
12FreeBSD Journal • March/April 2023

CHERI is a hardware/software/semantics co-design project that aims to improve the
security of existing and future hardware-software stack implementations. Recent
studies from Google and Microsoft show that around 70% of vulnerabilities in their

products relate to memory-safety issues. CHERI not only allows us to prevent most such
vulnerabilities from being exploited but also to compartmentalise software and thus limit
the impact of successfully exploited vulnerabilities currently unknown to software maintain-
ers (e.g., backdoors in third-party software dependencies).

Until 2022, the CHERI project was mostly developed by the University of Cambridge,
SRI International, and their partners, including Mic-
rosoft, Google, and Arm. The CHERI ecosystem rap-
idly expanded with the release of the Arm Morello
platform, the first public hardware implementation
of CHERI. In January 2022, Arm started shipping the
first (out of roughly a thousand) Morello boards to
companies, academic and government institutions.
To provide a user-friendly work environment for Mo-
rello users, CheriBSD — a FreeBSD-based operat-
ing system adapted for Arm Morello and CHERI-
RISC-V — needed an infrastructure to build and ship
CHERI-adapted third-party software before Morel-
lo was released. Today, dozens of universities, gov-
ernment research labs, and companies are using
CheriBSD in their work on Morello, and rely on this in-
frastructure daily.

This article describes our journey of building third-party software packages for CheriBSD
without CHERI-enabled hardware, using QEMU user mode, FreeBSD ports, and Poudriere.
While discussing implementation details of the package building infrastructure, the arti-
cle summarises what decisions and changes we needed to make to finally achieve ~24,000
AArch64 packages and ~9,000 CHERI-enabled packages.

BY KONRAD WITASZCZYK

1 of 11

CheriBSD Ports
 and Packages

Pure-capability third-party software for Arm Morello
and CHERI-RISC-V CheriBSD

The CHERI ecosystem

rapidly expanded with

the release of the Arm

Morello platform.

13FreeBSD Journal • March/April 2023

CHERI Hardware-software Stack
In order to fully understand the infrastructure for CheriBSD package building, we should

first describe the SDK that a developer can use to build software for CHERI. The CHERI
hardware-software stack (see Table 1) consists of hardware, emulators, compilers, debug-
gers, operating systems and applications for CHERI-enabled operating systems. Each com-
ponent of this stack needed to be adapted for CHERI and must implement support for
CHERI capabilities22.

Third-party software ~9,000 CHERI packages (Morello)
~24,000 non-CHERI packages (Morello)

Operating systems CheriBSD (Morello, CHERI-RISC-V)
FreeRTOS (CHERI-RISC-V)
CHERIoT RTOS (CHERI-RISC-V)
Linux (Morello)
Android (Morello)

Toolchains CHERI LLVM for CHERI C/C++ (Morello, CHERI-RISC-V)
Morello GCC for CHERI C/C++ (Morello)
GDB-CHERI (Morello, CHERI-RISC-V)

CPUs Arm Morello SoC
CHERI-RISC-V on FPGA
QEMU-CHERI (Morello, CHERI-RISC-V)
Microsoft CHERIoT (CHERI-RISC-V)

Table 1: Current CHERI hardware-software stack

Before the Arm Morello platform20 was released, CheriBSD and third-party software had
been developed and ported using QEMU emulators for Morello and CHERI-RISC-V9. This
environment is still useful today to work on multiple CheriBSD branches or to attach the
GDB debugger to QEMU and step through the CheriBSD kernel. Anyone interested in our
research can try the CHERI exercises25 to explore under QEMU how CHERI prevents mem-
ory-safety issues. A Morello QEMU-based VM can be created on FreeBSD, Linux and ma-
cOS with the cheribuild utility1 using one simple command that fetches and compiles re-
quired software, and runs the VM:

$./cheribuild.py --include-dependencies run-morello-purecap

Available toolchains include LLVM compilers14, 17 and GDB debuggers15. LLVM can cross-com-
pile code or compile it natively on hardware or under QEMU. GDB-CHERI, currently based on
GDB 12, can disassemble capability-aware instructions and print information on register and
in-memory capabilities. While this article focuses on CheriBSD3, Arm also develops Linux and
Android operating systems18 with CHERI LLVM and GCC compilers for Morello19. In February
2023, Microsoft also published the CHERIoT project16 that implements a full hardware-soft-
ware stack with the CHERIoT RTOS for embedded RISC-V devices.

Having the above SDK, we decided to fork FreeBSD ports and extend them with
bug fixes and changes necessary for CHERI and CheriBSD. We call this ports collection
CheriBSD ports.

The process of porting software to CHERI is similar to porting code developed for 32-bit
architectures to 64-bit architectures. A pure-capability program can only use CHERI capa-
bilities and CHERI-aware CPU instructions to access memory. A pointer in such a program

2 of 11

14FreeBSD Journal • March/April 2023

has its size increased to 128 bits to hold a CHERI capability. In order to compile a C/C++
program, the code must be adapted to the CHERI C/C++ semantics24 that require the use
of appropriate data types to store pointers (e.g., uintptr_t instead of long), and increase the
alignment of pointers to 16 bytes. CHERI LLVM can identify many incompatibilities between
C/C++ and CHERI/C++, and display detailed warnings suggesting what changes should be
applied in code to make it compatible with CHERI. In many cases, a developer can success-
fully compile and run their software after fixing all issues found by CHERI LLVM. However,
extensive testing is recommended to make sure that ported software does not include any
run-time bugs (e.g., misaligned allocations in a custom memory allocator).

While a lot of open-source projects have been ported to CHERI23, many crucial applica-
tions still cannot be compiled to use CHERI capabilities. For example, web browsers are ex-
tremely complicated pieces of software requiring lots of dependencies. In order to provide a
fully functional development platform, CheriBSD allows to run both CHERI-adapted applica-
tions and applications compiled for a baseline architecture of a CHERI-extended CPU (e.g.,
Armv8-A for Morello). Compatibility with existing software has been essential to the CHERI
project to allow to incrementally adapt software for CHERI rather than require to reimple-
ment an application from scratch. FreeBSD, as a baseline operating system for CheriBSD, en-

abled the implementation of run-time environments
for legacy and CHERI-aware software. However, when
it comes to providing third-party software for multiple
run-time environments, there are still some challeng-
es that CheriBSD inherited from FreeBSD.

Multi-ABI support
FreeBSD includes a feature called compatibility

layers that provides system call implementations for
programs compiled for different ABIs than the na-
tive ABI. For example, an amd64 FreeBSD kernel with
a compiled-in 32-bit compatibility layer (also known
as freebsd32) can run a program compiled for i386.
CheriBSD benefits from this feature and supports

two ABIs relevant to CHERI: CheriABI also known as the pure-capability ABI (MACHINE_ARCH
aarch64c and riscv64c) for programs that can only use CHERI capabilities to access mem-
ory, and the hybrid ABI (MACHINE_ARCH aarch64 and riscv64) for programs that can but
do not have to use CHERI capabilities. The latter ABI is implemented by the pure-capability
CheriBSD kernel with the freebsd64 compatibility layer, similar to freebsd32.
Missing cross-ABI support

While the FreeBSD and CheriBSD kernels implement support for multiple ABIs, multi-
ABI environments are not supported by FreeBSD ports and Poudriere. This is a major issue
in the context of CHERI. Many ports require dependencies that have not been adapted for
CHERI yet. For example, Meson and Ninja are commonly used build systems depending on
Python. Since we do not have CheriABI Python at the moment, we cannot build these util-
ities for CheriABI to compile other ports. If FreeBSD ports and Poudriere supported com-
pile-time cross-ABI dependencies, we could use hybrid ABI Meson and Ninja to build Che-
riABI packages that do not require them at run time. The CheriBSD ports section briefly
explains how we managed to partially resolve this issue.

3 of 11

Compatibility with

existing software has

been essential to the

CHERI project to allow

to incrementally adapt

software for CHERI.

15FreeBSD Journal • March/April 2023

Package manager(s)
The pkg(8) package manager can only manage packages built for one ABI — by default

the ABI of the base system (based on uname(1)). For example, i386 packages cannot be in-
stalled on an amd64 host alongside amd64 packages and be registered in a single package
database (pkg-register(8)). Of course, it is possible to create a package with binaries and
shared libraries compiled for i386 that is marked as created for amd64, just like FreeBSD
does for Linux packages, but that would require creating two packages for the same port
(for amd64 and i386), and does not reflect the actual ABI of packaged files at the package
manager level. There are two important issues that would have to be resolved to better sup-
port such multi-ABI environment:

1.  Two packages with the same pre-compiled port but for different ABIs must use dis-
tinct paths not to conflict with each other.
For example, Git compiled for two different ABIs with the same local base path
(e.g., /usr/local) would conflict on files installed within that path (e.g., /usr/local/
bin/git).

2. A package for one ABI should be able to depend on a package for a different ABI.
For example, Git depends on Perl because it includes multiple Perl scripts used by its
subcommands (e.g., git add -i). Instead of using an interpreter compiled for the same
ABI, it could use Perl available for another supported ABI.

As of today, we solved the first issue and decided to ignore the second one for CheriBSD.
Not to create conflicts between packages in CheriBSD, we place CheriABI and hybrid ABI

packages in two separate locations. We build CheriBSD ports for CheriABI with LOCALBASE
set to /usr/local and hybrid ABI packages with LOCALBASE set to /usr/local64. While
the FreeBSD ports build system provides the localbase feature (in Mk/Uses/localbase),
we discovered and fixed many ports that break this functionality, e.g. by hardcoding paths in
their code; or not using the localbase feature at all.

Built packages are registered in two separate package repositories that can be managed
with separate package managers: pkg64c for CheriABI packages, and pkg64 for hybrid ABI
packages. pkg64c and pkg64 are programs compiled for the same ABI as packages they
manage, they use separate package repository configuration directories, databases and
caches. In short, the package managers are completely unaware of each other.
CheriBSD ABI version

By default, the pkg(8) package manager decides which package repository to use based
on the NT_FREEBSD_ABI_TAG ELF note of uname(1). The value of that note is used to
construct a value of the ABI pkg variable that can be embedded in a package repository
URL (see pkg.conf(5) and /etc/pkg/FreeBSD.conf). For example, the URL:

pkg+http://pkg.FreeBSD.org/${ABI}/latest

is expanded to:

pkg+http://pkg.FreeBSD.org/FreeBSD:14:amd64/latest

on an amd64 host running FreeBSD 14-CURRENT.
In contrast to FreeBSD, CheriBSD does not have any assumptions regarding ABI stability

across its releases and branches. Instead, CheriBSD maintains the ABI counter __CheriBSD_
version (set to the current date as it is bumped), similar to __FreeBSD_version and also
in sys/param.h, that describes the current ABI version used by a CheriBSD branch. In re-

4 of 11

16FreeBSD Journal • March/April 2023

sult, two CheriBSD releases can use the same ABI version and two different CheriBSD
branch revisions can use two distinct ABI versions.

This approach allows us to flexibly make changes in the CheriBSD development branch
and provide package repositories to users using different revisions of this branch. As for re-
leases, we do not make any changes that would break the ABI within a single release as it
would heavily disrupt users’ work environments and require recompiling all user code.

We extended the csu code in CheriBSD to include the __CheriBSD_version counter
in the additional NT_CHERIBSD_ABI_TAG ELF note of each program compiled for a given
branch. Instead of using NT_FREEBSD_ABI_TAG, pkg64 and pkg64c use NT_CHERIBSD_
ABI_TAG when building an URL to a package repository. For example, the URL:

pkg+http://pkg.CheriBSD.org/${ABI}

is expanded by pkg64c to:

pkg+http://pkg.CheriBSD.org/CheriBSD:20220828:aarch64c

and by pkg64 to:

pkg+http://pkg.CheriBSD.org/CheriBSD:20220828:aarch64

on a Morello host running CheriBSD 22.12.

Package building
The CheriBSD/Morello package building infrastructure consists of a local machine start-

ing a build, a FreeBSD/amd64 host building CheriABI packages using the QEMU user mode
and a FreeBSD/arm64 host building hybrid ABI packages natively. The builders use the fol-
lowing software stack:

• QEMU BSD user mode for CheriABI programs10;
• CheriBSD base system;
• CHERI LLVM toolchain;
• CheriBSD ports6;
• Poudriere extended for CheriBSD5, 7;
• Poudriere configuration files and helper scripts (e.g., poudriere-remote.sh)8.
Figure 1 presents an overview of the above components. Upon a command from

poudriere-remote.sh, the FreeBSD/amd64 and FreeBSD/arm64 hosts create Poudriere
jails, ports trees, and build the ports trees in CheriBSD/aarch64c and CheriBSD/aarch64 jails,
respectively. The CheriBSD/aarch64c jails execute programs compiled for CheriABI using
the QEMU user mode while toolchain utilities compiled for the amd64 architecture are exe-
cuted natively. Similarly, the CheriBSD/aarch64 jails execute all programs natively as they are
compiled for arm64. There are currently no ports’ hybrid ABI compile-time dependencies
that partially use CHERI capabilities and must be executed during the building process; thus,
no QEMU user mode is needed for the hybrid ABI packages. The following sections de-
scribe the building infrastructure components in more detail.

5 of 11

17FreeBSD Journal • March/April 2023

Figure 1: Package building process for CheriBSD

QEMU BSD user mode
Before the package building project started, QEMU-CHERI implemented only the

QEMU system mode for CHERI-RISC-V and Arm Morello architectures. While the system
mode allows developers to experiment with CheriBSD and cross-compiled third-party soft-
ware, its performance is not sufficient to build large code scope projects because it em-
ulates a full operating system with devices. Thankfully, Poudriere implements support for
the QEMU user mode, on top of binmiscctl(8). The user mode emulates user program
instructions and executes system calls by translating them from their emulated user ver-
sions to native user versions, executing the translated system calls and translating results
back to their emulated versions. Using this mode, we can run processes without unneces-
sary overhead related to system emulation. Most system calls in CheriBSD are compatible
with FreeBSD and QEMU can handle any incompatibilities when translating them (e.g., when
handling an mmap(2) call, an allocation might need to be padded with guard pages to make
a returned CHERI capability representable24). However, we must make sure that a FreeBSD
host running the user mode is not older than a baseline FreeBSD version used by the base
system of an emulated CheriBSD branch.

Poudriere makes use of the user mode through the imgact_binmisc kernel module.
FreeBSD allows defining binary image activators with binmiscctl(8) that execute binaries
matching an ELF header pattern using a specific interpreter. For example, a system admin-
istrator can define an activator that runs an aarch64 binary using a QEMU user mode emu-
lator on an amd64 host. In practice, a program executed within a FreeBSD/aarch64 jail on a
FreeBSD/amd64 host is wrapped with the user mode, e.g.:

$ sh

is executed within the jail as the command:

$ /usr/local/bin/qemu-aarch64-static sh

where the /usr/local/bin/qemu-aarch64-static binary is compiled for the native ABI
of the host and hence is natively executed rather than wrapped by an image activator again.

6 of 11

18FreeBSD Journal • March/April 2023

Our work on the QEMU user mode10 started with support for CHERI-RISC-V. Unfortu-
nately, the upstream QEMU repository included an outdated BSD user mode implemen-
tation — initially developed for FreeBSD/mips64 in 201511, 12, also in collaboration with the
University of Cambridge and SRI International. Thanks to the qemu-bsd-user project13 im-
proving the BSD user mode support in QEMU, we had a baseline CHERI-RISC-V user mode.
We rebased these changes onto QEMU-CHERI, and extended the implementation. Main
modifications included:

1. Improved system call interface implementation.
a. System call arguments and results used integer types rather than data types corre-

sponding to syscallarg_t from FreeBSD. We modified the system call interface
implementation to use appropriate machine-independent data types, allowing us
to handle CHERI capabilities.

 b. We changed QEMU to match closer the CheriBSD/FreeBSD system call
interface implementation and generated a system call table for QEMU using
the makesyscalls.lua script from CheriBSD derived from FreeBSD.

2. New data types abi_uintptr_t and abi_uintcap_t.
We used the data types in places where integer data types were incorrectly used, not
matching the actual machine-dependent data types storing pointers and capabilities.

3. CheriABI support, including ELF loading code, stack, mmap(2) implementations, and
adapting existing system calls for CHERI capabilities.

4. Machine-dependent changes for CHERI-RISC-V and Arm Morello, including CHERI
capability permission bits and capability register access routines.

This part of the project took us the longest time. Currently, the user mode itself can eas-
ily be used with the cheribuild qemu-cheri-bsd-user branch2. For example, you can run a
CheriABI shell from a CheriBSD/riscv64c base system on a FreeBSD/amd64 host using:

$./cheribuild.py run-user-shell-riscv64-purecap

CheriBSD ports
Besides CHERI/CheriBSD-specific patches for software included in the FreeBSD ports

collection, we introduced additional make(1) variables to allow modifying port build config-
urations depending on an ABI they are built for and allow building CheriABI packages with
hybrid ABI compile-time dependencies:

• USE_PACKAGE_DEPENDS_REMOTE;
When USE_PACKAGE_DEPENDS{,_ ONLY} is enabled, try to install a package from a re-
mote repository instead of building a port from scratch, if a local package does not exist.

• USE_ PACKAGE_ 64 _ DEPENDS_ ONLY;
Install dependencies marked with USE_ PKG64 using their replacement hybrid ABI pack-
ages with pkg64 instead of building them from scratch.

• USE_ PKG64;
When USE_ PACKAGE_ 64_ DEPENDS_ ONLY is set, use a hybrid ABI package for a port
that cannot be built for CheriABI and is required by another port that is being built for
CheriABI.

• OPTIONS_ {DEFINE,DEFAULT,EXCLUDE} _ ${ABI};
Lists of options specific to ${ABI}.

• BROKEN_ ${ABI}.
When set, a port is believed to be broken for ${ABI}.

7 of 11

19FreeBSD Journal • March/April 2023

We also modified autoreconf, cmake, meson, ninja and python support to allow us to
specify custom commands for hybrid ABI build utilities with <UTILITY>_CMD make(1) vari-
ables, e.g. CMAKE_CMD.

Poudriere
Our Poudriere fork7 supports package building on both FreeBSD and CheriBSD hosts.

By default, it uses base system tarballs for an operating system it is executed on but a user
can specify the OS with a new flag -o for poudriere-jail(8). Since CheriBSD does not
include a toolchain in its base system, Poudriere installs it using pkg or pkg64 within a Pou-
driere jail, outside a local base directory not to conflict with a toolchain built from CheriBSD
ports. There are two set configurations shipped with Poudriere: cheriabi and hybrida-
bi. Both use the same toolchain but define different LOCALBASE values, and the cheriabi
one enables hybrid ABI build utilities that are unavailable for CheriABI.

Building CheriABI packages for the development branch on a CheriBSD/Morello host re-
quires executing three simple commands:

$ poudriere jail -c -j aarch64c-dev -a arm64.aarch64c -v dev
$ poudriere ports -c -p main
$ poudriere bulk -j aarch64c-dev -p main -z cheriabi -a

When porting software to CHERI, CheriBSD users also can benefit from Poudriere to
easily bootstrap a build environment. This is especially useful for hybrid ABI software that
sometimes requires setting custom shared library search paths not to use by mistake Che-
riABI libraries from default search paths. With a Poudriere hybrid ABI jail, a developer does
not have to worry about possible linking with CheriABI libraries as such jail only includes hy-
brid ABI programs and libraries.

Poudriere configuration and scripts
The last piece of the infrastructure is the poudriere-infrastructure repository8

including Poudriere configuration files and shell scripts to bootstrap a build environment on
a remote host, sign a package repository and deploy it at pkg.CheriBSD.org. In particular,
poudriere-remote.sh builds the CheriBSD base system, the SDK, the QEMU user mode
(if needed) and starts package building with Poudriere. Poudriere logs of CheriBSD package
builds are publicly available at poudriere.CheriBSD.org.

Results
As of March 2023, CheriBSD provides 9104 CheriABI packages and 24494 hybrid ABI

packages4,5. There are only 37 CheriBSD ports with patches. Most of the changes specific to
CHERI have been successfully upstreamed to third-party software repositories. Some of the
patches include changes specific to CHERI restrictions (e.g., the stronger pointer alignment
to 16 bytes) which shows that open-source communities consider CHERI and Arm Morello
as a promising platform.

CheriBSD users can easily set up a Morello host using a memstick installer obtained from
CheriBSD.org (see Figure 2). bsdinstall(8) in CheriBSD includes an installer step21 where a
user can decide if they want to install packages to run a CheriABI graphical environment (us-
ing KDE Plasma and Wayland; see Figure 3) and additional hybrid ABI programs (at the mo-
ment Firefox and Chromium). These packages can easily be installed with meta-packages:

8 of 11

20FreeBSD Journal • March/April 2023

$ pkg64c install cheri-desktop
$ pkg64 install cheri-desktop-hybrid-extras

Figure 2: Arm Morello board running CheriBSD

Figure 3: Memory-safe Morello desktop environment (CheriBSD, KDE Plasma, Wayland)3

CheriBSD releases and packages have been used by Technology Access Programme
(TAP) participants. The Digital Security by Design (DSbD) initiative run by UK Research and
Innovation organises TAP to allow UK-based companies experiment with the Arm Morel-
lo platform and prototype memory-safe projects. Currently, we collaborate with around 30
such companies. Thanks to the CheriBSD installer and pre-compiled third-party packag-
es, TAP participants could easily deploy a work environment without the need to adapt for
CheriABI, or even cross-compile, their software dependencies. However, many of them still
needed to redesign their projects due to some missing third-party software, or port that
software themselves.

Future work
Based on CheriBSD 22.05 and 22.12 releases, TAP, and CheriBSD users’ experiences, we are
planning next steps to increase the number of CHERI memory-safe packages. Currently, we
are considering:

• CheriABI Python;
As noted in the Missing cross-ABI support section, multiple build systems make use of

9 of 11

21FreeBSD Journal • March/April 2023

Python. Having Python adapted to CheriABI, we could not only build additional pack-
ages for CheriABI but also enable interesting research space in compartmentalising Py-
thon-based applications.

• Cross-ABI support in Poudriere;
We would like to make use of hybrid ABI packages to build CheriABI packages with Pou-
driere. Currently, we build CheriABI packages using hybrid ABI build utilities by execut-
ing make package in port directories and transferring resulting packages to a package
repository created with Poudriere. This feature would allow us to easily rebuild and de-
ploy package repositories.

• Upstreaming patches;
We would like to minimise the number of patches that must be maintained in CheriBSD
ports, and instead commit them to upstream repositories. This includes changes in
ports to better support custom local base paths in FreeBSD ports.

• CHERI-RISC-V packages.
Currently, CheriBSD ships packages only for Arm Morello. Given that most of the ap-
plied patches are not specific to Morello, we should be able to build a large number of
packages for CHERI-RISC-V as well. This would allow researchers to also evaluate the
CHERI-RISC-V architecture against a large code corpus.

Conclusion
CheriBSD is a mature research operating system that can be used to prototype projects

making use of new security primitives provided by CHERI, and as a development platform
to test software against security vulnerabilities. While a lot of third-party software has been
adapted for CHERI, there are still many crucial applications missing that would enable devel-
oping projects in new areas. We are excited to see the growing CHERI ecosystem, with at
least 70 organisations from the Technology Access Programme26, the CHERI within Defence
and Security competition27 and Digital Security by Design28. In the following months, we ex-
pect to continue our work to increase the number of available pure-capability packages.

References
1. cheribuild.py. https://github.com/CTSRD-CHERI/cheribuild
2. cheribuild.py. the qemu-cheri-bsd-user branch. https://github.com/CTSRD-CHERI/

cheribuild/tree/qemu-cheri-bsd-user
3. CheriBSD. https://www.cheribsd.org/
4. CheriBSD packages. https://pkg.cheribsd.org/
5. CheriBSD Poudriere logs. https://poudriere.cheribsd.org/
6. CheriBSD ports. https://github.com/CTSRD-CHERI/cheribsd-ports
7. Poudriere extended for CheriBSD. https://github.com/CTSRD-CHERI/poudriere
8. Poudriere infrastructure for CheriBSD packages. https://github.com/CTSRD-CHERI/

poudriere-infrastructure
9. QEMU with support for CHERI. https://github.com/CTSRD-CHERI/qemu
10. QEMU with support for CHERI. the qemu-cheri-bsd-user branch. https://github.com/

CTSRD-CHERI/qemu/tree/qemu-cheri-bsd-user
11. BSDCan 2015: Embedded FreeBSD Development and Package Building via QEMU.

https://www.bsdcan.org/2015/schedule/events/532.en.html
12. BSDCan 2015: Stacey Son. https://www.bsdcan.org/2015/schedule/speakers/267.en.html
13. The qemu-bsd-user project. https://github.com/qemu-bsd-user/qemu-bsd-user

10 of 11

https://github.com/CTSRD-CHERI/cheribuild
https://github.com/CTSRD-CHERI/cheribuild/tree/qemu-cheri-bsd-user
https://github.com/CTSRD-CHERI/cheribuild/tree/qemu-cheri-bsd-user
https://www.cheribsd.org/
https://pkg.cheribsd.org/
https://poudriere.cheribsd.org/
https://github.com/CTSRD-CHERI/cheribsd-ports
https://github.com/CTSRD-CHERI/poudriere
https://github.com/CTSRD-CHERI/poudriere-infrastructure
https://github.com/CTSRD-CHERI/poudriere-infrastructure
https://github.com/CTSRD-CHERI/qemu
https://github.com/CTSRD-CHERI/qemu/tree/qemu-cheri-bsd-user
https://github.com/CTSRD-CHERI/qemu/tree/qemu-cheri-bsd-user
https://www.bsdcan.org/2015/schedule/events/532.en.html
https://www.bsdcan.org/2015/schedule/speakers/267.en.html
https://github.com/qemu-bsd-user/qemu-bsd-user

22FreeBSD Journal • March/April 2023

14. The CHERI LLVM Compiler Infrastructure. https://github.com/CTSRD-CHERI/llvm-project
15. The GNU debugger extended to support CHERI. https://github.com/CTSRD-CHERI/gdb
16. Microsoft. CHERIoT: Rethinking security for low-cost embedded systems. https://www.

microsoft.com/en-us/research/publication/cheriot-rethinking-security-for-low-cost-em-
bedded-systems/

17. Arm. The CHERI LLVM Compiler Infrastructure. https://git.morello-project.org/morello/
llvm-project

18. Morello Platform Software Repositories. https://git.morello-project.org/morello/docs
19. Arm. Morello Development Tools. https://developer.arm.com/Tools%20and%20Soft-

ware/Morello%20Development%20Tools
20. Arm. Morello Program. https://www.arm.com/architecture/cpu/morello
21. Robert N. M. Watson, et al. Getting Started with CheriBSD. Installing on a Morello Board.

https://ctsrd-cheri.github.io/cheribsd-getting-started/morello-install/
22. Robert N.M. Watson, et al. An Introduction to CHERI. Technical Report UCAM-CL- TR-

941, University of Cambridge, Computer Laboratory, 2019.
23. Robert N. M. Watson, et al. Assessing the Viability of an Open-Source CHERI Desktop

Software Ecosystem, Technical Report, Capabilities Limited, 17 September 2021.
24. Brooks Davis, et al. CheriABI: Enforcing Valid Pointer Provenance and Minimizing Point-

er Privilege in the POSIX C Run-time Environment. In Proceedings of 2019 Architectural
Support for Programming Languages and Operating Systems (ASPLOS’19). Providence,
RI, USA, April 13-17, 2019.

25. Robert N. M. Watson, et al. Adversarial CHERI Exercises and Missions. https://ctsrd-cheri.
github.io/cheri-exercises/

26. Digital Security by Design. Technology Access Programme Participants. https://www.
dsbd.tech/whos-involved/technology-access-programme-participants/

27. Defence and Security Accelerator. Competition: CHERI within Defence and Security.
https://www.gov.uk/government/publications/competition-cheri-within-defence-and-se-
curity

28. Digital Security by Design. Funded Projects. https://www.dsbd.tech/whos-involved/fund-
ed-projects/

KONRAD WITASZCZYK is a Research Associate and a PhD Student at the University
of Cambridge working on the CHERI project. He graduated with a BSc degree in Theo-
retical Computer Science from the Jagiellonian University, an MSc degree in Computer
Science from the University of Copenhagen and has been working with FreeBSD and its
security-related mechanisms since 2013, including at Fudo Security. As part of his PhD,
he is studying and working on compartmentalisation strategies for the CheriBSD kernel,
and thus the FreeBSD kernel as well.

11 of 11

https://github.com/CTSRD-CHERI/llvm-project
https://github.com/CTSRD-CHERI/gdb
https://www.microsoft.com/en-us/research/publication/cheriot-rethinking-security-for-low-cost-embedded-systems/
https://www.microsoft.com/en-us/research/publication/cheriot-rethinking-security-for-low-cost-embedded-systems/
https://www.microsoft.com/en-us/research/publication/cheriot-rethinking-security-for-low-cost-embedded-systems/
https://git.morello-project.org/morello/llvm-project
https://git.morello-project.org/morello/llvm-project
https://git.morello-project.org/morello/docs
https://developer.arm.com/Tools%20and%20Software/Morello%20Development%20Tools
https://developer.arm.com/Tools%20and%20Software/Morello%20Development%20Tools
https://www.arm.com/architecture/cpu/morello
https://ctsrd-cheri.github.io/cheribsd-getting-started/morello-install/
https://ctsrd-cheri.github.io/cheri-exercises/
https://ctsrd-cheri.github.io/cheri-exercises/
https://www.dsbd.tech/whos-involved/technology-access-programme-participants/
https://www.dsbd.tech/whos-involved/technology-access-programme-participants/
https://www.gov.uk/government/publications/competition-cheri-within-defence-and-security
https://www.gov.uk/government/publications/competition-cheri-within-defence-and-security
https://www.dsbd.tech/whos-involved/funded-projects/
https://www.dsbd.tech/whos-involved/funded-projects/

