
38 FreeBSD Journal • May/June 2023

A Dozen Years of CheriBSD
BY BROOKS DAVIS

Since late 2010, the CHERI research project at the University
of Cambridge and SRI International has striven to develop,
demonstrate, and transition to real-world products architec-

tural extensions providing memory safety and efficient compart-
mentalization. CheriBSD, our CHERI-enhanced fork of FreeBSD,
is one of the most important products of our work. Adapting
FreeBSD to support CHERI has informed our architectural chang-
es while demonstrating that our ideas can work at the scale of a
large modern operating system.

A Brief Introduction to CHERI
CHERI extends existing architectures (Armv8-A, MIPS64 (re-

tired), RISC-V, and x86_64 (in development)) with a new hardware
type, the CHERI capability. In CHERI systems, all access to mem-
ory is via CHERI capabilities either explicitly via new instructions
or implicitly via a Default Data Capability (DDC) and Program
Counter Capability (PCC) used by instructions with integer argu-
ments. Capabilities grant access to specific ranges of (virtual, or
occasionally, physical) memory via a base and length, and can fur-
ther restrict access with permissions, which are compressed into a
128-bit representation (64-bits for the address and 64-bits for the
metadata). In memory and in registers, capabilities are protected
by tags that are cleared when the capability data is modified by a
non-capability instruction or if a capability instruction would in-
crease the access the capability grants. Tags are stored separately
from data and cannot be manipulated directly.

CHERI 128-bit capabilities

1

12
8-
bi
t	

ca
pa

bi
lit
y

Allocation

Virtual	
address	
space

v

1-
bi
t	

ta
g

permissions
Bounds	compressed	
relative	to	address

otype

Virtual	address	(64	bits)

CHERI	capabilities	extend	pointers	with:	
• Tags	protect	capabilities	in	registers	and	memory	

• Dereferencing	an	untagged	capability	throws	an	exception	
• In-memory	overwrite	automatically	clears	capability	tag	

• Bounds	limit	range	of	address	space	accessible	via	pointer	 	
• Floating-point	compressed	64-bit	lower	and	upper	bounds	
• Strengthens	larger	allocation	alignment	requirements	
• Out-of-bounds	pointer	support	essential	to	C-language	compatibility	

• Permissions	limit	operations	–	e.g.,	load,	store,	fetch	
• Sealing:	immutable,	non-dereferenceable	capabilities	–	used	for	non-monotonic	transitions

Our initial work on CHERI extended the MIPS64 architecture
as part of the DARPA CRASH program. In 2014 we began collab-
oration with Arm, exploring the possibility of adapting CHERI to
the Armv8-A architecture. In 2017 we began a port of CHERI to
RISC-V informed by both our MIPS work and our collaboration
with Arm. This port was performed as part of the DARPA MTO
SSITH program. Our collaboration with Arm became public in
2019, with the announcement of the £190m Digital Security by
Design program, which has resulted in the Morello architecture
prototype, a SoC based on the Neoverse N1 core used in cloud
platforms such as Amazon Web Services’ Graviton nodes.

We have designed CHERI capabilities to be suitable for use
as C and C++ language pointers and have modified the Clang
compiler to support them in two modes. In hybrid mode, point-
ers annotated with _capability are capabilities, while other

pointers remain integers. In pure-capability mode, all pointers are
capabilities, including implied pointers such as return addresses
on the stack. Coupled with kernel support and modest changes to
the C startup code, run-time linker, and standard library, we have
produced a memory safe C/C++ runtime environment called
CheriABI1. The refinement of this environment is a key thrust of
our work on CheriBSD alongside creation of a pure-capability
kernel environment and explorations of temporal memory safety
and compartmentalization.

In addition to memory safety, CHERI enables fine-grained
compartmentalization. Because all memory accesses are via
capabilities, the portion of an address space a given thread can
reach is defined by its register set and the memory that can be
(transitively) reached from there. With appropriate mechanisms
to transition between register sets, we can switch rapidly among
compartments. Various CHERI implementations implement
different mechanisms for this; which one(s) are most appropriate
to a commercial implementation remains the subject of active
research.

What is CheriBSD?
CheriBSD is FreeBSD modified to support CHERI. But what

does that actually mean?
When the kernel is compiled for CHERI, the default ABI is

a pure-capability ABI (CheriABI) where all pointers including
system-call arguments are capabilities. We also support both
hybrid binaries and standard FreeBSD binaries via the freebsd64
ABI compatibility layer derived from the freebsd32 32-bit compat-
ibility layer. Likewise, we build libraries, programs, and the run-
time linker for CheriABI by default and build libraries for hybrid
binaries that are installed in /usr/lib64 just like /usr/lib32
for freebsd32. All of this means that by default users are presented
with a memory-safe Unix userland which retains the ability to run
unmodified FreeBSD binaries.

The kernel can be compiled as either a hybrid or a pure-ca-
pability program. This adds some complexity to the changes we
need to make (every pointer to userspace requires an annotation
(_capability) for hybrid), but we started out with hybrid in the
early days of the project when we didn’t have strong C compiler
support, and pure-capability kernels do have somewhat higher
inherent overhead due to the increased pointer size. All internal
kernel development is done with pure-capability support in mind.
This work includes ensuring that all access to userspace is via a
capability2, changes to the VM system to create capabilities when
allocating memory and altering device drivers including the DRM
GPU framework to use capabilities.

Historically, CheriBSD has mostly been a compile-from-source
proposition. This is familiar to FreeBSD developers, and has many
benefits; however, for people who just want to port a custom
codebase to CHERI, that’s a big hurdle. With the release of Arm’s
Morello prototype, we’ve started producing full releases with an
installer and packages. We use a lightly customized version of the
FreeBSD installer that adds support for installing a GUI desktop
environment based on KDE and removes some dialog boxes we
deemed confusing. The GUI environment is comprised of pack-

39FreeBSD Journal • May/June 2023

ages built from our fork3 of the FreeBSD ports collection. Because
not all software has been ported to CHERI, we build two sets of
packages and build and install two versions of the pkg command
with pkg being a script that redirects callers to the other names.
There is a CheriABI set which is managed by the pkg64c com-
mand and installed under /usr/local and a hybrid set managed
by the pkg64 command and installed under /usr/local64.
Most of the desktop environment is CheriABI binaries, with the
big exception being web browsers (a CheriABI port of Chromium
is in progress). Post-install, hybrid packages are also useful for in-
stalling not-yet ported software such as emacs and Morello LLVM.

Beyond memory safety, CheriBSD plays host to much of our
research on software compartmentalization. In the MIPS era, we
implemented a compartmentalization framework (libcheri) that
we applied to the integrated version of tcpdump. While we did
not port this work forward to RISC-V and Morello, it informed our
early thinking on the use of compartmentalization for increased
availability. Our latest release contains a library compartmentali-
zation model where the dynamically linked library runs in its own
sandbox. The current implementation is experimental but shows
considerable promise at compartmentalizing programs with
little or no modification. Additionally, in a stack of development
branches, we have a co-process compartmentalization model in
which multiple processes share the same virtual address space,
relying on CHERI to provide memory isolation. Coupled with a
trusted switcher component, this enables extremely fast tran-
sition of execution from a thread in one process to a thread in
another process. We expect a signification portion of future work
on CheriBSD will be motivated by compartmentalization, as we
refine our models in the face of an increasing corpus of compart-
mentalized software.

CheriBSD is both a research artifact under active development
and a product servicing dozens or hundreds of users doing their
own R&D. Even for users targeting other domains (embedded
systems, Linux, Windows, etc.) CheriBSD is currently the easiest
place to test CHERI technologies.

Why CheriBSD?
Historically hardware research has focused on bare metal

benchmarks or embedded operating systems. They have a
lower memory footprint and usually execute fewer instructions
(important for simulation) as well as simply having less code to
understand and change. Unfortunately, results don’t always scale

to real world operating systems and it’s too easy to hand wave at
things like dynamic linking as “a small matter of programming.”
Adapting FreeBSD was undeniably more work, but doing so has
given us the ability to evaluate CHERI with an unmatched level
of realism. Some of our ability to use a real, multi-user operating
system stems from timing. In 2010, FPGAs big enough to run sim-
ple cores supporting full instruction set architectures at decent
speeds (100MHz) were finally available for reasonable prices ($5-
10k vs $100k or much more). Likewise, desktop computers were
big enough and fast enough to support full system emulators like
QEMU with relative ease.

People do ask: “why not Linux?” FreeBSD offers a number of
advantages for a research project like CHERI. On the technical
front, FreeBSD’s integrated build system and early adoption
of LLVM has made it relatively easy to build large corpuses of
software with experimental compilers (C/C++ compiler research
is mostly done in LLVM today) both in the base system and via the
ports tree. The clean ABI (Application Binary Interface) abstrac-
tions to support Linux binaries and the freebsd32 32-bit compati-
bility layer greatly simply ABI experimentation. (By contrast, Linux
supports a single alternative ABI that must be 32-bit, and Windows
does all the translation within userspace via a DLL.) While not part
of our initial decision, it later emerged that choosing FreeBSD
over Linux was fortuitous due to extensive use of long in the Li-

nux kernel for both integers and pointers, which cause capabilities
to be invalidated. While people are working on Linux ports at Arm
and elsewhere, the use of long is a major stumbling block.

On less technical fronts, BSD and FreeBSD have a long history
of successful research and transition to real-world products. From
the Fast File System (FFS) and sockets APIs for TCP/IP in 4.2BSD
to Capsicum and pluggable TCP/IP stacks in FreeBSD, many ideas
in daily use by billions of people have been incubated in BSD. One
factor in this success is FreeBSD’s permissive license. Publishing
our work under the two-clause BSD license means potential
adopters can easily evaluate our work even within companies with
proprietary operating systems and strict controls around GPL-li-
censed software. This has enabled successes like a very positive
evaluation4 of past Windows security vulnerabilities by the Micro-
soft Security Response Center.

Ultimately, the success of CHERI depends on adoption by mul-
tiple operating systems. Today, CheriBSD leads the pack with the
latest features and most active research.

Historically hardware research
has focused on bare metal
benchmarks or embedded
operating systems.

40 FreeBSD Journal • May/June 2023

A CheriBSD Timeline

• October 2010—The first CHERI Project begins
• May 2012—CheriBSD running on CHERI-MIPS CPU.
• November 2012—Sandboxed custom application demo on

CheriBSD.
• October 2013—Migrated development to git.
• January 2014—CheriBSD compiled with CHERI LLVM.
• November 2014—Sandboxed tcpdump (sandbox

per-decoder).
• June 2015—CheriBSD with compressed capabilities (128-bit vs

256-bit).
• September 2015—CheriABI pure-capability process environ-

ment up and running.
• January 2016—Began merging RISC-V support from FreeBSD.

• April 2019—CheriABI paper wins Best Paper award at
ASPLOS 2019.

• September 2019—Morello CPU, SoC, and board announced.
• August 2020—CheriBSD ported to CHERI-RISC-V.
• June 2021—Pure-capability kernel (RISC-V)
• January 2022—First official Morello boards ship. CheriBSD

aided in validation.
• May 2022—CheriBSD 22.05 release targets Morello board

users. This is an initial support release focusing on the installer
and basic package infrastructure. The package set included a
basic set of tools including the Morello LLVM compiler.

• December 2022—CheriBSD 22.12 release includes li-
brary-based compartmentalization, ZFS support, DRM
support for the on-die GPU, and a basic GUI environment
where everything except the web browsers is a pure-capabili-
ty program.

Benefits to FreeBSD
Research projects like CHERI can provide significant benefits to

FreeBSD. We have contributed changes ranging from typo fixes
to a port to the RISC-V architecture. We’ve also given talks, added
new committers, and introduced many organizations to FreeBSD.

There are over 1800 commits to the FreeBSD source tree with
“Sponsored by:” lines indicating they were likely funded by work
on CHERI5. This amounts to over 1.5% of commits outside contrib
and sys/contrib since January 2011. These contributions have
been made possible by funding over a dozen committers so far

including two new ones.
Notable contributions:

• External toolchain support—I contributed initial support, lat-
er enhanced by Baptiste Daroussin to add the CROSS_TOOL-
CHAIN variable used today. This functionality was added to
support compiling with the CHERI Clang compiler as well as
custom compilers developed for two other projects: TESLA
and SOAAP. TESLA enabled construction and dynamic en-
forcement of temporal logic assertions, and SOAAP allowed
exploration of compartmentalization hypotheses for large
applications.

• Unprivileged installs and images—I ported the ability to
store the owner and permission metadata of installed files
in a METALOG file from NetBSD in January 2012. This allows
the intallworld command to be run without root privi-
leges. Coupled with support in makefs it was then possible
to build UFS filesystems of either endianness. Followed by
my complaints that there wasn’t a way to embed a filesystem
in a partition table without mounting it, Marcel Moolenaar
contributed the mkimg command in March 2014 to complete
the required toolking.

• MIPS64 maintenance—While FreeBSD had a MIPS port (es-
sential for our use), it didn’t have a lot of users, and didn’t get
much maintenance. We did quite a bit to keep it running, and
improved things that hit our pain points. It served us well, but
we breathed a sigh of relief when we’d transitioned our last
work to RISC-V and MIPS was removed from the main branch.

• RISC-V port—While MIPS had served us well, and we were
trying to build a community around our base BERI MIPS FPGA
implementation, it become clear that the research communi-
ty was moving to RISC-V. As a result, we tasked Ruslan Bukin
with porting FreeBSD to RISC-V; he landed it in the tree in
January 2016.

• Arm N1SDP platform support—The Morello platform is
based on Arm’s N1SDP development board. Ruslan worked
with Andrew Turner to support the attached peripherals,
including the PCI root complex and IOMMU in 2020.

• Cross build from macOS and Linux—In September 2020,
Alex Richardson contributed a make wrapper (tools/
build/make.py) that allows bmake and other build tools to
be bootstrapped on a non-FreeBSD system. This allows builds
on users’ non-FreeBSD desktops and laptops, and in CI envi-
ronments that don’t support FreeBSD. Alex and Jessica Clarke
maintain this support on an ongoing basis.

• Consolidated compatibility system call stubs—Historically,
system calls have been declared in sys/kern/syscalls.
master with compatibility versions declared in sys/compat/
freebsd32/syscalls.master. Developers would fail to
keep them in sync or misunderstand if they needed a com-
patibility wrapper. As part of adding two ABIs to CheriBSD, I
extended the syscalls.master file format and stub gener-
ation code with enough understanding of ABIs for the script
to know what is required. Now there is only one list of system
calls and freebsd32 has a syscalls.conf that specifies ABI
details. I upstreamed this work in early 2022.

• Unprivileged, cross release builds—As part of supporting
hundreds of users of Morello hardware we needed to start
producing releases. Most of our CI and build infrastructure
does unprivileged builds on Linux hosts so Jessica closed the
last gaps in unprivileged builds and cross build support allow-
ing us to build release images in February 2022.

There are over 1800 commits
to the FreeBSD source tree
with “Sponsored by:” lines
indicating they were likely
funded by work on CHERI.

41FreeBSD Journal • May/June 2023

In addition to these changes, we’ve made many smaller im-
provements along the way. With over 1,800 commit messages, I’d
use up all my word count use listing a fraction of them.

Beyond technical contributions, the CHERI project has contrib-
uted to the community. We’ve added two new committers: Alex-
ander Richardson and Jessica Clarke. We’ve also had contributions
from graduate students including Alfredo Mazzinghi and Dapeng
Gao. From short-term contracts to full-time employment, at one
time or another we’ve supported committers including: Jonathan
Anderson, John Baldwin, Ruslan Bukin, David Chisnall, Jessica
Clarke, Brooks Davis, Mark Johnston, Ed Maste, Edward Napierala,
George Neville-Neil, Philip Paepes, Alexander Richardson, Hans
Petter Selasky, Stacey Son, Andrew Turner, Robert Watson, Kon-
rad Witaszczyk, and Bjoern Zeeb

Further, we’ve exposed many people to FreeBSD as a research
platform. We’ve been part of three DARPA programs (CRASH
and MRC from the I2O program office and SSITH from MTO)
where people gained FreeBSD experience as part of supporting
and evaluating our work. With the UK Digital Security by Design
program, dozens of organizations are now using CheriBSD in
demonstration projects funded by Digital Catapult and the De-
fence Science and Technology Laboratory (DSTL).

Conclusions
As research projects go, CHERI has been enormously suc-

cessful, and FreeBSD has played a major role in that success.

Having a well-integrated base OS and monolithic build system,
coupled with the ports collection’s massive scale, has allowed us
to demonstrate CHERI’s potential to a wide audience—leading
to real-world implementations ranging from Arm’s server-class
Morello design to Microsoft’s CHERIoT microcontroller. In turn,
CheriBSD development has led to significant improvements in
FreeBSD from the RISC-V port to build system improvements.
Footnotes
1. https://www.cl.cam.ac.uk/research/security/ctsrd/

pdfs/201904-asplos-cheriabi.pdf
2. A few subsystems access userspace via the direct map, and

those are validated rather than using capabilities directly.
3. https://github.com/CTSRD-CHERI/cheribsd-ports
4. https://msrc-blog.microsoft.com/2020/10/14/security-

analysis-of-cheri-isa/
5. A portion of lines matching “Sponsored by:.*DARPA” are from

the CADETS project which focused on Dtrace work, but the
vast majority are CHERI related.

BROOKS DAVIS is a Principal Computer Scientist in the Comput-
er Science Laboratory at SRI International and a Visiting Research
Fellow at the University of Cambridge Department of Computer
Science and Technology (Computer Laboratory). Leads devel-
opment of CheriBSD, a fork of FreeBSD supporting CHERI ISA
extensions. He has been a FreeBSD user since 1994, a FreeBSD
committer since 2001, and has served 4 terms on the core team.

Thank you!
The FreesBSD Foundation would like to
acknowledge the following companies for their
continued support of the Project.

Because of generous donations such as these
we are able to continue moving the Project
forward.

Are you a fan of FreeBSD? Help us give back to the
Project and donate today! freebsdfoundation.org/donate/

Please check out the full list of generous community investors at
freebsdfoundation.org/donors/

Gold

Platinum

Silver

