (VHPT) which contains a subset of possible virtual to
physical mappings. A software TLB miss handler is used to find
translations which are not in the VHPT. The VHPT supported
two formats, a ‘short’ format which could be used to emulate
traditional tree-based page tables or a ‘long’ format which was a
simple hash table with collision chains.
Booting

The IA-64 hardware used the EFI pre-boot environment. I add-
ed very basic support for EFI to the multi-stage boot loader. In the
IA-64 EFI environment, programs were relocatable; this needed to
be done in the EFI program itself which was difficult to debug.

Userland
Porting the FreeBSD user-space tools and utilities was fairly

straightforward—the FreeBSD build supported cross-compiling
by this time and only needed the addition of IA-64 versions of
low-level library code for things like string comparison, memory
copy, and system calls.
Kernel

We were lucky enough to have access to an HP IA-64 emulator
(SKI) from which Marcel Moolenaar made a FreeBSD port. This
included an instruction-level debugger which was very helpful in
debugging early kernel initialisation and trap handling.

The kernel port was a little more difficult than Alpha. This time,
there wasn’t another BSD port which could be used for reference,
so all the low-level support was new code. The IA-64 architecture
required two stacks, one for registers and one for regular data.
Trap handling was significantly more difficult than most other
architectures due to the extra register state and the complexity of
speculative execution and the stacked registers.

The long-form VHPT format ended up being a reasonable fit
for FreeBSD’s virtual memory system. The machine-independent
VM system makes requests to the platform’s pmap system to
make virtual to physical mappings. These were just added to the
VHPT.
32 Bit Compatibility

During development of the port, we used Perforce for source
code control and there was only an i386 binary available at the

Initial support for Alpha
was committed in July 1998
with support for the SimOS
emulator and real hardware
support followed over
the next few months.

20 FreeBSD Journal • May/June 2023

time. I wanted to be able to use this on the target platform during
the port, so I ended up implementing i386 compatibility which
used the built-in i386 support in the IA-64 processor. This built on
earlier work on Linux and SVR4 emulation which had made a clear
separation between the syscall ABI and implementation.

Legacy
The Alpha port prompted a great deal of necessary supporting

development which has helped to shape the modern FreeBSD
kernel. The transition from a.out to ELF format was a necessary
step for the Alpha port, but since ELF rapidly became the de-facto
standard, moving away from a.out on all platforms saved us from
having to spend large amounts of effort supporting and extend-
ing an obsolete format. The multi-stage boot loader has proven to
be a flexible platform, making new architecture ports easier and
supporting booting from modern file systems such as OpenZFS.
The newbus device framework facilitates driver compatibility
across architectures and supports dynamic device discovery
which is required in modern systems where devices can be added
or removed at any time.

Adding support for Alpha forced us to tackle 64-bit com-
patibility problems across both kernel and user. The load/store
architecture uncovered other problems such as the assumption
that read-modify-write operations on memory to set flags or
increment counters could not be affected by hardware interrupts.
This was solved by adding a set of ‘atomic’ operations to the
kernel. The atomics framework was extended by John Baldwin to

support IA-64’s acquire/release semantics and is used extensively
to support multi-cpu platforms.

The IA-64 port was inspired by the need to get past the limita-
tions of the 32-bit i386 platform while retaining compatibility with
legacy software. While these goals were achieved, the platform
itself did not reach the price/performance of the simpler i386
architecture. IA-64 eventually found its niche in large-scale Super-
computing, but it was not a good fit for most FreeBSD workloads
and was superseded by AMD’s x86-64 extension to the i386 archi-
tecture, which is pervasive in modern compute environments.

Support for both platforms has since been removed from
FreeBSD. The Alpha architecture was a casualty of the Digital/
Compaq merger, although it continued to be available as a prod-
uct until 2007. FreeBSD support was removed in 2006. Support
for IA-64 survived a little longer; Marcel Moolenaar made many
improvements over the years to support multi-processor and
NUMA variants of the platform. Support was removed from
FreeBSD in 2014 and the platform was discontinued in 2021.

DOUG RABSON is a Software Engineer with more than thirty
years of experience ranging from 8-bit text adventure games back
in the 1980s to terabyte-per-second distributed log aggregation
systems in the 2020s. He has been a FreeBSD project member
and committer since 1994 and is currently working on improving
FreeBSD support for modern container orchestration systems
such as podman and kubernetes.

https://www.youtube.com/c/FreeBSDProject

Looking for FreeBSD
Video Content?

The FreeBSD YouTube Channel has it all:

Past Conference and Summit Videos
FreeBSD Office Hours
FreeBSD Fridays
and more!

For even more FreeBSD video content, be sure to check out the community
resources at: https://freebsdfoundation.org/freebsd-project/resources/

