
42 FreeBSD Journal • May/June 2023

How ZFS Made Its Way
into FreeBSD
BY PAWEL DAWIDEK

T he story of how the ZFS file system made its way into the
FreeBSD operating system is a tale of passion for program-
ming, love for technology, and a journey that led to my most

valuable contribution to the FreeBSD project. It was the summer
of 2005. Although I’m not great with dates, I do remember the
circumstances surrounding my first encounter with ZFS. I was with
my friends in the Masurian region of Poland, near one of its 2,000
beautiful lakes. One of my friends worked at a Polish telecom-
munications company at the time, and they used a lot of Sun
Microsystems hardware and Solaris. He brought a printed copy of
the announcement they had received from Sun, describing a new
file system that had been in development for some time and was
about to be released as part of OpenSolaris. But before I continue,
let’s take a step back in time for a bit of context…

Love at First Sight!
I fell in love with programming at first sight. I was 12 years old,

and my cousin—Tomek—introduced me to Basic on a C-64. I was
hooked. I felt like a young god: you take this soulless piece of hard-
ware, create a program, and watch it come to life! This was the
coolest thing; I couldn’t think of anything better. As a result, I was
never into video games. Back then, growing up in a small Polish
town, it wasn’t easy to find people interested in programming, so
I was pretty much on my own (well, except when I was testing the
limits of Tomek’s patience).

When I switched to the Amiga 500, I finally found some friends
from the demo scene with whom I could exchange my work using
3.5-inch floppy disks through the postal service. Latency was not
the best, but I didn’t complain. When my next computer—the
Amiga 1200—started to show its age, it was clear it was time to
move on. I knew Microsoft Windows was not for me. I’d tried
Linux briefly, but I still wasn’t convinced. Finally, a friend pointed
me to FreeBSD. The installation was a breeze, I couldn’t ask for a
better experience. Ha! If you didn’t cringe at that last sentence,
then you clearly haven’t had the “pleasure” of using sysinstall. No,
the installation wasn’t a breeze—it took multiple attempts for me
to finally enjoy my first FreeBSD system. My understanding was

that sysinstall must be like Navy Seals Hell Week, where the strong
are separated from the weak, where real hackers are forged! And
I made it! I set my next goal and dream to not only be a hacker
who can install FreeBSD but to be a kernel hacker and a FreeBSD
committer.

I accomplished my goal in 2003 when I officially joined the
FreeBSD project as an src committer. Yes, I threw a party to
celebrate that. Since I joined, I have worked in many areas of
the system, but mainly with the GEOM framework. The GEOM
framework in FreeBSD sits between disk drivers and file systems,
allowing plug-ins of various transformations, like mirroring, RAID,
block-level encryption, etc. I really liked the GEOM design and
loved working with it, so I had decent experience with at least part
of the storage stack. As for file systems, I knew enough to stay
away from VFS, which is one of the most complicated parts of the
kernel.

The curse. UFS has been the default file system in FreeBSD
since the very beginning. In fact, UFS is much older than FreeBSD
itself. UFS2, which was introduced in FreeBSD 5.0, addressed
some shortcomings of UFS1, but some important ones were still
not addressed. The main issue was the fsck time after a system
crash or power outage. With disks getting bigger and bigger, fsck
could take many hours to complete. The solution to this problem
was obvious—we either needed to add journaling to UFS or port
some other journaled file system to FreeBSD. Easier said than
done. In Linux, there were plenty of file systems to choose from,
and many people tried to port them to FreeBSD, but for some
weird reason, those ports were never finished, so we ended up
with extfs without journaling, read-only ReiserFS, and read-only
XFS. There was even a read-write HFS+ port from Mac OS X,
but, of course, no journaling, and I remember at least one failed
attempt to add journaling to UFS. What was this mystery? Had the
UNIX gods turned their backs on us?

Let’s come back to my vacation in Masuria. My friend starts
to read the ZFS announcement while my eyes and my mouth
open wider and wider: Pooled storage—you can create as many
file systems as you want, and they will all share available space.
Unlimited snapshots that take no time to create. Unlimited clones.
Built-in compression. End-to-end data verification. Self-healing
of corrupted data. Transactional copy-on-write model—always
consistent—no need for fsck. EVER. How? How is that even possi-
ble? This is not an evolution, but a clear revolution in file systems.
I remember dreaming about this perfect marriage: the best file
system running on the best operating system... Wouldn’t that be
amazing?

A few months later, ZFS was released, and it took not only the
open-source community but the entire storage industry by storm.
Some people hated it, most loved it, others feared it, but nobody
was ignoring it. It was called the last word in file systems. It was
called a rampant layering violation. However, it was never called
just another file system. Almost every operating system wanted

I fell in love with programming
at first sight. I was 12 years old
and my cousin introduced me
to Basic on a C-64..

43FreeBSD Journal • May/June 2023

ZFS: Linux userland port started under FUSE, DragonFlyBSD
announced ZFS would be ported soon, and Apple started to port
ZFS to Mac OS X. ZFS will be everywhere soon, just not in our
beloved FreeBSD...

To write this article, I had to analyze a lot of IRC logs from
that era. What struck me the most was how much skepticism
there was about ZFS itself: too complicated, too many layers, just
demoware, design flaws are going to be found soon, just wait for
the first disaster story, it will never be ported to a community-de-
veloped OS, it’s just hype, it’s hilarious. I guess people are used to
the fact that if something looks too good to be true, it often is.
Fortunately, love is blind, and I didn’t notice this at that time.

After waiting 10 months after the ZFS release and seeing
nobody starting the work, I thought I might as well give it a shot.
With almost zero knowledge about the VFS layer, I’d likely fail
quickly, but who could stop me from trying? At the very least,
I’d learn something new. My porting work started on August 12,
2006. To not raise people’s hopes too high, the perforce branch
I created had “This is not a ZFS port!” as its description. My initial
estimates were six months to have a read-only prototype.

I must admit that even though ZFS was not my creation, work-
ing on ZFS was the most engaging project in my career. I love to
work hard, and I love to work late. I like to hyperfocus on projects,
and I have been fortunate to work on many amazing projects. For
many years, I was one of the most productive FreeBSD commit-
ters while still developing my own business. But no other project
kept me awake for 48 hours straight with almost no breaks and
only short naps between those 48 hour periods. What I’m about
to tell you sounds impossible, even for me today, but it did hap-
pen, I can assure you :)

When I work on big projects, I still like to have something that I
can run as quickly as possible and then incrementally implement
missing bits. The first step was to port userland components like
libzpool, ztest, and zdb. This went mostly ok. The next challenge
was to compile and load the ZFS kernel module. When you try to
load a kernel module with missing symbols, the FreeBSD kernel
linker reports the first missing symbol and returns an error. I had
so many missing symbols that I had to hack the linker to report
them all at once. It was taking too much time to fix them one by
one. After five days, I loaded zfs.ko for the first time. In theory,
there were four main meeting points between the FreeBSD kernel
and the ZFS code:

1. On the bottom of the stack, we have to teach ZFS how to talk
to block devices in FreeBSD, so this means connecting ZFS
to GEOM, which in GEOM terms is creating a consumer-only
GEOM class. Because of my GEOM experience, it was trivial.

2. On the top of the stack, we need to connect ZFS to
FreeBSD’s VFS, so port the ZPL layer.

3. Also, on the top of the stack, ZFS storage can be accessed
through ZVOLs, and because ZVOLs are block devices, this is
again GEOM, but this time provider-only GEOM class.

4. The last component is the /dev/zfs device that is used by
userland ZFS tools (zfs(8) and zpool(8)) to communicate with
the ZFS kernel module.

Porting the ZPL layer and attaching ZFS to FreeBSD’s VFS was,
of course, the hardest part. The first kernel mount on FreeBSD
happened on August 19, 2006, so, one week in. After exactly ten
days (and nights) of work, I had a read-write prototype ready. I
could create pools, create file systems, and mount them, create
ZVOLs whose behavior was really stable, create files and directo-
ries, list them, and change permissions and ownership. My initial

estimates of six months for a read-only prototype turned out to
be “a little” off. There was still a huge amount of work to do, but
the encouragement from the community gave me the needed
motivation to continue and finish the project. In 2007, ZFS was
officially released with an experimental status in FreeBSD 7.0, and
in FreeBSD 8.0 (2009), it was declared as production-ready.

No other port that was announced before my work came to
fruition, so I guess to reverse a curse you just need to work hard
enough :)

Just to be fair, a working read-write prototype in ten days
wouldn’t have been possible without one very important decision
that was made by the ZFS creators at the early stage of ZFS devel-
opment. They wanted most of the code to compile in userland, so
it could be easily tested and debugged. This was an immense help
in my porting efforts because most of the code was already highly
portable.

This was an amazing journey, and I wish every software devel-
oper a similar experience. While writing this, I’d like to recognize
some people. First, I’d like to thank Jeff Bonwick, Matt Ahrens,
and the whole ZFS team at Sun for creating this revolutionary
technology and always supporting my work. Alexander Kabaev,
for all his patience and help with VFS. Robert Watson, for all his
encouragement and for being a role model I always looked up
to. Kris Kennaway, for being a ruthless early tester—we didn’t call
him BugMagnet for nothing. Martin Matuska, for stepping up and
taking over ZFS maintenance when the time came. And last, but
not least, I’d like to thank the entire FreeBSD community—there is
nothing that brings more satisfaction than feeling that your work
is appreciated and provides real value.

A lot has happened in the 20 years since ZFS was initially re-
leased: NetApp started a legal battle against Sun. Apple discon-
tinued the ZFS port. Licensing issues prevented ZFS from being
a native component of the Linux kernel. Sun Microsystems no
longer exists, and the new owner closed ZFS development. And
yet, this great technology prevailed, and the project lives on under
the OpenZFS flag. Long live OpenZFS! Long live FreeBSD!

PAWEL DAWIDEK is Co-Founder and CTO at Fudo Security, a
security vendor building products for secure remote access. He is
also involved in the FreeBSD operating system where he works on
security- and storage-related projects, like GELI disk encryption,
Capsicum capability and sandboxing framework, jail containers,
ZFS and various GEOM classes. Pawel’s passion outside of tech-
nology is training Brazilian Jiu Jitsu.

When I work on big projects,
I still like to have something that
I can run as quickly as possible
and then incrementally
implement missing bits.

