
March/April 2023

Issue topic: Embedded

GPU Passthrough

CheriBSD Ports and Packages

Conference Report: SCaLE20X

Practical Ports: Let’s chat, GPT

Nov/Dec 2019 57

November/December 2022

Writing Custom
Commands in FreeBSD’s
DDB Kernel Debugger

DTrace: New Additions
to an Old Tracing System

Certificate-based
Monitoring with Icinga

activitymonitor.sh

Pragmatic IPv6 (Part 4)

Observability and Metrics

2023 Editorial Calendar
• Building a FreeBSD Web Server

(January-February)

• Embedded (March-April)

• FreeBSD at 30 (May-June)

• Containers and Cloud (Virtualization)

(July-August)

• FreeBSD 14 (September-October)

• To be decided (November-December)

LETTER
from the Foundation

J O U R N A L
®

Editorial Board
 John Baldwin • Member of the FreeBSD Core Team and
 Chair of FreeBSD Journal Editorial Board

 Tom Jones • FreeBSD Developer, Internet Engineer
 and Researcher at the University of
 Aberdeen

 Ed Maste • Senior Director of Technology,
 FreeBSD Foundation and Member
 of the FreeBSD Core Team

 Benedict Reuschling • FreeBSD Documentation Committer
 and Member of the FreeBSD Core Team

 Mariusz Zaborski • FreeBSD Developer

Advisory Board
 Anne Dickison • Marketing Director, FreeBSD Foundation

 Justin Gibbs • Founder of the FreeBSD Foundation,
 President and Treasurer of the FreeBSD
 Foundation Board

 Allan Jude • CTO at Klara Inc., the global FreeBSD
 Professional Services and Support
 company

 Dru Lavigne • Author of BSD Hacks and
 The Best of FreeBSD Basics

 Michael W Lucas • Author of more than 40 books including
 Absolute FreeBSD, the FreeBSD
 Mastery series, and git commit murder

 Kirk McKusick • Lead author of The Design and
 Implementation book series

 George Neville-Neil • Past President of the FreeBSD Foundation
 Board, and co-author of The Design
 and Implementation of the FreeBSD
 Operating System

 Hiroki Sato • Director of the FreeBSD Foundation
 Board, Chair of AsiaBSDCon,
 and Assistant Professor at Tokyo
 Institute of Technology

 Robert N. M. Watson • Director of the FreeBSD Foundation
 Board, Founder of the TrustedBSD
 Project, and University Senior Lecturer
 at the University of Cambridge

S&W PUBLISHING LLC
PO BOX 3757 CHAPEL HILL, NC 27515-3757

 Editor-at-Large • James Maurer
 maurer.jim@gmail.com

 Design & Production • Reuter & Associates

FreeBSD Journal (ISBN: 978-0-61 5-88479-0) is published 6 times
a year (January/February, March/April, May/June, July/August,

September/October, November/December).
Published by the FreeBSD Foundation,

3980 Broadway St. STE #103-107, Boulder, CO 80304
ph: 720/207-51 42 • fax: 720/222-2350

email: info@freebsdfoundation.org

Copyright © 2023 by FreeBSD Foundation. All rights reserved.
This magazine may not be reproduced in whole or in part without written per-

mission from the publisher.

3FreeBSD Journal • March/April 2023

Dear Readers,
Welcome to the March/April issue of the FreeBSD

Journal! I’ve been thinking about how many issues
we’ve published since the first issue came out back in
January 2014. I believe this is the 56th issue of helpful
and informative content covering many different
topics within the world of FreeBSD. The fact that we
have had so many issues focused on different areas
over these many years, shows how complex, powerful,
and innovative FreeBSD is.

This current issue focuses on a subject near and
dear to my heart, embedded systems. I started out
as an embedded systems engineer writing firmware
for storage device companies, and the technology
has grown and improved since I began my career.
The amount of information that can be stored on
one storage device just blows my mind! More and
more, things are becoming embedded to create
smaller systems, and FreeBSD plays a significant role
in these products. From display systems in stadiums
to cool video games, FreeBSD is there controlling the
systems.

Please, sit back and check out the articles and
columns in the following pages! As usual, you’ll also
find information on upcoming BSD-related events—
I hope to see many of you at the upcoming BSDCan
in Ottawa in May!

Oh, and I have one ask. If you’ve enjoyed and
learned from some or all of the 56 issues published
to date, please consider making a donation to the
FreeBSD Foundation, so we can continue funding the
FreeBSD Journal and our other projects. Thank you!

Deb Goodkin
Executive Director
FreeBSD Foundation

Donate to the FreeBSD Foundation
freebsdfoundation.org/donate/

https://freebsdfoundation.org/donate/

4FreeBSD Journal • March/April 2023

March/April 2023

 5 GPU Passthrough
 By Corvin Köhne and Daniel Kerkhoff

 12 CheriBSD Ports and Packages
 By Konrad Witaszczyk

 23 Conference Report: SCaLE20X
 By Drew Gurkowski

 25 Practical Ports: Let’s chat, GPT
 By Benedict Reuschling

 3 Foundation Letter
By Deb Goodkin

 35 We Get Letters
By Michael W Lucas

 38 Events Calendar
By Anne Dickison

Issue topic: Embedded

5FreeBSD Journal • March/April 2023

Beckhoff has been working on industrial automation technology since it was founded in
1980. In 1986, the concept of PC-based machine control was born. Back then, Beckhoff
was moving away from microcontroller-based PLCs and started using standard PC

technology as a base for the PLC, while casing it in industrial housing. This boosted perfor-
mance massively, as PCs were already far more powerful than microcontrollers.

With the rise of Windows, the idea to make a general-purpose operating system part of
the machine control system itself was born. The Windows environment was already familiar
to machine builders and operators. The Windows environment could also be enriched with
additional user applications, which proved beneficial since it added value to the overall con-
trol system. Windows itself, however, did not provide the required execution environment
for control logic with hard, real-time constraints.

TwinCAT (which stands for The Windows Control Automation Technology) software had
been developed and was first released in 1996. TwinCAT was designed as an extension of
Windows NT to assure deterministic execution of control tasks on Windows-based control
systems from Beckhoff.

Over the years, the hardware components of PCs, such as CPUs, memory, bus systems
and I/O devices have become more powerful, as have PC-based control systems. In 2002,
Beckhoff invented the embedded PC family, a DIN-rail mountable, industrial PC with a di-
rect connection to the Beckhoff I/O system. As these devices used low power CPUs (AMD
SC2200) with compact flash cards, an embedded operating system with a small footprint
was needed. At the time, Windows CE was the dominant player on the market and was the
obvious choice for this embedded PC family. Today, Beckhoff offers a broad product family
of industrial PCs, ranging from small single core ARM CPUs to the latest AMD Ryzen CPUs
and Intel Xeon based server class devices. Consequently, control system engineers can
choose the right performance class for their applications.

TwinCAT runtime is the common denominator for all Beckhoff IPCs, and naturally, Twin-
CAT itself has evolved over time to enable control systems to harness the power of modern
PC hardware. Windows has become the standard operating system for PC-based control
systems at Beckhoff and also for its customers.

In recent years, however, Windows CE has become obsolete and customer demand
for a non-Windows based control system has increased, so Beckhoff started to search for
an alternative operating system which could become the new TwinCAT host. Ultimate-
ly, FreeBSD was chosen as the non-Windows operating system to host TwinCAT. Beck-
hoff combined FreeBSD and TwinCAT to create a new PC-based control operating system,
named TwinCAT/BSD.

BY CORVIN KÖHNE AND DANIEL KERKHOFF

1 of 7

GPU Passthrough

6FreeBSD Journal • March/April 2023

TwinCAT/BSD
Currently, FreeBSD 13.2 serves as the foundation for TwinCAT/BSD. Consequently, Twin-

CAT/BSD benefits from the FreeBSD base system, including FreeBSD user space tools as
well as kernel services. In addition, Beckhoff has also imported the majority of TwinCAT fea-
tures from Windows-based control systems to TwinCAT/BSD. TwinCAT/BSD is made up of
both FreeBSD base system and the TwinCAT features. Figure 1 shows the structure of the
system.

Figure 1: TwinCAT integration on FreeBSD

The core components of a TwinCAT-based control system are the TwinCAT runtime and
the TwinCAT System Service including the ADS message router. The TwinCAT runtime is
responsible for the execution of real-time control tasks. Real-time control tasks typically in-
volve programmable logic controller (PLC) tasks, motion tasks such as axis positioning or
CNC, and the integration of industrial I/O devices connected via fieldbus systems.

To be able to run control tasks with hard real-time requirements, TwinCAT configures
different system settings. For example, TwinCAT uses isolated CPU cores for control tasks.
Isolated cores are removed from all CPU groups of the FreeBSD scheduler. This allows Twin-
CAT to fully utilize isolated cores to execute control tasks. The TwinCAT runtime determines
the execution of the configured, real-time tasks. Each real-time task has its own cycle time
which specifies the frequency at which the task has to be executed.

The TwinCAT runtime provides an interface for the Automation Device Specification
protocol (or ADS for short) so that the TwinCAT runtime can send and receive ADS messag-
es. ADS is an application protocol developed by Beckhoff. The whole information exchange
in a TwinCAT system is driven by ADS. The TcDriver is a standard FreeBSD kernel module
which provides an ADS channel between the TwinCAT runtime and the user space. This
channel is used by the TwinCAT System Service to control the TwinCAT runtime. Likewise,
the TwinCAT System Service implements an ADS message router to route ADS messages
between different applications like the TwinCAT runtime and TwinCAT Functions. Thanks
to the ADS message router, the TwinCAT system can easily be extended with other services
that implement the ADS protocol. Similarly, ADS client applications only need access to the
message router to access ADS services such as the TwinCAT runtime to read and write the
PLC task’s data, for example. The ADS specification and libraries are publicly available so
that ADS-based applications can be implemented easily.

2 of 7

7FreeBSD Journal • March/April 2023

In general, the TwinCAT architecture described for TwinCAT/BSD is similar to the archi-
tecture for Windows-based operating systems. However, Beckhoff customers particularly
favor TwinCAT/BSD as it is a more compact and robust operating system. Due to its small
footprint, it is often used on embedded industrial PCs. These embedded industrial PCs can
be found in control applications ranging from building automation to CNC machines to au-
tomated guided vehicles. Although TwinCAT/BSD is already used in a variety of control ap-
plications, sophisticated control applications always require more flexibility to extend the ca-
pabilities of the control systems.

The Need for Virtual Machines
For PC-based control systems, the host operating system serves two purposes. As with

any operating system, it is responsible for providing a clean, abstract interface to the subor-
dinate hardware. Equally, the operating system environment can be used to run applications
and services which extend the functionality of the control system. The user can thus install
or develop their own applications for the control system while interacting with the system
as they do with any other PC.

Furthermore, the operating systems serve as hosts for the TwinCAT runtime. FreeBSD, as
a host operating system, is responsible for managing the majority of the hardware in an ap-
propriate manner. This allows TwinCAT to focus on scheduling and executing real-time con-
trol tasks. However, without a running host operating system, the TwinCAT runtime would
not be able to run at all. In terms of the overall con-
trol system, the system operator needs to pay a
great deal of attention when interacting with the
host operating system, since a restart or crash in
the host operating system would also result in the
real-time control being stopped. This is true for
both Windows and TwinCAT/BSD PC-based con-
trol systems.

bhyve offers the option of using a virtual ma-
chine as user environment, which can be rebooted
without affecting the TwinCAT real-time system.
In this setup, the TwinCAT/BSD host operating sys-
tem would still serve as the underlying PC-based
control system, but the operator would no lon-
ger directly use the host operating system for hu-
man-machine interaction; a guest operating sys-
tem would be used inside a virtual machine environment instead.

With virtual machines, the system designer can take advantage of a wider range of op-
erating systems to deploy additional services on the control system. A virtualized Windows
environment could enable the Windows desktop environment and already developed Win-
dows user interfaces to be used for machine interactions on TwinCAT/BSD systems. Envi-
ronments such as these are especially useful for customers who are used to Windows-based
control systems. A virtualized Linux environment would, in turn, enable containerized Linux
applications to be used on the IPC via Docker, Podman or Kubernetes. Again, customers
who are already using Linux container deployments to run services or algorithms for analyz-
ing process data could deploy those applications directly on the control system itself.

3 of 7

FreeBSD, as a host

operating system,

is responsible for

managing the majority

of the hardware in an

appropriate manner.

8FreeBSD Journal • March/April 2023

Virtual machines hosted by bhyve also benefit from OpenZFS, which is the default file
system on TwinCAT/BSD. For customers, high availability of both the TwinCAT-based con-
trol system itself and user applications is crucial. As a result, any updates on a system which
may lead to downtime or inoperability are inherently high-risk. Being able to create ZFS
snapshots of datasets which show the functional state of the base system and of virtual ma-
chine disks enables a functional system state to be restored, thus cutting the risk of long
downtimes if software updates malfunction.

Furthermore, running operating systems in virtual machines can also be harnessed to im-
prove system security via increased availability. The capacity to access process data from a
control system is becoming more relevant as a result of digitization, because this data forms
the basis for optimized production processes. Acquisition, processing, and interpretation of
process data should be as automated, in-process and timely as possible. However, the ac-
cess to the control system which is required by applications and/or operators also increases
the risk that the control system’s open interfaces may be exploited or operated incorrectly.
If the system is accessed in this way, this can in turn influence the correct operation of the
control system and, in the worst case, lead to downtime and thus to uncontrolled processes.
A virtual machine can be used as an additional gateway here to restrict both user and net-
work access to the control system. To provide the aforementioned benefits through virtual
machine environments, we have started incorporating bhyve into TwinCAT/BSD.

Virtual Machine Configuration
bhyve was integrated into TwinCAT/BSD in order to configure a system setup like the one

shown in figure 2.

Figure 2: Sample VM configurations on TwinCAT/BSD

In this setup, the execution of virtual machines should be optional as not every TwinCAT/
BSD user requires separate execution environments for additional guest systems. If needed,
however, the customer would be able to configure a virtual machine with bhyve that could
support either the use case of a Windows or Linux guest operating system or both.

Linux guest operating systems are usually needed for headless server applications either
installed directly on the Linux guest OS or deployed and managed as Linux containers. In
terms of system setup, this means that network interface configuration tasks such as routing
and package filtering are handled on host and guest operating sites. In most cases, this type
of VM configuration consists of two network interfaces. One of these is used in a host-only
network to access the TwinCAT ADS message router on the host operating system.

4 of 7

9FreeBSD Journal • March/April 2023

Process data from the TwinCAT control system can be gathered with access to the ADS
message router. These data can then be further analyzed by other service containers inside
the guest operating system. The information gained is then usually served or transmitted
via a second network interface which is explicitly assigned to the virtual machine.

On industrial PCs that contain modern Intel or AMD CPUs, hardware support is provid-
ed for IO virtualization. This is termed VT-d for Intel and AMD-Vi for AMD. Both forms of
support are similar and allow a hypervisor to give a guest direct access to a hardware device.
The device memory can be mapped onto the guest memory space. Additionally, interrupts
can be remapped to be directly delivered to the guest. This allows a guest to access a device
without any hypervisor intervention to increase the performance.

bhyve already supports VT-d and AMD-Vi.
These are used for PCI passthrough. As a result, a
PCI device can be exclusively assigned to a single
guest. This device is no longer shared with the host
and the guest has direct access to it.

With PCI passthrough, one Ethernet controller
can be isolated from the TwinCAT/BSD host and
explicitly assigned to the virtual machine. As a re-
sult, all network traffic is directly passed to the vir-
tual machine environment, meaning that no addi-
tional filter or routing rules need be applied on the
TwinCAT/BSD host. Likewise, network traffic can
be processed much faster as it is directly available
inside the guest.

As mentioned above, virtual machines with Win-
dows guest operating systems should serve as an
isolated environment for human-machine interac-
tion. Consequently, the physical I/O interfaces of
the industrial PC must be passed to the virtual ma-
chine. On Beckhoff IPCs, these interfaces are the USB controller for user input via keyboard,
mouse or touch panel and, of course, the graphics controller for video output on any con-
nected display.

As usual, PCI passthrough is used to explicitly assign the USB controller to the Windows
guest. PCI passthrough works for almost all PCI devices. However, graphics cards are one
class of PCI devices in which PCI passthrough isn’t supported by bhyve. As this is a common
issue in hypervisors, it’s often referred to as GPU passthrough.

GPU Passthrough
Most graphics cards have some special requirements which aren’t handled by bhyve yet.

These special requirements are dependent on the graphics card vendor and the graph-
ics driver. Different operating system graphics drivers require different features within the
graphics card. Some graphics drivers need a VBIOS while others need access to special
memory regions. All of these elements require extra handling, which has to be implemented
for bhyve. Beckhoff has developed patches for bhyve to enable GPU passthrough on AMD
and integrated Intel graphics cards. We’re also working on upstreaming all of these patches.

GPU passthrough of AMD graphics cards requires a PCI ROM emulation. In the first step,
the VBIOS of the graphics card has to be extracted from the host system. It is then used by

5 of 7

All network traffic

is directly passed

to the virtual machine

environment, meaning

that no additional filter

or routing rules

need be applied on

the TwinCAT/BSD host.

10FreeBSD Journal • March/April 2023

the guest BIOS to initialize the graphics card. Additionally, some guest graphics drivers re-
quire the VBIOS.

The VBIOS can be extracted using a variety of different methods. There’s no common
method for extracting the VBIOS on FreeBSD yet. Therefore, a different operating system
such as Linux must be booted to extract the VBIOS. This ensures that the right VBIOS ver-
sion is used for GPU passthrough. If a different version is used, there could be incompatibili-
ties which may damage your device in the worst-case scenario.

Once the VBIOS has been extracted, it has to be passed to the guest. Therefore, we
added a PCI ROM emulation to bhyve so that the guest can read the PCI ROM to get the
VBIOS. The patches required to support the PCI ROM emulation have already been up-
streamed. The PCI ROM emulation will be includ-
ed in FreeBSD versions 13.2, 14.0 and subsequent
versions.

Sadly, supporting the PCI ROM emulation isn’t
enough to support a VBIOS. It has to be executed
and shadowed into main memory. This should be
done by the guest BIOS. However, bhyve’s current
edk2 port is not capable of this. The patches that
would make this possible have been placed in the
upstream but have not yet been accepted. There-
fore, a modified guest BIOS must be used to fully
support GPU passthrough for AMD devices.

Adding a VBIOS to graphics cards also provides
another benefit. A VBIOS includes an UEFI graph-
ics driver. When the guest executes the VBIOS, the
VBIOS installs an UEFI graphics card driver. This will
be picked up by the guest BIOS to produce graph-
ic output. It makes the graphics card available in
an early boot phase. For that reason, graphic output can be produced in the UEFI and boot-
loader phase when a VBIOS is passed to the guest. Without a VBIOS, the first graphic out-
put is produced after the OS driver is loaded.

In contrast to AMD graphics cards, GPU passthrough for integrated Intel graphics cards
has not yet been upstreamed. Intel graphics cards have two special memory regions which
need special attention. Intel calls these memory regions OpRegion and Graphics Stolen
Memory. They have to be reserved by the guest BIOS and reported in a PCI register. There-
fore, bhyve needs to detect and report those regions to the guest. We have patched bhyve
to provide an E820 table to the guest. It includes all memory regions and reports where the
OpRegion and Graphics Stolen Memory reside in the memory. Our guest BIOS is modified
to parse this E820 table and reserve all memory regions as reported by the table. bhyve’s
PCI emulation reports the addresses of these memory regions by PCI register.

Our current implementation works for Intel processors from the 3rd generation, called
Ivy Bridge, up to 9th generation Intel processors, called Coffee Lake Refresh. Newer Intel
processors require slight modifications for emulation. Support will be added in the future.
We have not yet tested GPU passthrough for AMD graphics cards on a variety of different
graphics cards. According to some feedback from bhyve users who have tested the patches,
it is supported on a wide range of different AMD graphics cards.

The VBIOS can be

extracted using a variety

of different methods.

There’s no common

method for extracting

the VBIOS

on FreeBSD yet.

6 of 7

11FreeBSD Journal • March/April 2023

As previously stated, GPU passthrough is the same as PCI passthrough. Due to this, it
does not differ from PCI passthrough in terms of usage. bhyve’s -s option can be used for
GPU passthrough as shown in the following code snippet.

bhyve \
 −s 0,hostbridge \
 −s 2,passthru,0/2/0 \
 −s 31,lpc \
 −l bootrom,/usr/local/share/uefi−firmware/BHYVE_UEFI.fd \ my−vm

If you wish to pass a VBIOS to the guest, we’ve added a ROM option to bhyve’s -s option.

 −s 2,passthru,0/2/0,rom=/home/user/vbios.rom

Conclusion
FreeBSD, in combination with Beckhoff TwinCAT automation software, forms the foun-

dation of the TwinCAT/BSD operating system. TwinCAT/BSD is Beckhoff’s Unix alternative
to Windows-based control systems and is already used in a variety of control systems.

Now, by integrating bhyve into TwinCAT/BSD, PC-based control systems benefit from
virtual machine environments. With the added GPU passthrough feature, virtual machine
graphic output can now be displayed on connected screens. This is particularly useful for
applications which provide a human-machine interface. Since these applications often origi-
nate from former Windows-based control systems, they can now be used on TwinCAT/BSD.

Virtual machines, in combination with the PCI passthrough feature, also provide an ad-
vanced system setup in which user interfaces and network interfaces can be isolated from
the host operating system. Consequently, virtual machine environments can provide an ad-
ditional layer to improve the security of the control system.

CORVIN KÖHNE is a software developer at Beckhoff Automation GmbH & Co. KG.
He’s a maintainer and developer of Beckhoff’s FreeBSD fork, which is called TwinCAT/
BSD. He focuses on x86-based systems and hypervisor technology. Due to his contribu-
tions to the bhyve project, he became a FreeBSD committer in 2022.

DANIEL KERKHOFF started his career as an application engineer for industrial automa-
tion solutions at Beckhoff Automation GmbH & Co. KG. After graduating with a mas-
ter’s degree in information technologies, he joined the TwinCAT product management
team. In his role, he is responsible for queries from customer who use bhyve and Twin-
CAT/BSD as part of Beckhoff’s PC-based control systems.

7 of 7

12FreeBSD Journal • March/April 2023

CHERI is a hardware/software/semantics co-design project that aims to improve the
security of existing and future hardware-software stack implementations. Recent
studies from Google and Microsoft show that around 70% of vulnerabilities in their

products relate to memory-safety issues. CHERI not only allows us to prevent most such
vulnerabilities from being exploited but also to compartmentalise software and thus limit
the impact of successfully exploited vulnerabilities currently unknown to software maintain-
ers (e.g., backdoors in third-party software dependencies).

Until 2022, the CHERI project was mostly developed by the University of Cambridge,
SRI International, and their partners, including Mic-
rosoft, Google, and Arm. The CHERI ecosystem rap-
idly expanded with the release of the Arm Morello
platform, the first public hardware implementation
of CHERI. In January 2022, Arm started shipping the
first (out of roughly a thousand) Morello boards to
companies, academic and government institutions.
To provide a user-friendly work environment for Mo-
rello users, CheriBSD — a FreeBSD-based operat-
ing system adapted for Arm Morello and CHERI-
RISC-V — needed an infrastructure to build and ship
CHERI-adapted third-party software before Morel-
lo was released. Today, dozens of universities, gov-
ernment research labs, and companies are using
CheriBSD in their work on Morello, and rely on this in-
frastructure daily.

This article describes our journey of building third-party software packages for CheriBSD
without CHERI-enabled hardware, using QEMU user mode, FreeBSD ports, and Poudriere.
While discussing implementation details of the package building infrastructure, the arti-
cle summarises what decisions and changes we needed to make to finally achieve ~24,000
AArch64 packages and ~9,000 CHERI-enabled packages.

BY KONRAD WITASZCZYK

1 of 11

CheriBSD Ports
 and Packages

Pure-capability third-party software for Arm Morello
and CHERI-RISC-V CheriBSD

The CHERI ecosystem

rapidly expanded with

the release of the Arm

Morello platform.

13FreeBSD Journal • March/April 2023

CHERI Hardware-software Stack
In order to fully understand the infrastructure for CheriBSD package building, we should

first describe the SDK that a developer can use to build software for CHERI. The CHERI
hardware-software stack (see Table 1) consists of hardware, emulators, compilers, debug-
gers, operating systems and applications for CHERI-enabled operating systems. Each com-
ponent of this stack needed to be adapted for CHERI and must implement support for
CHERI capabilities22.

Third-party software ~9,000 CHERI packages (Morello)
~24,000 non-CHERI packages (Morello)

Operating systems CheriBSD (Morello, CHERI-RISC-V)
FreeRTOS (CHERI-RISC-V)
CHERIoT RTOS (CHERI-RISC-V)
Linux (Morello)
Android (Morello)

Toolchains CHERI LLVM for CHERI C/C++ (Morello, CHERI-RISC-V)
Morello GCC for CHERI C/C++ (Morello)
GDB-CHERI (Morello, CHERI-RISC-V)

CPUs Arm Morello SoC
CHERI-RISC-V on FPGA
QEMU-CHERI (Morello, CHERI-RISC-V)
Microsoft CHERIoT (CHERI-RISC-V)

Table 1: Current CHERI hardware-software stack

Before the Arm Morello platform20 was released, CheriBSD and third-party software had
been developed and ported using QEMU emulators for Morello and CHERI-RISC-V9. This
environment is still useful today to work on multiple CheriBSD branches or to attach the
GDB debugger to QEMU and step through the CheriBSD kernel. Anyone interested in our
research can try the CHERI exercises25 to explore under QEMU how CHERI prevents mem-
ory-safety issues. A Morello QEMU-based VM can be created on FreeBSD, Linux and ma-
cOS with the cheribuild utility1 using one simple command that fetches and compiles re-
quired software, and runs the VM:

$./cheribuild.py --include-dependencies run-morello-purecap

Available toolchains include LLVM compilers14, 17 and GDB debuggers15. LLVM can cross-com-
pile code or compile it natively on hardware or under QEMU. GDB-CHERI, currently based on
GDB 12, can disassemble capability-aware instructions and print information on register and
in-memory capabilities. While this article focuses on CheriBSD3, Arm also develops Linux and
Android operating systems18 with CHERI LLVM and GCC compilers for Morello19. In February
2023, Microsoft also published the CHERIoT project16 that implements a full hardware-soft-
ware stack with the CHERIoT RTOS for embedded RISC-V devices.

Having the above SDK, we decided to fork FreeBSD ports and extend them with
bug fixes and changes necessary for CHERI and CheriBSD. We call this ports collection
CheriBSD ports.

The process of porting software to CHERI is similar to porting code developed for 32-bit
architectures to 64-bit architectures. A pure-capability program can only use CHERI capa-
bilities and CHERI-aware CPU instructions to access memory. A pointer in such a program

2 of 11

14FreeBSD Journal • March/April 2023

has its size increased to 128 bits to hold a CHERI capability. In order to compile a C/C++
program, the code must be adapted to the CHERI C/C++ semantics24 that require the use
of appropriate data types to store pointers (e.g., uintptr_t instead of long), and increase the
alignment of pointers to 16 bytes. CHERI LLVM can identify many incompatibilities between
C/C++ and CHERI/C++, and display detailed warnings suggesting what changes should be
applied in code to make it compatible with CHERI. In many cases, a developer can success-
fully compile and run their software after fixing all issues found by CHERI LLVM. However,
extensive testing is recommended to make sure that ported software does not include any
run-time bugs (e.g., misaligned allocations in a custom memory allocator).

While a lot of open-source projects have been ported to CHERI23, many crucial applica-
tions still cannot be compiled to use CHERI capabilities. For example, web browsers are ex-
tremely complicated pieces of software requiring lots of dependencies. In order to provide a
fully functional development platform, CheriBSD allows to run both CHERI-adapted applica-
tions and applications compiled for a baseline architecture of a CHERI-extended CPU (e.g.,
Armv8-A for Morello). Compatibility with existing software has been essential to the CHERI
project to allow to incrementally adapt software for CHERI rather than require to reimple-
ment an application from scratch. FreeBSD, as a baseline operating system for CheriBSD, en-

abled the implementation of run-time environments
for legacy and CHERI-aware software. However, when
it comes to providing third-party software for multiple
run-time environments, there are still some challeng-
es that CheriBSD inherited from FreeBSD.

Multi-ABI support
FreeBSD includes a feature called compatibility

layers that provides system call implementations for
programs compiled for different ABIs than the na-
tive ABI. For example, an amd64 FreeBSD kernel with
a compiled-in 32-bit compatibility layer (also known
as freebsd32) can run a program compiled for i386.
CheriBSD benefits from this feature and supports

two ABIs relevant to CHERI: CheriABI also known as the pure-capability ABI (MACHINE_ARCH
aarch64c and riscv64c) for programs that can only use CHERI capabilities to access mem-
ory, and the hybrid ABI (MACHINE_ARCH aarch64 and riscv64) for programs that can but
do not have to use CHERI capabilities. The latter ABI is implemented by the pure-capability
CheriBSD kernel with the freebsd64 compatibility layer, similar to freebsd32.
Missing cross-ABI support

While the FreeBSD and CheriBSD kernels implement support for multiple ABIs, multi-
ABI environments are not supported by FreeBSD ports and Poudriere. This is a major issue
in the context of CHERI. Many ports require dependencies that have not been adapted for
CHERI yet. For example, Meson and Ninja are commonly used build systems depending on
Python. Since we do not have CheriABI Python at the moment, we cannot build these util-
ities for CheriABI to compile other ports. If FreeBSD ports and Poudriere supported com-
pile-time cross-ABI dependencies, we could use hybrid ABI Meson and Ninja to build Che-
riABI packages that do not require them at run time. The CheriBSD ports section briefly
explains how we managed to partially resolve this issue.

3 of 11

Compatibility with

existing software has

been essential to the

CHERI project to allow

to incrementally adapt

software for CHERI.

15FreeBSD Journal • March/April 2023

Package manager(s)
The pkg(8) package manager can only manage packages built for one ABI — by default

the ABI of the base system (based on uname(1)). For example, i386 packages cannot be in-
stalled on an amd64 host alongside amd64 packages and be registered in a single package
database (pkg-register(8)). Of course, it is possible to create a package with binaries and
shared libraries compiled for i386 that is marked as created for amd64, just like FreeBSD
does for Linux packages, but that would require creating two packages for the same port
(for amd64 and i386), and does not reflect the actual ABI of packaged files at the package
manager level. There are two important issues that would have to be resolved to better sup-
port such multi-ABI environment:

1.  Two packages with the same pre-compiled port but for different ABIs must use dis-
tinct paths not to conflict with each other.
For example, Git compiled for two different ABIs with the same local base path
(e.g., /usr/local) would conflict on files installed within that path (e.g., /usr/local/
bin/git).

2. A package for one ABI should be able to depend on a package for a different ABI.
For example, Git depends on Perl because it includes multiple Perl scripts used by its
subcommands (e.g., git add -i). Instead of using an interpreter compiled for the same
ABI, it could use Perl available for another supported ABI.

As of today, we solved the first issue and decided to ignore the second one for CheriBSD.
Not to create conflicts between packages in CheriBSD, we place CheriABI and hybrid ABI

packages in two separate locations. We build CheriBSD ports for CheriABI with LOCALBASE
set to /usr/local and hybrid ABI packages with LOCALBASE set to /usr/local64. While
the FreeBSD ports build system provides the localbase feature (in Mk/Uses/localbase),
we discovered and fixed many ports that break this functionality, e.g. by hardcoding paths in
their code; or not using the localbase feature at all.

Built packages are registered in two separate package repositories that can be managed
with separate package managers: pkg64c for CheriABI packages, and pkg64 for hybrid ABI
packages. pkg64c and pkg64 are programs compiled for the same ABI as packages they
manage, they use separate package repository configuration directories, databases and
caches. In short, the package managers are completely unaware of each other.
CheriBSD ABI version

By default, the pkg(8) package manager decides which package repository to use based
on the NT_FREEBSD_ABI_TAG ELF note of uname(1). The value of that note is used to
construct a value of the ABI pkg variable that can be embedded in a package repository
URL (see pkg.conf(5) and /etc/pkg/FreeBSD.conf). For example, the URL:

pkg+http://pkg.FreeBSD.org/${ABI}/latest

is expanded to:

pkg+http://pkg.FreeBSD.org/FreeBSD:14:amd64/latest

on an amd64 host running FreeBSD 14-CURRENT.
In contrast to FreeBSD, CheriBSD does not have any assumptions regarding ABI stability

across its releases and branches. Instead, CheriBSD maintains the ABI counter __CheriBSD_
version (set to the current date as it is bumped), similar to __FreeBSD_version and also
in sys/param.h, that describes the current ABI version used by a CheriBSD branch. In re-

4 of 11

16FreeBSD Journal • March/April 2023

sult, two CheriBSD releases can use the same ABI version and two different CheriBSD
branch revisions can use two distinct ABI versions.

This approach allows us to flexibly make changes in the CheriBSD development branch
and provide package repositories to users using different revisions of this branch. As for re-
leases, we do not make any changes that would break the ABI within a single release as it
would heavily disrupt users’ work environments and require recompiling all user code.

We extended the csu code in CheriBSD to include the __CheriBSD_version counter
in the additional NT_CHERIBSD_ABI_TAG ELF note of each program compiled for a given
branch. Instead of using NT_FREEBSD_ABI_TAG, pkg64 and pkg64c use NT_CHERIBSD_
ABI_TAG when building an URL to a package repository. For example, the URL:

pkg+http://pkg.CheriBSD.org/${ABI}

is expanded by pkg64c to:

pkg+http://pkg.CheriBSD.org/CheriBSD:20220828:aarch64c

and by pkg64 to:

pkg+http://pkg.CheriBSD.org/CheriBSD:20220828:aarch64

on a Morello host running CheriBSD 22.12.

Package building
The CheriBSD/Morello package building infrastructure consists of a local machine start-

ing a build, a FreeBSD/amd64 host building CheriABI packages using the QEMU user mode
and a FreeBSD/arm64 host building hybrid ABI packages natively. The builders use the fol-
lowing software stack:

• QEMU BSD user mode for CheriABI programs10;
• CheriBSD base system;
• CHERI LLVM toolchain;
• CheriBSD ports6;
• Poudriere extended for CheriBSD5, 7;
• Poudriere configuration files and helper scripts (e.g., poudriere-remote.sh)8.
Figure 1 presents an overview of the above components. Upon a command from

poudriere-remote.sh, the FreeBSD/amd64 and FreeBSD/arm64 hosts create Poudriere
jails, ports trees, and build the ports trees in CheriBSD/aarch64c and CheriBSD/aarch64 jails,
respectively. The CheriBSD/aarch64c jails execute programs compiled for CheriABI using
the QEMU user mode while toolchain utilities compiled for the amd64 architecture are exe-
cuted natively. Similarly, the CheriBSD/aarch64 jails execute all programs natively as they are
compiled for arm64. There are currently no ports’ hybrid ABI compile-time dependencies
that partially use CHERI capabilities and must be executed during the building process; thus,
no QEMU user mode is needed for the hybrid ABI packages. The following sections de-
scribe the building infrastructure components in more detail.

5 of 11

17FreeBSD Journal • March/April 2023

Figure 1: Package building process for CheriBSD

QEMU BSD user mode
Before the package building project started, QEMU-CHERI implemented only the

QEMU system mode for CHERI-RISC-V and Arm Morello architectures. While the system
mode allows developers to experiment with CheriBSD and cross-compiled third-party soft-
ware, its performance is not sufficient to build large code scope projects because it em-
ulates a full operating system with devices. Thankfully, Poudriere implements support for
the QEMU user mode, on top of binmiscctl(8). The user mode emulates user program
instructions and executes system calls by translating them from their emulated user ver-
sions to native user versions, executing the translated system calls and translating results
back to their emulated versions. Using this mode, we can run processes without unneces-
sary overhead related to system emulation. Most system calls in CheriBSD are compatible
with FreeBSD and QEMU can handle any incompatibilities when translating them (e.g., when
handling an mmap(2) call, an allocation might need to be padded with guard pages to make
a returned CHERI capability representable24). However, we must make sure that a FreeBSD
host running the user mode is not older than a baseline FreeBSD version used by the base
system of an emulated CheriBSD branch.

Poudriere makes use of the user mode through the imgact_binmisc kernel module.
FreeBSD allows defining binary image activators with binmiscctl(8) that execute binaries
matching an ELF header pattern using a specific interpreter. For example, a system admin-
istrator can define an activator that runs an aarch64 binary using a QEMU user mode emu-
lator on an amd64 host. In practice, a program executed within a FreeBSD/aarch64 jail on a
FreeBSD/amd64 host is wrapped with the user mode, e.g.:

$ sh

is executed within the jail as the command:

$ /usr/local/bin/qemu-aarch64-static sh

where the /usr/local/bin/qemu-aarch64-static binary is compiled for the native ABI
of the host and hence is natively executed rather than wrapped by an image activator again.

6 of 11

18FreeBSD Journal • March/April 2023

Our work on the QEMU user mode10 started with support for CHERI-RISC-V. Unfortu-
nately, the upstream QEMU repository included an outdated BSD user mode implemen-
tation — initially developed for FreeBSD/mips64 in 201511, 12, also in collaboration with the
University of Cambridge and SRI International. Thanks to the qemu-bsd-user project13 im-
proving the BSD user mode support in QEMU, we had a baseline CHERI-RISC-V user mode.
We rebased these changes onto QEMU-CHERI, and extended the implementation. Main
modifications included:

1. Improved system call interface implementation.
a. System call arguments and results used integer types rather than data types corre-

sponding to syscallarg_t from FreeBSD. We modified the system call interface
implementation to use appropriate machine-independent data types, allowing us
to handle CHERI capabilities.

 b. We changed QEMU to match closer the CheriBSD/FreeBSD system call
interface implementation and generated a system call table for QEMU using
the makesyscalls.lua script from CheriBSD derived from FreeBSD.

2. New data types abi_uintptr_t and abi_uintcap_t.
We used the data types in places where integer data types were incorrectly used, not
matching the actual machine-dependent data types storing pointers and capabilities.

3. CheriABI support, including ELF loading code, stack, mmap(2) implementations, and
adapting existing system calls for CHERI capabilities.

4. Machine-dependent changes for CHERI-RISC-V and Arm Morello, including CHERI
capability permission bits and capability register access routines.

This part of the project took us the longest time. Currently, the user mode itself can eas-
ily be used with the cheribuild qemu-cheri-bsd-user branch2. For example, you can run a
CheriABI shell from a CheriBSD/riscv64c base system on a FreeBSD/amd64 host using:

$./cheribuild.py run-user-shell-riscv64-purecap

CheriBSD ports
Besides CHERI/CheriBSD-specific patches for software included in the FreeBSD ports

collection, we introduced additional make(1) variables to allow modifying port build config-
urations depending on an ABI they are built for and allow building CheriABI packages with
hybrid ABI compile-time dependencies:

• USE_PACKAGE_DEPENDS_REMOTE;
When USE_PACKAGE_DEPENDS{,_ ONLY} is enabled, try to install a package from a re-
mote repository instead of building a port from scratch, if a local package does not exist.

• USE_ PACKAGE_ 64 _ DEPENDS_ ONLY;
Install dependencies marked with USE_ PKG64 using their replacement hybrid ABI pack-
ages with pkg64 instead of building them from scratch.

• USE_ PKG64;
When USE_ PACKAGE_ 64_ DEPENDS_ ONLY is set, use a hybrid ABI package for a port
that cannot be built for CheriABI and is required by another port that is being built for
CheriABI.

• OPTIONS_ {DEFINE,DEFAULT,EXCLUDE} _ ${ABI};
Lists of options specific to ${ABI}.

• BROKEN_ ${ABI}.
When set, a port is believed to be broken for ${ABI}.

7 of 11

19FreeBSD Journal • March/April 2023

We also modified autoreconf, cmake, meson, ninja and python support to allow us to
specify custom commands for hybrid ABI build utilities with <UTILITY>_CMD make(1) vari-
ables, e.g. CMAKE_CMD.

Poudriere
Our Poudriere fork7 supports package building on both FreeBSD and CheriBSD hosts.

By default, it uses base system tarballs for an operating system it is executed on but a user
can specify the OS with a new flag -o for poudriere-jail(8). Since CheriBSD does not
include a toolchain in its base system, Poudriere installs it using pkg or pkg64 within a Pou-
driere jail, outside a local base directory not to conflict with a toolchain built from CheriBSD
ports. There are two set configurations shipped with Poudriere: cheriabi and hybrida-
bi. Both use the same toolchain but define different LOCALBASE values, and the cheriabi
one enables hybrid ABI build utilities that are unavailable for CheriABI.

Building CheriABI packages for the development branch on a CheriBSD/Morello host re-
quires executing three simple commands:

$ poudriere jail -c -j aarch64c-dev -a arm64.aarch64c -v dev
$ poudriere ports -c -p main
$ poudriere bulk -j aarch64c-dev -p main -z cheriabi -a

When porting software to CHERI, CheriBSD users also can benefit from Poudriere to
easily bootstrap a build environment. This is especially useful for hybrid ABI software that
sometimes requires setting custom shared library search paths not to use by mistake Che-
riABI libraries from default search paths. With a Poudriere hybrid ABI jail, a developer does
not have to worry about possible linking with CheriABI libraries as such jail only includes hy-
brid ABI programs and libraries.

Poudriere configuration and scripts
The last piece of the infrastructure is the poudriere-infrastructure repository8

including Poudriere configuration files and shell scripts to bootstrap a build environment on
a remote host, sign a package repository and deploy it at pkg.CheriBSD.org. In particular,
poudriere-remote.sh builds the CheriBSD base system, the SDK, the QEMU user mode
(if needed) and starts package building with Poudriere. Poudriere logs of CheriBSD package
builds are publicly available at poudriere.CheriBSD.org.

Results
As of March 2023, CheriBSD provides 9104 CheriABI packages and 24494 hybrid ABI

packages4,5. There are only 37 CheriBSD ports with patches. Most of the changes specific to
CHERI have been successfully upstreamed to third-party software repositories. Some of the
patches include changes specific to CHERI restrictions (e.g., the stronger pointer alignment
to 16 bytes) which shows that open-source communities consider CHERI and Arm Morello
as a promising platform.

CheriBSD users can easily set up a Morello host using a memstick installer obtained from
CheriBSD.org (see Figure 2). bsdinstall(8) in CheriBSD includes an installer step21 where a
user can decide if they want to install packages to run a CheriABI graphical environment (us-
ing KDE Plasma and Wayland; see Figure 3) and additional hybrid ABI programs (at the mo-
ment Firefox and Chromium). These packages can easily be installed with meta-packages:

8 of 11

20FreeBSD Journal • March/April 2023

$ pkg64c install cheri-desktop
$ pkg64 install cheri-desktop-hybrid-extras

Figure 2: Arm Morello board running CheriBSD

Figure 3: Memory-safe Morello desktop environment (CheriBSD, KDE Plasma, Wayland)3

CheriBSD releases and packages have been used by Technology Access Programme
(TAP) participants. The Digital Security by Design (DSbD) initiative run by UK Research and
Innovation organises TAP to allow UK-based companies experiment with the Arm Morel-
lo platform and prototype memory-safe projects. Currently, we collaborate with around 30
such companies. Thanks to the CheriBSD installer and pre-compiled third-party packag-
es, TAP participants could easily deploy a work environment without the need to adapt for
CheriABI, or even cross-compile, their software dependencies. However, many of them still
needed to redesign their projects due to some missing third-party software, or port that
software themselves.

Future work
Based on CheriBSD 22.05 and 22.12 releases, TAP, and CheriBSD users’ experiences, we are
planning next steps to increase the number of CHERI memory-safe packages. Currently, we
are considering:

• CheriABI Python;
As noted in the Missing cross-ABI support section, multiple build systems make use of

9 of 11

21FreeBSD Journal • March/April 2023

Python. Having Python adapted to CheriABI, we could not only build additional pack-
ages for CheriABI but also enable interesting research space in compartmentalising Py-
thon-based applications.

• Cross-ABI support in Poudriere;
We would like to make use of hybrid ABI packages to build CheriABI packages with Pou-
driere. Currently, we build CheriABI packages using hybrid ABI build utilities by execut-
ing make package in port directories and transferring resulting packages to a package
repository created with Poudriere. This feature would allow us to easily rebuild and de-
ploy package repositories.

• Upstreaming patches;
We would like to minimise the number of patches that must be maintained in CheriBSD
ports, and instead commit them to upstream repositories. This includes changes in
ports to better support custom local base paths in FreeBSD ports.

• CHERI-RISC-V packages.
Currently, CheriBSD ships packages only for Arm Morello. Given that most of the ap-
plied patches are not specific to Morello, we should be able to build a large number of
packages for CHERI-RISC-V as well. This would allow researchers to also evaluate the
CHERI-RISC-V architecture against a large code corpus.

Conclusion
CheriBSD is a mature research operating system that can be used to prototype projects

making use of new security primitives provided by CHERI, and as a development platform
to test software against security vulnerabilities. While a lot of third-party software has been
adapted for CHERI, there are still many crucial applications missing that would enable devel-
oping projects in new areas. We are excited to see the growing CHERI ecosystem, with at
least 70 organisations from the Technology Access Programme26, the CHERI within Defence
and Security competition27 and Digital Security by Design28. In the following months, we ex-
pect to continue our work to increase the number of available pure-capability packages.

References
1. cheribuild.py. https://github.com/CTSRD-CHERI/cheribuild
2. cheribuild.py. the qemu-cheri-bsd-user branch. https://github.com/CTSRD-CHERI/

cheribuild/tree/qemu-cheri-bsd-user
3. CheriBSD. https://www.cheribsd.org/
4. CheriBSD packages. https://pkg.cheribsd.org/
5. CheriBSD Poudriere logs. https://poudriere.cheribsd.org/
6. CheriBSD ports. https://github.com/CTSRD-CHERI/cheribsd-ports
7. Poudriere extended for CheriBSD. https://github.com/CTSRD-CHERI/poudriere
8. Poudriere infrastructure for CheriBSD packages. https://github.com/CTSRD-CHERI/

poudriere-infrastructure
9. QEMU with support for CHERI. https://github.com/CTSRD-CHERI/qemu
10. QEMU with support for CHERI. the qemu-cheri-bsd-user branch. https://github.com/

CTSRD-CHERI/qemu/tree/qemu-cheri-bsd-user
11. BSDCan 2015: Embedded FreeBSD Development and Package Building via QEMU.

https://www.bsdcan.org/2015/schedule/events/532.en.html
12. BSDCan 2015: Stacey Son. https://www.bsdcan.org/2015/schedule/speakers/267.en.html
13. The qemu-bsd-user project. https://github.com/qemu-bsd-user/qemu-bsd-user

10 of 11

https://github.com/CTSRD-CHERI/cheribuild
https://github.com/CTSRD-CHERI/cheribuild/tree/qemu-cheri-bsd-user
https://github.com/CTSRD-CHERI/cheribuild/tree/qemu-cheri-bsd-user
https://www.cheribsd.org/
https://pkg.cheribsd.org/
https://poudriere.cheribsd.org/
https://github.com/CTSRD-CHERI/cheribsd-ports
https://github.com/CTSRD-CHERI/poudriere
https://github.com/CTSRD-CHERI/poudriere-infrastructure
https://github.com/CTSRD-CHERI/poudriere-infrastructure
https://github.com/CTSRD-CHERI/qemu
https://github.com/CTSRD-CHERI/qemu/tree/qemu-cheri-bsd-user
https://github.com/CTSRD-CHERI/qemu/tree/qemu-cheri-bsd-user
https://www.bsdcan.org/2015/schedule/events/532.en.html
https://www.bsdcan.org/2015/schedule/speakers/267.en.html
https://github.com/qemu-bsd-user/qemu-bsd-user

22FreeBSD Journal • March/April 2023

14. The CHERI LLVM Compiler Infrastructure. https://github.com/CTSRD-CHERI/llvm-project
15. The GNU debugger extended to support CHERI. https://github.com/CTSRD-CHERI/gdb
16. Microsoft. CHERIoT: Rethinking security for low-cost embedded systems. https://www.

microsoft.com/en-us/research/publication/cheriot-rethinking-security-for-low-cost-em-
bedded-systems/

17. Arm. The CHERI LLVM Compiler Infrastructure. https://git.morello-project.org/morello/
llvm-project

18. Morello Platform Software Repositories. https://git.morello-project.org/morello/docs
19. Arm. Morello Development Tools. https://developer.arm.com/Tools%20and%20Soft-

ware/Morello%20Development%20Tools
20. Arm. Morello Program. https://www.arm.com/architecture/cpu/morello
21. Robert N. M. Watson, et al. Getting Started with CheriBSD. Installing on a Morello Board.

https://ctsrd-cheri.github.io/cheribsd-getting-started/morello-install/
22. Robert N.M. Watson, et al. An Introduction to CHERI. Technical Report UCAM-CL- TR-

941, University of Cambridge, Computer Laboratory, 2019.
23. Robert N. M. Watson, et al. Assessing the Viability of an Open-Source CHERI Desktop

Software Ecosystem, Technical Report, Capabilities Limited, 17 September 2021.
24. Brooks Davis, et al. CheriABI: Enforcing Valid Pointer Provenance and Minimizing Point-

er Privilege in the POSIX C Run-time Environment. In Proceedings of 2019 Architectural
Support for Programming Languages and Operating Systems (ASPLOS’19). Providence,
RI, USA, April 13-17, 2019.

25. Robert N. M. Watson, et al. Adversarial CHERI Exercises and Missions. https://ctsrd-cheri.
github.io/cheri-exercises/

26. Digital Security by Design. Technology Access Programme Participants. https://www.
dsbd.tech/whos-involved/technology-access-programme-participants/

27. Defence and Security Accelerator. Competition: CHERI within Defence and Security.
https://www.gov.uk/government/publications/competition-cheri-within-defence-and-se-
curity

28. Digital Security by Design. Funded Projects. https://www.dsbd.tech/whos-involved/fund-
ed-projects/

KONRAD WITASZCZYK is a Research Associate and a PhD Student at the University
of Cambridge working on the CHERI project. He graduated with a BSc degree in Theo-
retical Computer Science from the Jagiellonian University, an MSc degree in Computer
Science from the University of Copenhagen and has been working with FreeBSD and its
security-related mechanisms since 2013, including at Fudo Security. As part of his PhD,
he is studying and working on compartmentalisation strategies for the CheriBSD kernel,
and thus the FreeBSD kernel as well.

11 of 11

https://github.com/CTSRD-CHERI/llvm-project
https://github.com/CTSRD-CHERI/gdb
https://www.microsoft.com/en-us/research/publication/cheriot-rethinking-security-for-low-cost-embedded-systems/
https://www.microsoft.com/en-us/research/publication/cheriot-rethinking-security-for-low-cost-embedded-systems/
https://www.microsoft.com/en-us/research/publication/cheriot-rethinking-security-for-low-cost-embedded-systems/
https://git.morello-project.org/morello/llvm-project
https://git.morello-project.org/morello/llvm-project
https://git.morello-project.org/morello/docs
https://developer.arm.com/Tools%20and%20Software/Morello%20Development%20Tools
https://developer.arm.com/Tools%20and%20Software/Morello%20Development%20Tools
https://www.arm.com/architecture/cpu/morello
https://ctsrd-cheri.github.io/cheribsd-getting-started/morello-install/
https://ctsrd-cheri.github.io/cheri-exercises/
https://ctsrd-cheri.github.io/cheri-exercises/
https://www.dsbd.tech/whos-involved/technology-access-programme-participants/
https://www.dsbd.tech/whos-involved/technology-access-programme-participants/
https://www.gov.uk/government/publications/competition-cheri-within-defence-and-security
https://www.gov.uk/government/publications/competition-cheri-within-defence-and-security
https://www.dsbd.tech/whos-involved/funded-projects/
https://www.dsbd.tech/whos-involved/funded-projects/

23FreeBSD Journal • March/April 2023

Amonth ago, I had the opportunity to head down to Pasadena, California to join mem-
bers of the open source community at SCaLE20X. This was my second SCaLE, and
the first time I had been to one held in the original Pasadena location.

On the first day of the conference, I assisted Roller Angel with running a full-day FreeBSD
workshop. The goal of the day was to help peo-
ple install FreeSBD on either a virtual machine or
cloud device, install and run a desktop environ-
ment, set up a basic jail, create a local ports repos-
itory, and more. While it mostly went off without a
hitch, we did run into a small issue when Vultr (the
cloud provider we were using) was unable to pro-
cess card payments, sending us scrambling to find
a different provider for those attendees. The turn-
out was great, and we got a wide range of partici-
pants in the workshop, from FreeBSD newbies, to
experienced users wanting to put FreeBSD on their new machines. If you are interested in
going through the workshop in your own time, Roller Angel has posted it online as a text file
which can be found here.

I also attended the SCaLE expo hall and staffed the FreeBSD table there for most of
the event. Talking to members of the open-source community is always my favorite part of
these events, and we bring plenty of FreeBSD swag to hand out while there. As I have re-
cently been working on an expansive FreeBSD timeline, I was particularly interested in many
of the attendees who had been working with Unix-like operating systems since their incep-
tion. A memorable conversation at the booth was with a FreeBSD user who told us a sto-
ry of when, as a child, he had taken apart his parents’ computer and installed FreeBSD. The
parents, horrified when they saw the state of the computer and were greeted by the un-
familiar “daemon” when it booted, grounded him, and forbade him from using FreeBSD.
Fortunately, he still uses FreeBSD to this day (Though I didn’t ask what his parents thought
about it now).

I believe that SCALE was, yet again, another successful advocacy effort to encourage
more people to use and contribute to FreeBSD. The workshop continues to be a highlight,
and each year we see more attendees. I’m looking forward to SCaLE21X and hopefully
meeting even more of the FreeBSD community!

DREW GURKOWSKI is the Marketing Coordinator at the FreeBSD Foundation.

BY DREW GURKOWSKI

1 of 1

SCaLE20X
C o n f e r e n c e R e p o r t

https://github.com/possnfiffer/bsd-pw/blob/gh-pages/docs/Intro_to_FreeBSD_Workshop.md

Donate to the Foundation!

Support
 FreeBSD

You already know that FreeBSD is an internationally
recognized leader in providing a high-performance,
secure, and stable operating system. It�s because of
you. Your donations have a direct impact on the Project.

Please consider making a gift to support FreeBSD for the
coming year. It�s only with your help that we can continue
and increase our support to make FreeBSD the high-
performance, secure, and reliable OS you know and love!

Your investment will help:

Funding Projects to Advance FreeBSD

Increasing Our FreeBSD Advocacy and

Providing Additional Conference
Resources and Travel Grants

Continued Development of the FreeBSD
Journal

Protecting FreeBSD IP and Providing
Legal Support to the Project

Purchasing Hardware to Build and
Improve FreeBSD Project Infrastructure

Making a donation is quick and easy.
freebsdfoundation.org/donate

®

®

25FreeBSD Journal • March/April 2023

You’ve probably heard about it by now: there is a new, controversial star in the field
of artificial intelligence (AI) called ChatGPT. A lot of things have been written about
it, both how it will improve people’s lives by doing certain tasks that are considered

chores or how it will doom us all by letting the robots win. The spectrum is wide, and the
jury is still out on whether we should regulate AI or not. Since this is practical ports, I’m go-
ing to take a practical look at what the chatlike tool can do.

I remember my own university classes about artificial intelligence and natural language
processing. The former was an unexciting lecture with little value, since, at the time, there
were no big breakthroughs happening in the AI field and so the lecture mostly revolved
around past efforts in the field—it was a history lesson.

The natural language course in my masters
was more engaging. One of the tasks in the class
was to program a simple version of Eliza. Back in
the day, when the computerized therapist first
came out, it was lauded as if it would make psy-
choanalysts file for unemployment the very next
day. But looking at it now, that certainly has not
happened. Since we students had to implement
this ourselves, we got a better understanding of
what the program is actually doing. It was excit-
ing to see what it could do and with a bit of add-
ed randomness, it did not get too predictable
or boring too soon. The illusion of the almighty,
all-knowing program was certainly shattered, having had a look at the inside of Franken-
stein’s software monster.

ChatGPT is obviously more complex and had a lot more knowledge fed into it than Eliza
did. The software is impressive but should certainly be taken with a grain of salt as the fol-
lowing experiment demonstrates.

At work, I install cluster machines the old-fashioned way: Boot the FreeBSD ISO image,
drop to the shell and set up basic networking (ifconfig ixl0 up && dhclient ixl0).
Then, I use netcat to transfer a shell script to the host and run that. While there are certain-
ly better and automatic ways (e.g., PXE boot, pre-built images, etc.), this one has served me
for a while now. The script is not too complex but has gone through a number of evolutions
because of slight variations in the underlying hardware: some nodes have only HDDs, newer

BY BENEDICT REUSCHLING

1 of 7

Let’s chat, GPT
PRACTICAL

The illusion of the
almighty, all-knowing
program was certainly
shattered.

26FreeBSD Journal • March/April 2023

ones have NVMe drives, and some have a mixture of HDDs and SSDs. While the script runs
fine, I thought I’d let the AI have a look to see if it found any obvious errors or had sugges-
tions for improvements.

The disk setup for the boot, swap, and freebsd partitions for the four disks in the node in
combination with ZFS were always a bit tricky. My goal there is to create a RAID-10 zpool (2
mirrors striped together) with the disks having the disk serial numbers as identifiers like this:

pool: mypool
 state: ONLINE
config:

 NAME STATE READ WRITE CKSUM
 mypool ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 gpt/ABC543210 ONLINE 0 0 0
 gpt/DEF123450 ONLINE 0 0 0
 mirror-1 ONLINE 0 0 0
 gpt/IJK098761 ONLINE 0 0 0
 gpt/LMN678901 ONLINE 0 0 0

(See, the gpt is everywhere, but this gpt refers to the GUID partition table). Since the se-
rial numbers are different on each system, I have a little routine that figures out the serial
number of each disk and creates a pool, making sure that the mirror keyword is added to
the list of serial numbers, as ZFS requires this to create the RAID10.

When I first heard the term GPT, my initial thought was: “why would someone talk to the
GUID Partition Table?” I must have worked too much with partitions and disk setups in my day
job, so I thought, let’s give it a try. Since the GPT in ChatGPT stands for generative pre-trained
transformer, the distinction was clear. After creating an account at https://chat.openai.com/chat,
a rather unimpressive chat window was presented to me. So, I typed the following:

BCR: How would you create a function for this piece of code:

for S in $SSD; do
 gpart add -t freebsd-swap -l swap${COUNTER} -s ${SWAP} -a 4k “${S}”
 echo “Setting ${SWAP} of swap space on disk ${S}.”
 SERIAL=$(camcontrol identify “${S}”|awk /serial number/ { print $3 })
 gpart add -t freebsd-zfs -l “{$SERIAL}” -a 4k “${S}”

 if [$((COUNTER%2)) -eq 0]; then
 SERIALS=”${SERIALS} mirror”
 fi
 SERIALS=”${SERIALS} /dev/gpt/${SERIAL}”
 COUNTER=$((COUNTER+1))
 NUM_SSDS=${COUNTER}
done

Now, this is neither beautiful code nor elegant, but it works. This is what ChatGPT replied:
ChatGPT: Based on the code snippet you provided, I believe you are trying to create a

function that sets up swap and ZFS partitions on multiple disks. Here’s a sample function
that could accomplish that:

setup_partitions() {
 local SSD=$1

2 of 7

https://chat.openai.com/chat

27FreeBSD Journal • March/April 2023

 local SWAP_SIZE=$2
 local COUNTER=1
 local SERIALS=””

 for S in $SSD; do
 # Create swap partition
 gpart add -t freebsd-swap -l swap${COUNTER} -s ${SWAP_SIZE} -a 4k “${S}”
 echo “Setting ${SWAP_SIZE} of swap space on disk ${S}.”

 # Create ZFS partition
 SERIAL=$(camcontrol identify “${S}”|awk /serial number/ { print $3 })
 gpart add -t freebsd-zfs -l “${SERIAL}” -a 4k “${S}”

 # Add to serials and counter
 if [$((COUNTER%2)) -eq 0]; then
 SERIALS=”${SERIALS} mirror”
 fi
 SERIALS=”${SERIALS} /dev/gpt/${SERIAL}”
 COUNTER=$((COUNTER+1))
 done

 NUM_SSDS=${COUNTER}
}

ChatGPT: You can call this function by passing two arguments: an array of SSDs and the
desired swap size. For example, if you have two SSDs (/dev/sda and /dev/sdb) and you
want each of them to have 4GB of swap space, you can call the function like this:

SSD=(“/dev/sda” “/dev/sdb”)
SWAP_SIZE=”4g”
setup_partitions “$SSD” “$SWAP_SIZE”

OK, that’s certainly impressive for a start. It could figure out what I was trying to do
and offered a solution, along with a fitting explanation. On closer inspection, it need-
ed a couple of modifications: First, the code was written in bash (as the code snippet win-
dow was labeled). Since we’re on the installer and FreeBSD does not ship with bash by
default, bash-specific constructs would not work. Second, it assumed I was using Li-
nux as the disk device nodes indicate (/dev/sda). The rest of the code was fine though,
and it did not have to modify most of my own code, simply wrapping it into a function.

Now, my prompt (my input into the chat) was not too specific about the system I was
running this on, so the AI had to make a best guess about both the shell I was running and
the device names. I should have provided this up-front to avoid the AI going in the wrong
direction.

What impressed me was how specific the answer was. It felt like I was chatting with a col-
league and discussing this code via IRC or other ways of textual communication. This speci-
ficity is not to be underestimated. Back when I was studying (I feel old now), the internet was
just becoming mainstream, and we still had to go to the library to access certain informa-
tion. Had I been tasked with a problem like this, I would have had to find a book about shell
scripting or ask a fellow student. But in a book, I would get general concepts about pro-
gramming, explanations, and example code. I would still need to apply what I’d read to the
problematic code I had to come up with a fitting solution.

3 of 7

28FreeBSD Journal • March/April 2023

Nowadays, people would google their problem and find similar questions on sites like
stackoverflow or forums dealing with coding. I could even post the code there and ask for
help if I couldn’t find the solution myself. But that requires waiting time for an answer (if
anyone actually bothers to reply) and maybe going through a couple of iterations to discuss
various approaches.

With tools like ChatGPT, it’s like having a personal coding assistant available to discuss
your code without a long wait for an answer. Just like Chief Engineer LaForge had “cozy lit-
tle chats” with the Enterprise’s computer, a second pair of eyes can give new ideas and in-
sights that a single person would not have thought of. I could even re-generate the answer
that ChatGPT was giving me or ask for more details. Since the AI seems to understand the
problem domain (better than a book might), it can make specific recommendations when
it is given enough information. Since my colleagues are not available to me 24/7 to discuss a
piece of code, I can see that an AI is useful in situations when I need a good answer quickly.

Encouraged, I continued giving the AI a bigger example:
BCR: How would you unify this piece of code into one generic function for both?

for HD in $HDD; do
 gpart add -t freebsd-swap -l swap${COUNTER} -s ${SWAP} -a 4k “${HD}”
 echo “Setting ${SWAP} of swap space on disk ${HD}.”
 SERIAL=$(camcontrol inquiry “${HD}” -S|sed -e s/^[[:space:]]*//)

 if [$((COUNTER%2)) -eq 0]; then
 SERIALS=”${SERIALS} mirror”
 fi
 SERIALS=”$SERIALS /dev/gpt/${SERIAL}”

 gpart add -t freebsd-zfs -l “${SERIAL}” -a 4k “${HD}”

 COUNTER=$((COUNTER+1))
done

COUNTER=0
we boot from one of the SSDs
for S in $SSD; do
 gpart add -t freebsd-swap -l swap${COUNTER} -s ${SWAP} -a 4k “${S}”
 echo “Setting ${SWAP} of swap space on disk ${S}.”
 SERIAL=$(camcontrol identify “${S}”|awk /serial number/ { print $3 })
 gpart add -t freebsd-zfs -l “${SERIAL}” -a 4k “${S}”

 if [$((COUNTER%2)) -eq 0]; then
 SERIALS=”${SERIALS} mirror”
 fi
 SERIALS=”$SERIALS /dev/gpt/${SERIAL}”
 COUNTER=$((COUNTER+1))
 NUM_SSDS=${COUNTER}
done

ChatGPT: To unify the two pieces of code into one generic function, you can create a
function that takes three arguments: an array of disks, the desired swap size, and a flag indi-
cating whether the disks are HDDs or SSDs. Here’s an example function:

4 of 7

29FreeBSD Journal • March/April 2023

setup_partitions() {
 local disks=(“$@”)
 local swap_size=$2
 local is_hdd=$3
 local counter=1
 local serials=””

 for disk in “${disks[@]}”; do
 # Create swap partition
 gpart add -t freebsd-swap -l swap$counter -s $swap_size -a 4k “$disk”
 echo “Setting $swap_size of swap space on disk ${disk}.”

 # Determine disk serial number
 if [[$is_hdd == “true”]]; then
 serial=$(camcontrol inquiry “$disk” -S | sed -e s/^[[:space:]]*//)
 else
 serial=$(camcontrol identify “$disk” | awk /serial number/ { print $3 })
 fi

 # Create ZFS partition
 gpart add -t freebsd-zfs -l “$serial” -a 4k “$disk”

 # Add to serials and counter
 if [$((counter%2)) -eq 0]; then
 serials=”$serials mirror”
 fi
 serials=”$serials /dev/gpt/$serial”
 counter=$((counter+1))
 done

 NUM_DISKS=$counter
}

ChatGPT: You can call this function with an array of disks, the desired swap size, and a
flag indicating whether the disks are HDDs or SSDs. For example, to set up partitions on two
HDDs (/dev/ada0 and /dev/ada1) with 2GB of swap space and two SSDs (/dev/ada2 and /
dev/ada3) with 4GB of swap space, you can call the function like this:

DD=(“/dev/ada0” “/dev/ada1”)
SSD=(“/dev/ada2” “/dev/ada3”)
SWAP_SIZE_HDD=”2g”
SWAP_SIZE_SSD=”4g”

setup_partitions “${HDD[@]}” “$SWAP_SIZE_HDD” “true”
setup_partitions “${SSD[@]}” “$SWAP_SIZE_SSD” “false”

ChatGPT: Note that I added a flag to indicate whether the disks are HDDs or SSDs, since
the serial number retrieval method is different for each type of disk.

Another impressive response for sure. Especially the verbosity of the reply and explana-
tions beyond handing me some random code snippets. It did figure out the similarities of
both functions and could distinguish that the swap size is different for SSDs and HDDs in
my example. It was clever enough to figure out the proper disk device nodes (/dev/ada0

5 of 7

30FreeBSD Journal • March/April 2023

instead of /dev/sda). Also, some of my coding style like having uppercase variable names
were transformed to lower case. This may or may not be what you like and requires some
hand-editing afterwards. The code was still given in bash with some more language specific
parts like arrays that are not available in the Bourne shell.

But I rectified my repeated mistake with the following prompt:
BCR: Can you provide the same code in /bin/sh only (no bash)?
ChatGPT: Sure! Here’s the same code in /bin/sh syntax:

#!/bin/sh

setup_partitions() {
 disks=”$1”
 swap_size=”$2”
 is_hdd=”$3”
 counter=1
 serials=””

 for disk in $disks; do
 # Create swap partition
 gpart add -t freebsd-swap -l swap$counter -s $swap_size -a 4k “$disk”
 echo “Setting $swap_size of swap space on disk ${disk}.”

 # Determine disk serial number
 if [“$is_hdd” = “true”]; then
 serial=$(camcontrol inquiry “$disk” -S | sed -e s/^[[:space:]]*//)
 else
 serial=$(camcontrol identify “$disk” | awk /serial number/ { print $3 })
 fi

 # Create ZFS partition
 gpart add -t freebsd-zfs -l “$serial” -a 4k “$disk”

 # Add to serials and counter
 if [$((counter%2)) -eq 0]; then
 serials=”$serials mirror”
 fi
 serials=”$serials /dev/gpt/$serial”
 counter=$((counter+1))
 done

 NUM_DISKS=$counter
}

HDD=”/dev/ada0 /dev/ada1”
SSD=”/dev/ada2 /dev/ada3”
SWAP_SIZE_HDD=”2g”
SWAP_SIZE_SSD=”4g”

setup_partitions “$HDD” “$SWAP_SIZE_HDD” “true”
setup_partitions “$SSD” “$SWAP_SIZE_SSD” “false”

6 of 7

31FreeBSD Journal • March/April 2023

ChatGPT: Note that there are a few syntax differences between /bin/sh and /bin/
bash, such as the use of = instead of == for string comparison, and the lack of array vari-
ables. To work around these differences, I passed the disk lists as space-separated strings,
and used $1, $2, and $3 to access the function arguments.

So, it was able to transform the code into a working Bourne shell syntax (I tested the re-
sults each time).

Now that I had a look at the unified function, I had another idea (which again, could have
come from discussing this with a colleague looking over the code):

BCR: What would the code look like when we use the same 4g as the swap size for both
HDD and SSD?

ChatGPT: If we want to use the same swap size of 4g for both HDD and SSD, we can
modify the setup_partitions function to take a single disk argument and remove the
is_hdd argument and the conditional logic for determining the disk serial number. Here’s
what the updated code would look like in /bin/sh syntax:

#!/bin/sh

setup_partitions() {
 disks=”$1”
 swap_size=”$2”
 counter=1
 serials=””

 for disk in $disks; do
 # Create swap partition
 gpart add -t freebsd-swap -l swap$counter -s $swap_size -a 4k “$disk”
 echo “Setting $swap_size of swap space on disk ${disk}.”

 # Determine disk serial number
 serial=$(camcontrol identify “$disk” | awk /serial number/ { print $3 })

 # Create ZFS partition
 gpart add -t freebsd-zfs -l “$serial” -a 4k “$disk”

 # Add to serials and counter
 if [$((counter%2)) -eq 0]; then
 serials=”$serials mirror”
 fi
 serials=”$serials /dev/gpt/$serial”
 counter=$((counter+1))
 done

 NUM_DISKS=$counter
}

HDD=”/dev/ada0 /dev/ada1”
SSD=”/dev/ada2 /dev/ada3”
SWAP_SIZE=”4g”

setup_partitions “$HDD $SSD” “$SWAP_SIZE”

7 of 7

32FreeBSD Journal • March/April 2023

ChatGPT: Here, we pass both the HDD and SSD disk lists as a single space-separated
string to the setup_partitions function and use the same swap size of 4g for both types
of disks.

Alright, this is certainly nice as a refactoring step. This time, it did learn that I wanted
/bin/sh code from my earlier inputs, so it defaulted to it in this next reply.

Bear in mind that results may vary and may or may not work as well as shown here. The
AI is constantly evolving, and I surely trained it with my prompts a tiny bit to get better. Each
reply had the option to be rated with the familiar thumb-down-or-up buttons.

Next up, I wanted to see what the AI thought about any potential for optimizations:
BCR: Can you recommend other optimizations to the code?
ChatGPT: Sure, here are a few potential optimizations:
1. Use a more efficient way to increment the counter variable: Instead of us-

ing counter=$((counter+1)) inside the loop, you can use the shorthand
counter=$((counter++)) or even just ((counter++)). This avoids creating a subshell
to perform the arithmetic operation, which can be slower.

2. Use the -n option for echo to avoid printing a newline character: When printing the
message about setting swap space, you can use the -n option for echo to avoid printing
a newline character, since you’re immediately following it with another message. This
will make the output look cleaner.

3. Use parameter expansion to remove whitespace: Instead of using tr -d [:space:]
to remove whitespace from the serial number, you can use parameter expansion to
achieve the same result: ${variable##*[[:space:]]}. This avoids the need to spawn
an additional process and may be faster.

Here’s the code with these optimizations applied:

#!/bin/sh

setup_partitions() {
 disks=”$1”
 swap_size=”$2”
 counter=1
 serials=””

 for disk in $disks; do
 # Create swap partition
 gpart add -t freebsd-swap -l swap$counter -s $swap_size -a 4k “$disk”
 echo -n “Setting $swap_size of swap space on disk ${disk}. “

 # Determine disk serial number
 serial=$(camcontrol identify “$disk” | grep “serial number” | cut -d: -f2 |
${SED-sed} s/^[[:space:]]*//)

 # Create ZFS partition
 gpart add -t freebsd-zfs -l “$serial” -a 4k “$disk”

 # Add to serials and counter
 if [$((counter%2)) -eq 0]; then
 serials=”$serials mirror”
 fi
 serials=”$serials /dev/gpt/$serial”

33FreeBSD Journal • March/April 2023

 ((counter++))
 done

 NUM_DISKS=$counter
}

HDD=”/dev/ada0 /dev/ada1”
SSD=”/dev/ada2 /dev/ada3”
SWAP_SIZE=”4g”

setup_partitions “$HDD $SSD” “$SWAP_SIZE”

ChatGPT: These optimizations should make the code slightly more efficient, but keep in
mind that the impact on performance may be negligible depending on the size of the disks
and the number of partitions being created.

These are certainly some optimizations I had not considered. When running your code
through an AI like this, I suggest you approach it with an open mind and leave your pro-
grammer ego at the login prompt. Nobody’s perfect and the AI may suggest stuff that is ei-
ther theoretically incorrect or making you fear losing your job because word of the horrible
code you’ve written thus far may reach your boss’s ear. But, since this is just between you
and the AI, what is stopping you from implementing some of the suggestions to see if they
actually improve things?

This is where I find these tools to be a double-edged, blunt sword: if students use it
to generate solutions to tasks given to them, no one is stopping them. It’s a tool like any
other, be it your shell, your compiler, or a handy keyboard shortcut. But, if they can’t ex-
plain it or just take the code without reflecting
on what it does, it becomes dangerous. Cheats
don’t prosper, especially when they must one
day present a solution without any helpers on a
whiteboard in front of an examining committee.
Understanding is required as well as critical re-
flection on the solution that is presented. It may
have flaws, be inefficient or outright stolen from
someone else who provided this exact solution
to a forum or stackoverflow and it got fed to the
AI’s training data. That is a controversy the ex-
perts are still discussing.

Try seeing it as a helper tool—a second pair of
artificial eyes looking over your code providing valuable insights. Also, be aware that exam-
iners know about this and may use these tools themselves—either to create assignments or
exams that are uniquely tailored to each student.

My own discussion with the AI continued a bit more about parts of this code. I also had
it give me suggestions in a separate chat about standing desks of certain dimensions (my
workspace is a bit limited) and what optimizations I could put into hadoop configuration
files to speed up writes to HDFS.

My suggestion is for people to try it out, take the output with a grain of salt, and use it
when it makes sense. I think these tools can improve certain areas like making code more
robust or sparking new ideas which then must be implemented by you. I don’t anticipate

It’s a tool like any other,
be it your shell, your
compiler, or a handy
keyboard shortcut

34FreeBSD Journal • March/April 2023

losing my own job because of the existence of these tools any time soon, as there are cer-
tain skills that we humans have that are not yet available in ChatGPT and friends.

BENEDICT REUSCHLING is a documentation committer in the FreeBSD project
and member of the documentation engineering team. In the past, he served on the
FreeBSD core team for two terms. He administers a big data cluster at the University of
Applied Sciences, Darmstadt, Germany. He’s also teaching a course “Unix for Develop-
ers” for undergraduates. Benedict is one of the hosts of the weekly bsdnow.tv podcast.

all the storage; we use ZFS to replicate the data between cluster nodes; we use
compression and snapshots. And we heavily use Capsicum to make it all secure.

We want to be sure that even if someone breaks into a single session, he can-
not access other sessions. He cannot actually access anything, because if he
breaks in before authentication, he won't be granted access to connect to the
server. Only after successful authentication will we provide a connection to the
destination server.

And Capsicum makes it really clean and very efficient actually.
Al lan: You don't have to enumerate all the things you can't do. You're saying
you're only allowed to do these things?

• Pawel: Yes. This is capability ideology. You only grant the exact rights or access
to resources that the process requires. Which is not UNIX ideology because, of
course, if you are running a UNIX program, it has access to everything.
Al lan: Was there anything else you wanted to talk about?

• Pawel: Not really. •

Sept/Oct 2019 23

FreeBSD is internationally recognized as an innovative
leader in providing a high-performance, secure, and stable
operating system.
Not only is FreeBSD easy to install, but it runs a huge number

full source code.

The FreeBSD Community is proudly supported by

T

Help Create the Future.
Join the FreeBSD Project!

The FreeBSD Project is looking for

Find out more by

Checking out our website

Downloading the Software

for people like you to help continue
developing this robust operating system.
Join us!

Already involved?

Don�t forget to check out the latest
grant opportunities at
freebsdfoundation.org

https://www.bsdnow.tv/

Dear We Get Letters,

Why do all these open-source projects have
foundations anyway? Aren’t we just contributing
code to the world? Why bother with these silly
legalities?

 —Just Hack The Code

JHTC,
The simplest way to understand open-source foundations is to start a really tiny open-

source project, preferably as a hobby. Nurture that project until it becomes key infrastruc-
ture for a considerable portion of the world’s technology stack. You will discover that all your
time, energy, health, relationships, and hope have been exchanged for technological success
and an impressive colony of keratinophilic onychomycosis. Going barefoot in the sunlight
would help the latter, if your homeland experiences occasionally thaws, which mine does
not. You can exchange technological success for precious Social Media Clout, a virtual cur-
rency accepted precisely nowhere. Still, my efforts to breed new varieties of Trichophyton
rubrum proceed nicely.

As usual, the problem is people.
You write a bit of code to solve a problem. That’s fine. That’s what people in our busi-

ness do. The problem starts when you invitingly share that code. Yes, I occasionally include
my code in books, but only in the most hostile manner possible. You won’t find my code on
GitHedge or ForgedSource or any of those dubious repositories of unhealthy knowledge.
If you want my code, you must retype it from the print book. The act of passing it through
your eyes into your brain and down into your fingertips gives your nervous system ample
opportunity to recoil in revulsion and fling the tome into the nearest incinerator. If you snag
my code from an ebook, you’ll discover that an electronic document can contain charac-
ters that are invisible in place, but when copied and pasted become obvious. Code in my eb-
ooks all include the black sigil Odegra, which translates to “Hail the Great Beast, Devourer of
Worlds,” so copying is self-correcting or at least self-immolating. Being the world’s foremost
proponent of fault-oblivious computing imposes heavy responsibilities, but I fulfill them as
completely as my microplastics-infested meatsuit permits.

But you? You share your code and invite others to use it. To evaluate it. To send bug re-
ports. To deploy it in production. Some other person finds your code and it doesn’t quite
meet her needs, so she sends a patch to add a feature, which makes the code more inviting
so other people adopt it, and pretty soon you have dozens of users. Hundreds. Thousands.
Perhaps hundreds of millions, and you’re hunched over a keyboard evaluating patches and
settling disagreements 25 by 8 by 366, living your worst life and wishing you had time to
scratch your feet.

1 of 3

35FreeBSD Journal •March/April 2023

by Michael W Lucas

Every one of those users and contributors has a different idea of what your software
should be. You’ve foolishly retained a sense of community so you feel obliged to tell them
all the exact nature of their errors, but writing lengthy emails would crank your days up to
thirty hours and at this point you’re incapable of recording coherent videos. It would be so
much easier if you could berate them into submission face-to-face.

Again, the problem is people.
You can’t stick a meatsuit in a cardboard box and ship it by sea mail. They are heavy and

need air and feeding and watering and the occasional bout of vice. They need tickets for
trains or planes or dolphins or however they get from their current spot to the meeting. And
you need a spot for a meeting. You could invite everyone to your hovel, but you’re better off
remaining ignorant of exactly which of your contributors are indifferent or full-on hostile to
personal hygiene. This means purchasing, conquering, or renting a meeting space.

If your software is widely used and you have collected enough Social Media Clout, you
can probably interest big companies in giving your project money. Monopolists believe that
donations to the little folk absolve them of guilt. Your problem is, they don’t want to give
you the money. They want to give your proj-
ect the money. Does your project have a
bank account? No, because you need identi-
fication to get a bank account and you didn’t
even think to get it a legal birth certificate
before your first public posting, you selfish
short-sighted doofus. Let alone a motor ve-
hicle operator’s license. If you want outsiders
to give you—uh, your project, your project—
money, it needs a legal entity.

You could start a company, but then out-
siders would expect you to provide a service
or product in exchange for their cash. Not only is that work you don’t have time for, the
aforementioned outsiders would care what that service or product is and how reasonable
the price looks. But a foundation? A foundation is charity. People give money to charities to
do their charity thing and don’t care if it’s reasonable or not. If the Internet depends on your
software, that’s a legit charity. Plus, charities can employ people. You could collect dona-
tions, pay yourself a salary, ditch the day job, and fall back to working on your project a paltry
twelve hours a day!

It’s not that easy, because—again—people. Every country has voluminous rules on who
can form foundations and how they must be licensed and which reports must be filed with
which agencies. If your foundation collects enough funds, it will need to hire a person who
knows what they’re doing, creating another set of headaches, except you’re outsourcing
them to the person you hire so that’s okay.

A well-run foundation supports its project. By “support,” I mean it can buy tickets and
meals and meeting spaces and even pay people to write particularly vexing code or to so-
jurn to distant lands and slap particularly obnoxious would-be contributors with a white
glove and challenge them to pistols at dawn. A particularly intransigent foundation can even
hire lawyers, or at least keep them on retainer. Most of the funding comes from big compa-
nies who know perfectly well how you’re spending the money but get tax benefits so they
don’t care. Foundations also need a large number of small contributors, to show the tax

2 of 3

You write a bit of code to solve

a problem. That’s fine. That’s

what people in our business do.

The problem starts when you

invitingly share that code.

36FreeBSD Journal •March/April 2023

authorities that individuals care about the charity and that the foundation is not about tax
evasion, or at least not only. Your five dollars is not about the five dollars: it’s about adding a
name to the list of people who care.

So, if a foundation does all this, why don’t more projects have one?
The exact same problem: people.
The FreeBSD Foundation that suckered me into answering your insipid^Wirritat-

ing^Winevitable letters (while still not delivering on the gelato I was promised thirty columns
ago) relies on community to do the work. Someone has to figure out what meetings need
to happen and which tickets need purchasing and who merits administration of a white
glove across the cheekbone at high velocity. So long as the foundation remains involved
in the community, and the community with the foundation, all is well. The people are the
foundation.

And by “people,” by the way, I mean you. The person reading this column.
So, there you have it. A foundation is a method of converting big company money into

junkets, meals, and gelato. Except there’s no gelato.
Now pardon me while I do something about my feet and contemplate solving once and

for all the actual root cause of everything.

Have a question for Michael?
Send it to letters@freebsdjournal.org

MICHAEL W LUCAS has written more than fifty books, including Absolute FreeBSD, $ git
commit murder, and Networking for System Administrators. He seriously expected this Jour-
nal to give him the boot years ago and intends to incrementally increase the vitriol of his col-
umn until they do so. Learn more at https://mwl.io.

3 of 3

Books that will
 help you.

While we appreciate Mr Lucas’ unique
contributions to the Journal, we do feel his
specific talents are not being fully utilized. Please
buy his books, his hours, autographed photos,
whatever, so that he is otherwise engaged.

— John Baldwin
FreeBSD Journal Editorial Board Chair

“
”

Or not.

https://mwl.io

37FreeBSD Journal •March/April 2023

freebsdjournal.org

https://mwl.io

BSD Events taking place through July 2023
BY ANNE DICKISON
Please send details of any FreeBSD related events or events
that are of interest for FreeBSD users which are not listed here
to freebsd-doc@FreeBSD.org.

38FreeBSD Journal • March/April 2023

May 2023 FreeBSD Developer Summit
May 17-18, 2023
Ottawa, Canada
https://wiki.freebsd.org/DevSummit/202305

Join us for the May 2023 FreeBSD Developer Summit, co-located with BSDCan 2023, which
will take place in Ottawa, Canada. The two-day event takes place May 17-18, 2023 and will con-
sist of developer discussion sessions, vendor talks and working groups. The fee to attend is $75
and you must register through the BSDCan 2023 Registration System.

BSDCan 2023
May 17-20, 2023
Ottawa, Canada
https://www.bsdcan.org/2023/

BSDCan is a technical conference for people working on and with BSD operating systems
and related projects. It is a developers conference with a strong focus on emerging technol-
ogies, research projects, and works in progress. It also features Userland infrastructure proj-
ects and invites contributions from both free software developers and those from commer-
cial vendors.

FOSSY 2023
July 13-16, 2023
Portland, OR
https://2023.fossy.us/

A new event, the hope is that FOSSY will become a community focused conference that
brings together the local open source community as well as the wider global community fo-
cused on Free and Open Software. The FreeBSD Foundation is pleased to be holding an In-
troduction to FreeBSD workshop.

mailto:freebsd-doc@FreeBSD.org

