
25FreeBSD Journal • March/April 2023

You’ve probably heard about it by now: there is a new, controversial star in the field
of artificial intelligence (AI) called ChatGPT. A lot of things have been written about
it, both how it will improve people’s lives by doing certain tasks that are considered

chores or how it will doom us all by letting the robots win. The spectrum is wide, and the
jury is still out on whether we should regulate AI or not. Since this is practical ports, I’m go-
ing to take a practical look at what the chatlike tool can do.

I remember my own university classes about artificial intelligence and natural language
processing. The former was an unexciting lecture with little value, since, at the time, there
were no big breakthroughs happening in the AI field and so the lecture mostly revolved
around past efforts in the field—it was a history lesson.

The natural language course in my masters
was more engaging. One of the tasks in the class
was to program a simple version of Eliza. Back in
the day, when the computerized therapist first
came out, it was lauded as if it would make psy-
choanalysts file for unemployment the very next
day. But looking at it now, that certainly has not
happened. Since we students had to implement
this ourselves, we got a better understanding of
what the program is actually doing. It was excit-
ing to see what it could do and with a bit of add-
ed randomness, it did not get too predictable
or boring too soon. The illusion of the almighty,
all-knowing program was certainly shattered, having had a look at the inside of Franken-
stein’s software monster.

ChatGPT is obviously more complex and had a lot more knowledge fed into it than Eliza
did. The software is impressive but should certainly be taken with a grain of salt as the fol-
lowing experiment demonstrates.

At work, I install cluster machines the old-fashioned way: Boot the FreeBSD ISO image,
drop to the shell and set up basic networking (ifconfig ixl0 up && dhclient ixl0).
Then, I use netcat to transfer a shell script to the host and run that. While there are certain-
ly better and automatic ways (e.g., PXE boot, pre-built images, etc.), this one has served me
for a while now. The script is not too complex but has gone through a number of evolutions
because of slight variations in the underlying hardware: some nodes have only HDDs, newer

BY BENEDICT REUSCHLING

1 of 7

Let’s chat, GPT
PRACTICAL

The illusion of the
almighty, all-knowing
program was certainly
shattered.

26FreeBSD Journal • March/April 2023

ones have NVMe drives, and some have a mixture of HDDs and SSDs. While the script runs
fine, I thought I’d let the AI have a look to see if it found any obvious errors or had sugges-
tions for improvements.

The disk setup for the boot, swap, and freebsd partitions for the four disks in the node in
combination with ZFS were always a bit tricky. My goal there is to create a RAID-10 zpool (2
mirrors striped together) with the disks having the disk serial numbers as identifiers like this:

pool: mypool
 state: ONLINE
config:

 NAME STATE READ WRITE CKSUM
 mypool ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 gpt/ABC543210 ONLINE 0 0 0
 gpt/DEF123450 ONLINE 0 0 0
 mirror-1 ONLINE 0 0 0
 gpt/IJK098761 ONLINE 0 0 0
 gpt/LMN678901 ONLINE 0 0 0

(See, the gpt is everywhere, but this gpt refers to the GUID partition table). Since the se-
rial numbers are different on each system, I have a little routine that figures out the serial
number of each disk and creates a pool, making sure that the mirror keyword is added to
the list of serial numbers, as ZFS requires this to create the RAID10.

When I first heard the term GPT, my initial thought was: “why would someone talk to the
GUID Partition Table?” I must have worked too much with partitions and disk setups in my day
job, so I thought, let’s give it a try. Since the GPT in ChatGPT stands for generative pre-trained
transformer, the distinction was clear. After creating an account at https://chat.openai.com/chat,
a rather unimpressive chat window was presented to me. So, I typed the following:

BCR: How would you create a function for this piece of code:

for S in $SSD; do
 gpart add -t freebsd-swap -l swap${COUNTER} -s ${SWAP} -a 4k “${S}”
 echo “Setting ${SWAP} of swap space on disk ${S}.”
 SERIAL=$(camcontrol identify “${S}”|awk /serial number/ { print $3 })
 gpart add -t freebsd-zfs -l “{$SERIAL}” -a 4k “${S}”

 if [$((COUNTER%2)) -eq 0]; then
 SERIALS=”${SERIALS} mirror”
 fi
 SERIALS=”${SERIALS} /dev/gpt/${SERIAL}”
 COUNTER=$((COUNTER+1))
 NUM_SSDS=${COUNTER}
done

Now, this is neither beautiful code nor elegant, but it works. This is what ChatGPT replied:
ChatGPT: Based on the code snippet you provided, I believe you are trying to create a

function that sets up swap and ZFS partitions on multiple disks. Here’s a sample function
that could accomplish that:

setup_partitions() {
 local SSD=$1

2 of 7

https://chat.openai.com/chat

27FreeBSD Journal • March/April 2023

 local SWAP_SIZE=$2
 local COUNTER=1
 local SERIALS=””

 for S in $SSD; do
 # Create swap partition
 gpart add -t freebsd-swap -l swap${COUNTER} -s ${SWAP_SIZE} -a 4k “${S}”
 echo “Setting ${SWAP_SIZE} of swap space on disk ${S}.”

 # Create ZFS partition
 SERIAL=$(camcontrol identify “${S}”|awk /serial number/ { print $3 })
 gpart add -t freebsd-zfs -l “${SERIAL}” -a 4k “${S}”

 # Add to serials and counter
 if [$((COUNTER%2)) -eq 0]; then
 SERIALS=”${SERIALS} mirror”
 fi
 SERIALS=”${SERIALS} /dev/gpt/${SERIAL}”
 COUNTER=$((COUNTER+1))
 done

 NUM_SSDS=${COUNTER}
}

ChatGPT: You can call this function by passing two arguments: an array of SSDs and the
desired swap size. For example, if you have two SSDs (/dev/sda and /dev/sdb) and you
want each of them to have 4GB of swap space, you can call the function like this:

SSD=(“/dev/sda” “/dev/sdb”)
SWAP_SIZE=”4g”
setup_partitions “$SSD” “$SWAP_SIZE”

OK, that’s certainly impressive for a start. It could figure out what I was trying to do
and offered a solution, along with a fitting explanation. On closer inspection, it need-
ed a couple of modifications: First, the code was written in bash (as the code snippet win-
dow was labeled). Since we’re on the installer and FreeBSD does not ship with bash by
default, bash-specific constructs would not work. Second, it assumed I was using Li-
nux as the disk device nodes indicate (/dev/sda). The rest of the code was fine though,
and it did not have to modify most of my own code, simply wrapping it into a function.

Now, my prompt (my input into the chat) was not too specific about the system I was
running this on, so the AI had to make a best guess about both the shell I was running and
the device names. I should have provided this up-front to avoid the AI going in the wrong
direction.

What impressed me was how specific the answer was. It felt like I was chatting with a col-
league and discussing this code via IRC or other ways of textual communication. This speci-
ficity is not to be underestimated. Back when I was studying (I feel old now), the internet was
just becoming mainstream, and we still had to go to the library to access certain informa-
tion. Had I been tasked with a problem like this, I would have had to find a book about shell
scripting or ask a fellow student. But in a book, I would get general concepts about pro-
gramming, explanations, and example code. I would still need to apply what I’d read to the
problematic code I had to come up with a fitting solution.

3 of 7

28FreeBSD Journal • March/April 2023

Nowadays, people would google their problem and find similar questions on sites like
stackoverflow or forums dealing with coding. I could even post the code there and ask for
help if I couldn’t find the solution myself. But that requires waiting time for an answer (if
anyone actually bothers to reply) and maybe going through a couple of iterations to discuss
various approaches.

With tools like ChatGPT, it’s like having a personal coding assistant available to discuss
your code without a long wait for an answer. Just like Chief Engineer LaForge had “cozy lit-
tle chats” with the Enterprise’s computer, a second pair of eyes can give new ideas and in-
sights that a single person would not have thought of. I could even re-generate the answer
that ChatGPT was giving me or ask for more details. Since the AI seems to understand the
problem domain (better than a book might), it can make specific recommendations when
it is given enough information. Since my colleagues are not available to me 24/7 to discuss a
piece of code, I can see that an AI is useful in situations when I need a good answer quickly.

Encouraged, I continued giving the AI a bigger example:
BCR: How would you unify this piece of code into one generic function for both?

for HD in $HDD; do
 gpart add -t freebsd-swap -l swap${COUNTER} -s ${SWAP} -a 4k “${HD}”
 echo “Setting ${SWAP} of swap space on disk ${HD}.”
 SERIAL=$(camcontrol inquiry “${HD}” -S|sed -e s/^[[:space:]]*//)

 if [$((COUNTER%2)) -eq 0]; then
 SERIALS=”${SERIALS} mirror”
 fi
 SERIALS=”$SERIALS /dev/gpt/${SERIAL}”

 gpart add -t freebsd-zfs -l “${SERIAL}” -a 4k “${HD}”

 COUNTER=$((COUNTER+1))
done

COUNTER=0
we boot from one of the SSDs
for S in $SSD; do
 gpart add -t freebsd-swap -l swap${COUNTER} -s ${SWAP} -a 4k “${S}”
 echo “Setting ${SWAP} of swap space on disk ${S}.”
 SERIAL=$(camcontrol identify “${S}”|awk /serial number/ { print $3 })
 gpart add -t freebsd-zfs -l “${SERIAL}” -a 4k “${S}”

 if [$((COUNTER%2)) -eq 0]; then
 SERIALS=”${SERIALS} mirror”
 fi
 SERIALS=”$SERIALS /dev/gpt/${SERIAL}”
 COUNTER=$((COUNTER+1))
 NUM_SSDS=${COUNTER}
done

ChatGPT: To unify the two pieces of code into one generic function, you can create a
function that takes three arguments: an array of disks, the desired swap size, and a flag indi-
cating whether the disks are HDDs or SSDs. Here’s an example function:

4 of 7

29FreeBSD Journal • March/April 2023

setup_partitions() {
 local disks=(“$@”)
 local swap_size=$2
 local is_hdd=$3
 local counter=1
 local serials=””

 for disk in “${disks[@]}”; do
 # Create swap partition
 gpart add -t freebsd-swap -l swap$counter -s $swap_size -a 4k “$disk”
 echo “Setting $swap_size of swap space on disk ${disk}.”

 # Determine disk serial number
 if [[$is_hdd == “true”]]; then
 serial=$(camcontrol inquiry “$disk” -S | sed -e s/^[[:space:]]*//)
 else
 serial=$(camcontrol identify “$disk” | awk /serial number/ { print $3 })
 fi

 # Create ZFS partition
 gpart add -t freebsd-zfs -l “$serial” -a 4k “$disk”

 # Add to serials and counter
 if [$((counter%2)) -eq 0]; then
 serials=”$serials mirror”
 fi
 serials=”$serials /dev/gpt/$serial”
 counter=$((counter+1))
 done

 NUM_DISKS=$counter
}

ChatGPT: You can call this function with an array of disks, the desired swap size, and a
flag indicating whether the disks are HDDs or SSDs. For example, to set up partitions on two
HDDs (/dev/ada0 and /dev/ada1) with 2GB of swap space and two SSDs (/dev/ada2 and /
dev/ada3) with 4GB of swap space, you can call the function like this:

DD=(“/dev/ada0” “/dev/ada1”)
SSD=(“/dev/ada2” “/dev/ada3”)
SWAP_SIZE_HDD=”2g”
SWAP_SIZE_SSD=”4g”

setup_partitions “${HDD[@]}” “$SWAP_SIZE_HDD” “true”
setup_partitions “${SSD[@]}” “$SWAP_SIZE_SSD” “false”

ChatGPT: Note that I added a flag to indicate whether the disks are HDDs or SSDs, since
the serial number retrieval method is different for each type of disk.

Another impressive response for sure. Especially the verbosity of the reply and explana-
tions beyond handing me some random code snippets. It did figure out the similarities of
both functions and could distinguish that the swap size is different for SSDs and HDDs in
my example. It was clever enough to figure out the proper disk device nodes (/dev/ada0

5 of 7

30FreeBSD Journal • March/April 2023

instead of /dev/sda). Also, some of my coding style like having uppercase variable names
were transformed to lower case. This may or may not be what you like and requires some
hand-editing afterwards. The code was still given in bash with some more language specific
parts like arrays that are not available in the Bourne shell.

But I rectified my repeated mistake with the following prompt:
BCR: Can you provide the same code in /bin/sh only (no bash)?
ChatGPT: Sure! Here’s the same code in /bin/sh syntax:

#!/bin/sh

setup_partitions() {
 disks=”$1”
 swap_size=”$2”
 is_hdd=”$3”
 counter=1
 serials=””

 for disk in $disks; do
 # Create swap partition
 gpart add -t freebsd-swap -l swap$counter -s $swap_size -a 4k “$disk”
 echo “Setting $swap_size of swap space on disk ${disk}.”

 # Determine disk serial number
 if [“$is_hdd” = “true”]; then
 serial=$(camcontrol inquiry “$disk” -S | sed -e s/^[[:space:]]*//)
 else
 serial=$(camcontrol identify “$disk” | awk /serial number/ { print $3 })
 fi

 # Create ZFS partition
 gpart add -t freebsd-zfs -l “$serial” -a 4k “$disk”

 # Add to serials and counter
 if [$((counter%2)) -eq 0]; then
 serials=”$serials mirror”
 fi
 serials=”$serials /dev/gpt/$serial”
 counter=$((counter+1))
 done

 NUM_DISKS=$counter
}

HDD=”/dev/ada0 /dev/ada1”
SSD=”/dev/ada2 /dev/ada3”
SWAP_SIZE_HDD=”2g”
SWAP_SIZE_SSD=”4g”

setup_partitions “$HDD” “$SWAP_SIZE_HDD” “true”
setup_partitions “$SSD” “$SWAP_SIZE_SSD” “false”

6 of 7

31FreeBSD Journal • March/April 2023

ChatGPT: Note that there are a few syntax differences between /bin/sh and /bin/
bash, such as the use of = instead of == for string comparison, and the lack of array vari-
ables. To work around these differences, I passed the disk lists as space-separated strings,
and used $1, $2, and $3 to access the function arguments.

So, it was able to transform the code into a working Bourne shell syntax (I tested the re-
sults each time).

Now that I had a look at the unified function, I had another idea (which again, could have
come from discussing this with a colleague looking over the code):

BCR: What would the code look like when we use the same 4g as the swap size for both
HDD and SSD?

ChatGPT: If we want to use the same swap size of 4g for both HDD and SSD, we can
modify the setup_partitions function to take a single disk argument and remove the
is_hdd argument and the conditional logic for determining the disk serial number. Here’s
what the updated code would look like in /bin/sh syntax:

#!/bin/sh

setup_partitions() {
 disks=”$1”
 swap_size=”$2”
 counter=1
 serials=””

 for disk in $disks; do
 # Create swap partition
 gpart add -t freebsd-swap -l swap$counter -s $swap_size -a 4k “$disk”
 echo “Setting $swap_size of swap space on disk ${disk}.”

 # Determine disk serial number
 serial=$(camcontrol identify “$disk” | awk /serial number/ { print $3 })

 # Create ZFS partition
 gpart add -t freebsd-zfs -l “$serial” -a 4k “$disk”

 # Add to serials and counter
 if [$((counter%2)) -eq 0]; then
 serials=”$serials mirror”
 fi
 serials=”$serials /dev/gpt/$serial”
 counter=$((counter+1))
 done

 NUM_DISKS=$counter
}

HDD=”/dev/ada0 /dev/ada1”
SSD=”/dev/ada2 /dev/ada3”
SWAP_SIZE=”4g”

setup_partitions “$HDD $SSD” “$SWAP_SIZE”

7 of 7

32FreeBSD Journal • March/April 2023

ChatGPT: Here, we pass both the HDD and SSD disk lists as a single space-separated
string to the setup_partitions function and use the same swap size of 4g for both types
of disks.

Alright, this is certainly nice as a refactoring step. This time, it did learn that I wanted
/bin/sh code from my earlier inputs, so it defaulted to it in this next reply.

Bear in mind that results may vary and may or may not work as well as shown here. The
AI is constantly evolving, and I surely trained it with my prompts a tiny bit to get better. Each
reply had the option to be rated with the familiar thumb-down-or-up buttons.

Next up, I wanted to see what the AI thought about any potential for optimizations:
BCR: Can you recommend other optimizations to the code?
ChatGPT: Sure, here are a few potential optimizations:
1. Use a more efficient way to increment the counter variable: Instead of us-

ing counter=$((counter+1)) inside the loop, you can use the shorthand
counter=$((counter++)) or even just ((counter++)). This avoids creating a subshell
to perform the arithmetic operation, which can be slower.

2. Use the -n option for echo to avoid printing a newline character: When printing the
message about setting swap space, you can use the -n option for echo to avoid printing
a newline character, since you’re immediately following it with another message. This
will make the output look cleaner.

3. Use parameter expansion to remove whitespace: Instead of using tr -d [:space:]
to remove whitespace from the serial number, you can use parameter expansion to
achieve the same result: ${variable##*[[:space:]]}. This avoids the need to spawn
an additional process and may be faster.

Here’s the code with these optimizations applied:

#!/bin/sh

setup_partitions() {
 disks=”$1”
 swap_size=”$2”
 counter=1
 serials=””

 for disk in $disks; do
 # Create swap partition
 gpart add -t freebsd-swap -l swap$counter -s $swap_size -a 4k “$disk”
 echo -n “Setting $swap_size of swap space on disk ${disk}. “

 # Determine disk serial number
 serial=$(camcontrol identify “$disk” | grep “serial number” | cut -d: -f2 |
${SED-sed} s/^[[:space:]]*//)

 # Create ZFS partition
 gpart add -t freebsd-zfs -l “$serial” -a 4k “$disk”

 # Add to serials and counter
 if [$((counter%2)) -eq 0]; then
 serials=”$serials mirror”
 fi
 serials=”$serials /dev/gpt/$serial”

33FreeBSD Journal • March/April 2023

 ((counter++))
 done

 NUM_DISKS=$counter
}

HDD=”/dev/ada0 /dev/ada1”
SSD=”/dev/ada2 /dev/ada3”
SWAP_SIZE=”4g”

setup_partitions “$HDD $SSD” “$SWAP_SIZE”

ChatGPT: These optimizations should make the code slightly more efficient, but keep in
mind that the impact on performance may be negligible depending on the size of the disks
and the number of partitions being created.

These are certainly some optimizations I had not considered. When running your code
through an AI like this, I suggest you approach it with an open mind and leave your pro-
grammer ego at the login prompt. Nobody’s perfect and the AI may suggest stuff that is ei-
ther theoretically incorrect or making you fear losing your job because word of the horrible
code you’ve written thus far may reach your boss’s ear. But, since this is just between you
and the AI, what is stopping you from implementing some of the suggestions to see if they
actually improve things?

This is where I find these tools to be a double-edged, blunt sword: if students use it
to generate solutions to tasks given to them, no one is stopping them. It’s a tool like any
other, be it your shell, your compiler, or a handy keyboard shortcut. But, if they can’t ex-
plain it or just take the code without reflecting
on what it does, it becomes dangerous. Cheats
don’t prosper, especially when they must one
day present a solution without any helpers on a
whiteboard in front of an examining committee.
Understanding is required as well as critical re-
flection on the solution that is presented. It may
have flaws, be inefficient or outright stolen from
someone else who provided this exact solution
to a forum or stackoverflow and it got fed to the
AI’s training data. That is a controversy the ex-
perts are still discussing.

Try seeing it as a helper tool—a second pair of
artificial eyes looking over your code providing valuable insights. Also, be aware that exam-
iners know about this and may use these tools themselves—either to create assignments or
exams that are uniquely tailored to each student.

My own discussion with the AI continued a bit more about parts of this code. I also had
it give me suggestions in a separate chat about standing desks of certain dimensions (my
workspace is a bit limited) and what optimizations I could put into hadoop configuration
files to speed up writes to HDFS.

My suggestion is for people to try it out, take the output with a grain of salt, and use it
when it makes sense. I think these tools can improve certain areas like making code more
robust or sparking new ideas which then must be implemented by you. I don’t anticipate

It’s a tool like any other,
be it your shell, your
compiler, or a handy
keyboard shortcut

34FreeBSD Journal • March/April 2023

losing my own job because of the existence of these tools any time soon, as there are cer-
tain skills that we humans have that are not yet available in ChatGPT and friends.

BENEDICT REUSCHLING is a documentation committer in the FreeBSD project
and member of the documentation engineering team. In the past, he served on the
FreeBSD core team for two terms. He administers a big data cluster at the University of
Applied Sciences, Darmstadt, Germany. He’s also teaching a course “Unix for Develop-
ers” for undergraduates. Benedict is one of the hosts of the weekly bsdnow.tv podcast.

all the storage; we use ZFS to replicate the data between cluster nodes; we use
compression and snapshots. And we heavily use Capsicum to make it all secure.

We want to be sure that even if someone breaks into a single session, he can-
not access other sessions. He cannot actually access anything, because if he
breaks in before authentication, he won't be granted access to connect to the
server. Only after successful authentication will we provide a connection to the
destination server.

And Capsicum makes it really clean and very efficient actually.
Al lan: You don't have to enumerate all the things you can't do. You're saying
you're only allowed to do these things?

• Pawel: Yes. This is capability ideology. You only grant the exact rights or access
to resources that the process requires. Which is not UNIX ideology because, of
course, if you are running a UNIX program, it has access to everything.
Al lan: Was there anything else you wanted to talk about?

• Pawel: Not really. •

Sept/Oct 2019 23

FreeBSD is internationally recognized as an innovative
leader in providing a high-performance, secure, and stable
operating system.
Not only is FreeBSD easy to install, but it runs a huge number

full source code.

The FreeBSD Community is proudly supported by

T

Help Create the Future.
Join the FreeBSD Project!

The FreeBSD Project is looking for

Find out more by

Checking out our website

Downloading the Software

for people like you to help continue
developing this robust operating system.
Join us!

Already involved?

Don�t forget to check out the latest
grant opportunities at
freebsdfoundation.org

https://www.bsdnow.tv/

