
24 FreeBSD Journal • May/June 2023

FreeBSD at 30 Years:
Its Secrets to Success
BY MARSHALL KIRK MCKUSICK

This year the FreeBSD Project is celebrating its thirtieth year
of providing a complete system distribution. The goal of this
article is to understand what it is that has made FreeBSD

one of the few long-term, viable, open-source projects. Most
projects with long-term successes are sponsored by companies
that base their products around the open-source software that
they actively nurture. While FreeBSD has companies actively using
and supporting it, they have come and gone over the years and no
single company has been the primary long-term proponent.

Origin
Many open-source projects start with code written by one

person and begin building from there. FreeBSD started from a
solid code base, the 4.4BSD-Lite open-source distribution from
the University of California at Berkeley. The Berkeley Software
Distribution (BSD) had been in development and distribution for
over a decade and the BSD distribution started from the Unix
distribution from Bell Laboratories that had been in development
for a decade before BSD. Though BSD was not open source, its
code was widely licensed and had many contributors from both
academia and industry. Nearly all of BSD was ultimately released

as open source in the 4.4BSD-Lite distribution.
The BSD kernel introduced important operating-system inter-

faces still used today:
•	the socket networking interface and the original and widely

used implementation of TCP/IP,
•	the set of system calls used to operate on filesystems, the

virtual filesystem (VFS) interface to support multiple filesys-
tem implementations, and the fast file system and network
filesystem (NFS) implementations,

•	the mmap memory model, and
•	the interface to manage processes (signals, process groups,

job control, etc.)
The BSD distributions also established the model of complete

system distributions that included the operating system, a core
set of libraries and utilities, contributed software (that would even-
tually become FreeBSD’s ports), and complete manual pages and
system documentation.

Leadership
Most open-source projects are started by a single person who

then becomes the czar-for-life leader of the project. A well-known
example is Linus Torvalds who created and still leads the Linux
project. Projects usually go dark when the leader loses interest
and stops working on it. Contributors often get frustrated if the
leader is not good at reviewing and critiquing or accepting input
from others.

When the FreeBSD organization was set up, the organizers de-
cided to establish a group of seven people called the Core group
that oversaw the project. The original Core group was self-select-
ed. The people who set up the project deputized themselves onto
the Core team. They were ‘‘Czars for life.’’ The Core team decides
project direction and awards and removes the privilege of being a
committer; committers are the people who are allowed to make
changes to the project repository.

While this approach was better than having a single leader, it
still had the problem that committers could only rise to a middle
level in the project, thus leading to frustration and abandonment
if their ideas were not accepted. To remedy this, the FreeBSD
project decided to make Core an elected position. Core was also
expanded to nine people. The entire Core is elected every two
years. Core members are nominated from and elected by the
committers. Any active committer can run for Core. Candidates
are self-selecting and no nomination is required. The effect of this
change is that newcomers can rise to leadership roles. As a result,
the project leadership evolves over time, and the project is much
less susceptible to collapse if its leader departs.

Development
From its inception, the FreeBSD project used centrally located

tools (source-code control and bug reporting). This tooling ena-
bled remote development from the start. Though common today,
at the time FreeBSD was started, the usual approach was to have
a single person who maintained the distribution, and changes by
others had to be sent to them for inclusion. As the project grew,
the person maintaining the master copy of the source would get
overloaded and limit the speed with which the project could move
forward. It also made it difficult to keep track of who was work-
ing on what when bugs would arise and needed to be assigned.
Happily, the modern tool sets available today like gitlab and github
mitigate these issues.

The FreeBSD project has also benefited greatly from adopting
ideas and code from the NetBSD and OpenBSD projects. NetBSD
has lead the way in efficiently supporting multiple architectures
which was very helpful as FreeBSD began expanding from its

When the FreeBSD organization
was set up, the organizers
decided to establish a group
of seven people called the Core
group that oversaw the project.

25FreeBSD Journal • May/June 2023

initial focus on the Intel architecture to support additional archi-
tectures. NetBSD also has provided many tests that have been
incorporated into the FreeBSD continuous-integration testing.
OpenBSD has focused on system security and FreeBSD has
incorporated many of their security improvements. OpenBSD
has also provided several of the key security components used in
FreeBSD such as the ssh remote access and login program and
the software components that support https encryption.

Distributions
Many open-source projects are simply a collection of code that

must be downloaded, compiled, and installed to be used. They
often depend on other libraries and infrastructure which must
also be found, built, and installed. In recent years, projects are
beginning to provide containers that can be spun up, though they
are an inefficient use of resources since they include the entire
software stack all the way down to and often including the operat-
ing system, thus duplicating vast amounts of software already on
the machine.

Early in the FreeBSD project history it began distributing CD-
ROMs with the complete system on them that could be booted
on PC computers. Users could boot up the system from the
CD-ROM to try it out and then install it on their hard disk if they
wished to do so. And--since it was derived from the BSD system
from which it started--all the commands and libraries that they
needed were already there. Prolific documentation was provided,
making installation easy even for non-experts.

Hardware Support
Most open-source projects try to support everything, which

usually means much hardware performs poorly and often fails
under load. From the start of the FreeBSD project, the decision
was made to curate hardware and decide what worked well with
FreeBSD. Once the hardware was selected, significant effort
was made to write robust and complete device drivers to run it.
FreeBSD published a list of hardware that they recommended and
supported that hardware by fixing reported problems and updat-
ing drivers as newer versions of the hardware were released. This
curated list made it easy to put together server machines that ran
well under load. FreeBSD became the system of choice for com-
panies running dial-up servers and later Internet and web server
providers because they had great performance and ran reliably.

Communication
Since nearly all the FreeBSD developers were working remotely,

it was important to set up mailing lists to discuss core design deci-
sions. Topic areas included networking, filesystems, core architec-
ture, etc. A frequent issue with mailing lists, especially when most
folks on them have never met, is that discussion can get off-track
and distinctly nasty. Flamewars were not uncommon in the first
few years of the project, so the mailing lists began to be actively
monitored to tamp down bad behavior and ensure civil discussion.
Sadly, many projects even today have toxic mailing lists. Once
a project gets a reputation for bad behavior, it often results in
it entering a death spiral. Alternatively, it is possible to go to the
opposite extreme and become so controlling that folks abandon
the project as they feel overly constrained. And for projects like
FreeBSD that have developers worldwide, it can be difficult to find
rules that work in the large diversity of cultures of its developers.
The problem is never solved; ultimately there needs to be an
ever-evolving methodology on how to keep the project moving

forward on an even keel.

Documentation
The FreeBSD project started off with a solid base of documen-

tation based on the documentation in the 4.4BSD-Lite distribu-
tion which was in turn derived from documentation in the UNIX
system from which BSD evolved. Early in its evolution, FreeBSD
embraced contributors that focused on system documentation.
Folks writing code were encouraged to work with those writing
the documentation to ensure that the documentation was com-
plete and correct.

The project set up a documentation committer group for
the folks doing the documentation. This group was given all the
rights and privileges of code committers. They could run for Core,
had equal voting rights, and their own group leaders that han-
dled adding and removing documentation committers, setting
up the documentation structure and tools, and overseeing the
document repository. Under their direction the documentation
was structured with a framework that allowed it to easily support

multiple languages. Many of the documentation committers
started out by doing translations of documents into their native
language. This translation task often helped them get up to speed
both on how the documentation tools worked and how FreeBSD
itself worked.

The Ports Collection
The 4.4BSD-Lite distribution had a collection of contributed

software that consisted of about fifty utilities and libraries that
had been developed outside Berkeley but were included in the
BSD distributions. These included things like the X window sys-
tem, the gated routing daemon, the emacs editor, etc. FreeBSD
started with this set of core contributed programs and greatly
expanded on it with what became the ports collection. Unlike the
BSD distribution which installed all the contributed programs,
FreeBSD ports provided them separately so that individual sites
could install only those that they needed. The ports collection en-
sured that the program would compile and run on FreeBSD with
reasonable defaults. It also ensured that fixes for bugs found in
the BSD environment were up streamed to the maintainer of the

Since nearly all the FreeBSD
developers were working
remotely, it was important to set
up mailing lists to discuss core
design decisions.

26 FreeBSD Journal • May/June 2023

software and that changes made up stream were brought down
to the FreeBSD port. Most users could just use the compiled ver-
sion of the port though those needing site-specific changes could
make them and then build their own binaries. The port collection
made it easy to use other open-source software on FreeBSD. Hav-
ing a ports equivalent is done by most open-source distributors
today but was new at the time.

The ports collection has continued to evolve over the years.
Recent innovations are the addition of pkg system to manipulate
ports. The pkg system handles registering, adding, removing,
and upgrading packages. The other key component is Poudriere
that is a utility for creating and testing FreeBSD packages. It uses
FreeBSD jails to set up isolated compilation environments. These
jails can be used to build packages for versions of FreeBSD that
are different from the system on which it is installed and to build
packages for a different architecture than the host system. Once

the packages are built, they are in a layout identical to the official
mirrors. These packages are usable by the pkg system and other
package management tools.

FreeBSD provides a base platform that can be modified to build
a customized OS along with all the infrastructure needed to build
a full OS distribution including not just the base system but also a
collection of the ports. The OS can be customized to support an
appliance as all the bits for how to build the release image for the
customized OS along with automated building of packages via
Poudriere for the customized OS are public and well-document-
ed. None of the Linux distributions are as turnkey as FreeBSD in
this regard. For example, it would be much more difficult to build
your own Debian-fork on top of a modified kernel and system
libraries, etc.

Project Culture
Port, documentation, and development committers are all

given equal say in how the project is run. Notably, they all can run
for Core and get the same voting rights. In most projects, the
developers have more say and others are treated as inferior. The
FreeBSD project has worked on building a culture of inclusion
from its start. The culture values ‘‘plays well with others’’ above
anything else. It does not tolerate a diva just to get their docu-
mentation, port, or code (though sometimes it can take a while to

get to the point of a diva leaving or getting kicked out).
The FreeBSD project is not set up to train people how to write or
program. Folks joining the FreeBSD project are expected to know
their trade. Documentation writers are expected to know how
to write technical documents. Port and source contributors are
expected to know C and any other relevant languages along with
the tools used to write, build, debug, and profile them. That said,
FreeBSD has been involved with mentoring students through
programs such as Google’s Summer of Code. Indeed, many of the
students in Summer of Code have gone on to become commit-
ters on the FreeBSD Project.

The FreeBSD project is welcoming to new folks. It is not
necessary to survive a gauntlet of hazing or needing to ingratiate
yourself to the project leader to become a project committer.
There is a well-documented process on how to become involved
with the project.

Project Support
When FreeBSD started, its infrastructure was a machine in a

developer’s home. As it grew, its infrastructure was supported first
by Walnut Creek CD-ROM and later by Yahoo. Being dependent
on a company’s goodwill was a recipe for disaster, so the FreeBSD
Foundation was created to raise money whose initial use was to
provide the machines and hosting for FreeBSD infrastructure.
While Foundation support for projects is common today, FreeBSD
was one of the first projects to set up a foundation to support the
project. The Foundation was originally run by its (unpaid) board
of directors. After a few years, it was able to hire its first part-
time employee. Today it has nearly twenty staff and contractors
supporting infrastructure, development, marketing, tooling, fund
raising, and other project-related services.

Licensing
FreeBSD uses a Berkeley license which does not require

companies to make their code available to others. The use of
the Berkeley license has played a big role in FreeBSD’s success,
particularly with companies that have their proprietary code in the
kernel. FreeBSD is heavily used in the appliance and embedded
operating system market where companies need to put their
intellectual property inside the operating system and thus cannot
use Linux due to its GNU Public License (GPL) that requires
source code for all changes be made available.

Conclusions
FreeBSD is still going strong. Its strength comes from having

built a strong base in its code, documentation, and culture. It has
managed to evolve with the times, continuing to bring in new
committers, and smoothly transition through several leadership
groups. It continues to fill an important area of support that is an
alternative to Linux. Specifically, companies needing redundancy
require more than one operating system, since any single oper-
ating system may fall victim to a failure that could take out the
entire company’s infrastructure. For all these reasons, FreeBSD
has a bright future. In short, FreeBSD is awesome!

DR. MARSHALL KIRK MCKUSICK writes books and articles,
teaches classes on UNIX- and BSD-related subjects, and provides
expert-witness testimony on software patent, trade secret, and
copyright issues. He has been a developer and committer to the
FreeBSD Project since its founding in 1993.

Port, documentation,
and development committers
are all given equal say
in how the project is run.

