
January/February 2023

ZFS’s Atomic I/O
and PostgreSQL

Virtual Lab—
BSD Programming
Workshop

An Introduction to ZFS

Nov/Dec 2019 57

November/December 2022

Writing Custom
Commands in FreeBSD’s
DDB Kernel Debugger

DTrace: New Additions
to an Old Tracing System

Certificate-based
Monitoring with Icinga

activitymonitor.sh

Pragmatic IPv6 (Part 4)

Observability and Metrics

2023 Editorial Calendar
• Building a FreeBSD Web Server

(January-February)

• Embedded (March-April)

• FreeBSD at 30 (May-June)

• Containers and Cloud (Virtualization)

(July-August)

• FreeBSD 14 (September-October)

• To be decided (November-December)

LETTER
from the Foundation

Justin Gibbs • Founder of the FreeBSD Foundation,
President and Treasurer of the FreeBSD
Foundation Board

Daichi Goto • Director at BSD Consulting Inc.
(Tokyo)

Dru Lavigne • Author of BSD Hacks and
The Best of FreeBSD Basics

Michael W Lucas Author of more than 40 books including
Absolute FreeBSD, the FreeBSD
Mastery series, and git commit murder

•

Kirk McKusick • Lead author of The Design and
Implementation book series

Hiroki Sato • Director of the FreeBSD Foundation
Board, Chair of AsiaBSDCon, and
Assistant Professor at Tokyo
Institute of Technology

Robert N. M. Watson • Director of the FreeBSD Foundation
Board, Founder of the TrustedBSD
Project, and University Senior Lecturer
at the University of Cambridge

Advisory Board
Anne Dickison • Marketing Director, FreeBSD Foundation

John Baldwin • Member of the FreeBSD Core Team and
Chair of FreeBSD Journal Editorial Board

Tom Jones • FreeBSD Developer, Internet Engineer
and Researcher at the University of
Aberdeen

Allan Jude • CTO at Klara Inc., the global FreeBSD
Professional Services and Support
company

George Neville-Neil • Past President of the FreeBSD Foundation
Board, and co-author of The Design
and Implementation of the FreeBSD
Operating System

Ed Maste • Senior Director of Technology,
FreeBSD Foundation and Member
of the FreeBSD Core Team

Benedict Reuschling • FreeBSD Documentation Committer
and Member of the FreeBSD Core Team

Mariusz Zaborski • FreeBSD Developer

FreeBSD Journal (ISBN: 978-0-61 5-88479-0) is published 6 times
a year (January/February, March/April, May/June, July/August,

September/October, November/December).
Published by the FreeBSD Foundation,

3980 Broadway St. STE #103-107, Boulder, CO 80304
ph: 720/207-51 42 • fax: 720/222-2350
email: info@freebsdfoundation.org

Copyright © 2023 by FreeBSD Foundation. All rights reserved. This magazine may not be
reproduced in whole or in part without written permission from the publisher.

Editor-at-Large •

Design & Production •

James Maurer
maurer.jim@gmail.com

Reuter & Associates

J O U R N A L
®

S&W PUBLISHING LLC

Editorial Board

PO BOX 3757 CHAPEL HILL, NC 27515-3757

3FreeBSD Journal • January/February 2023

Welcome to the January/February issue. This
edition features articles on several topics
to aid in using FreeBSD to deploy web

applications. Drew Gurkowski provides an introduction
to using ZFS to manage storage. Roller Angel
describes the creation of a virtual test lab built on top
of jails. Finally, Thomas Munro dives into interactions
between PostgreSQL and ZFS.

On a different note, Anne Dickison sat down with
Ed Maste from the FreeBSD Foundation to talk about
support for desktop use in FreeBSD.

In a previous welcome letter, I was eagerly
anticipating a return to an in-person conference—
EuroBSDCon 2022, that was held in Vienna, Austria.
As a trip report by Kyle Evans in the November/
December 2022 issue indicated, the conference
was a tremendous success. In the new year, many of
our beloved conferences are returning to in-person
formats. FOSDEM was recently held in person, and
AsiaBSDCon, BSDCan, and EuroBSDCon are all
returning this year. At BSDCan in Ottawa, we will
celebrate FreeBSD’s 30th birthday! Editorial board
members and FreeBSD Journal authors will be at these
conferences and they’re eager to chat with readers or
answer questions.

As always, we love to hear from readers whether
in person or via email. If you have feedback or
suggestions for topics for a future article, or are
interested in writing an article, please email us at
maurer.jim@gmail.com.

John Baldwin
Chair of the FreeBSD Journal Editorial Board

4FreeBSD Journal • January/February 2023

January/February 2023

 5 ZFS’s Atomic I/O and PostgreSQL
 By Thomas Munro

 9 Virtual Lab— BSD Programming Workshop
 By Roller Angel

 18 An Introduction to ZFS
 By Drew Gurkowski

 3 Foundation Letter
By John Baldwin

 24 We Get Letters
By Michael W Lucas

 27 Conference Report: Rocky Mountain Celebration
 of Women in Computing

By Deb Goodkin

 29 WIP/CFT:Packet Batching
By Tom Jones and John Baldwin

 31 The Foundation and the FreeBSD Desktop
By Anne Dickison

 33 Events Calendar
By Anne Dickison

5FreeBSD Journal • January/February 2023

PostgreSQL is a relational database management system implementing the SQL stan-
dard, with a BSD-like license. Its pre-SQL ancestor POSTGRES began at Berkeley Uni-
versity in the mid 1980s. It’s popular on FreeBSD, where it is usually deployed on ZFS
storage.

Many articles about PostgreSQL on ZFS recommend changing ZFS’s recordsize set-
ting and PostgreSQL’s full_page_writes setting. The real impact of the latter setting
on performance and crash-safety is not often explained, perhaps because it’s not generally
safe to adjust it on most popular file systems. In this article I summarize the logic and trade-
offs behind this mysterious mechanism—after a brief detour to talk about block sizes.

Blocks
Nearly all of PostgreSQL’s disk I/O is aligned on

8KB blocks, or pages. It is possible to recompile it
to use a different size, but that is rarely done. This
size may originally have been chosen to match
UFS’s historical default block size (though note
that FreeBSD’s UFS now defaults to 32KB). ZFS
uses the term record size, and defaults to 128KB.
Unlike other file systems, ZFS allows the record
size to be changed easily at any time, and to be
configured separately for each dataset.

If the data will be accessed randomly, then in theory the size should ideally match Post-
greSQL’s 8KB blocks. Otherwise, random I/O could suffer from two effects:

• I/O amplification, because every read or write of an 8KB block also transfers extra
neighboring data

• read-before-write when storage blocks are not currently in the OS’s cache and an 8KB
block must be written, so the neighboring data must be read first

If the data will be accessed mostly sequentially, or rarely, and especially if the benefits of
ZFS compression using larger records outweigh concerns about I/O bandwidth and latency,
then it can be a good idea.

Some sources make a blanket recommendation of 16KB, 32KB or 128KB record size, as a
sweet spot for better compression without too much write amplification or latency. My aim

BY THOMAS MUNRO

POSTGRES began at

Berkeley University

in the mid 1980s.

1 of 4

ZFS’s Atomic I/O
and PostgreSQL

6FreeBSD Journal • January/February 2023

here isn’t to make such recommendations–I doubt there is one answer–but rather to ex-
plain what’s going on.

Some applications have a mix of requirements for different kinds of data. Tablespac-
es can be used to store different tables in different ZFS datasets with different record size,
compression or physical media. It’s also possible for a table to be partitioned, for example
with older data in one tablespace and current active data in another.

CREATE TABLESPACE compressed_tablespace
LOCATION /tank/pgdata/compressed_tablespace;

ALTER TABLE t
SET TABLESPACE compressed_tablespace;

One problem reported with small ZFS record sizes is fragmentation. A table that receives
frequent random updates might finish up with blocks scattered all over the place, and we’d
prefer them to be physically clustered for good sequential read performance. A simple way
to ask PostgreSQL to rewrite the files that hold a table and its indexes in order to defrag-
ment them at the ZFS level would be to issue VACUUM FULL table_name or CLUSTER
table_name, if you are prepared to lock queries out of the table for the duration of the re-
write. Rewriting a table also allows a new record size to take effect, if it has been changed at
the dataset level.

Torn Writes
The PostgreSQL setting full_page_writes defaults to on, and ZFS users often turn it

off. The performance of write-intensive workloads then becomes faster and more consis-
tent. For example, in a simple pgbench test on a low end cloud VM I measured a 32% in-
crease in transactions per second by turning it off.

So what does it really do? That requires a surprising amount of background explanation.
The short version is that PostgreSQL uses physiological logging for crash safety, and that

means that writes to individual database pages must be atomic on power failure, or it may
not be able to recover after a crash. Unless you promise that your storage stack has that
property, then PostgreSQL has to do some extra work to protect your data.

Atomicity on power failure is the property that if a physical write was in progress when
power was lost, later we can expect to read back either the old version or the new version
of a block, for some given block size, but not a partially modified or torn version. This is not
to be confused with atomicity of concurrent reads and writes (see below). Physiological log-
ging, short for physical-to-the-page, logical-within-the-page, is a term from textbook classi-
fications of logging strategies, and it means that log records identify a block to be changed
by file and block number, but then describe the change to make within that page in a nota-
tion that requires us to read in the existing page to understand how to modify it “logically”,
rather than just updating bits at a physical address.

After a crash, the recovery algorithm can cope with the “old” page contents or the “new”
page contents, applying any logged changes required to bring it up to date. If it encounters
a non-atomic mash-up of old and new data, then logical changes to the page cannot be re-
played, and recovery fails! A superficial problem is that if data_checksums is enabled, then
PostgreSQL’s page-level checksum check will fail even to read the page in. If checksums are
disabled, we’ll get further, but a logical change such as “insert tuple (42,Fred) in slot 3” can’t

2 of 4

7FreeBSD Journal • January/February 2023

be replayed reliably. In order to apply the change in this example we need to understand a
table of slots using pre-existing meta-data on the page, but it’s potentially corrupted.

Physiological logging is a very widely used technique in the database industry, and dif-
ferent RDBMSs have found different solutions to the problem of torn pages. Since open
source systems have been developed and used on a wide variety of low end systems often
without various forms of hardware protection against power loss, failures were common
and software solutions had to be developed.

PostgreSQL’s current solution is to switch to page-level physical-only logging or full page
writes, where the whole data page is dumped into the log, for the first modification to each
data page after each checkpoint. Checkpointing is a periodic background activity, and in an
ideal world would have minimal effects on foreground transaction performance. However,
due to the first-touch rule, once a checkpoint starts, write-heavy workloads might suddenly
start generating a lot more log data, as small updates suddenly require many 8KB pages to
be logged. This effect typically decays gradually because subsequent modifications to each
page go back to being physiological, until the next checkpoint, sometimes resulting in a
sawtooth pattern in I/O bandwidth and transaction latency.

Another popular open source database has a
different solution that also involves writing all data
out twice with a synchronization barrier between,
since both copies can’t be torn.

ZFS needs none of that! It has record-level ato-
micity by virtue of its own copy-on-write design.
It’s not possible to see a mixture of the old and
new contents of a ZFS record, because it doesn’t
physically overwrite them, and its system of TXGs
and the ZIL makes writes transactional. Therefore,
it is safe to set full_page_writes=off as long as recordsize is at least 8KB.

Note that ZFS itself also physically writes data twice in some scenarios. A common rec-
ommendation is to consider setting logbias=throughput for the dataset holding the
main data files (but perhaps not the one holding PostgreSQL’s log directory pg_wal—a top-
ic not explored in this article). That option tries to write blocks directly into their final loca-
tion instead of logging them first in the ZIL. If you use the ZFS default logbias=latency
and the PostgreSQL default full_page_writes=on, data may in fact be written out four
times in total as both PostgreSQL and ZFS perform extra work to create record-level ato-
micity, while both of those changes bring it down to one copy.

Unfortunately there are two special scenarios where full_page_writes=on is still
needed for correct behavior: while running pg_basebackup and pg_rewind. Those tools
are used for backups, or to create or re-synchronize streaming replicas from another serv-
er; in the case of pg_basebackup, full page writes will be silently enabled while running the
command, while in the case of pg_rewind, the command will refuse to run if it is not man-
ually enabled (an annoying inconsistency in current releases). These tools make raw file sys-
tem-level copies of data files, along with the logs required for crash recovery to deal with
consistency problems caused by concurrent changes. Here we run into a different meaning
of I/O atomicity: reading from a file that might be concurrently written to. The first prob-
lem is that file systems on Linux and Windows (but not ZFS, or any file system on FreeBSD,
due to the use of range locks) can show readers a random selection of before and after

3 of 4

It’s not possible to see

a mixture of the old

and new contents of

a ZFS record.

8FreeBSD Journal • January/February 2023

bits when there is an overlapping concurrent write. Furthermore, the I/O is currently done
in a way that isn’t suitably aligned, so even on ZFS, torn pages could be copied. To defend
against that, full_page_writes behavior is needed. This problem should eventually be
fixed in PostgreSQL, by copying the raw data files with appropriate alignment and interlock-
ing. Note that ZFS snapshots can be used instead of pg_basebackup if certain precautions
are taken (primarily that the snapshot must atomically capture the logs and all data files),
thus reducing the impact when cloning or backing up a very busy system.

Recovery
We’ve seen how full_page_writes=off improves the performance of write transac-

tions, and ZFS makes that safe. Unfortunately there can also be negative performance im-
plications for replication and crash recovery. These activities both perform recovery, mean-
ing that they replay the log. Although full page images are a pessimization when they’re
written, they act as an optimization when they’re replayed at recovery time. Instead of hav-
ing to perform a random synchronous read that might block recovery’s serial processing
loop, we have the contents of the page to be modified already in our nice sequential log,
and after that it is cached.

PostgreSQL 15 includes a partial solution to this problem: it looks ahead in the log to find
pages that will soon be read, and issues POSIX_FADV_WILLNEED advice, to generate a con-
figurable degree of I/O concurrency (a sort of poor man’s asynchronous I/O). At the time of
writing, FreeBSD ignores the advice, but a future version of OpenZFS will hopefully connect
it up to FreeBSD’s VFS (OpenZFS pull request #13958). Eventually, this should be replaced
by a true asynchronous I/O subsystem that is currently being developed and proposed for a
future version of PostgreSQL.

The effect of full_page_writes=off on recovery I/O stalls was studied by a group
using PostgreSQL on ZFS on the illumos operating system at scale. They developed a tool
called pg_prefaulter as a workaround. They had found that their streaming replicas
couldn’t keep up with their primary servers due to predictable I/O stalls. They may have
been uniquely placed to see this effect since most large scale users of PostgreSQL don’t
even have the option of setting full_page_writes=off. pg_prefaulter may be a solu-
tion if you run into this problem, until built-in prefetching is available.

Looking Ahead
Block size alignment is likely to become a bigger topic in future PostgreSQL releases that

will hopefully include proposed direct I/O support, which for now exists only in prototype
form. This coincides happily with the development of direct I/O support for OpenZFS (pull
request #10018), which will probably require block size agreement to work effectively (the
current prototype reverts to the ARC otherwise; some other file systems simply refuse non-
aligned direct I/O). Another OpenZFS feature in the works that is likely to be very useful
for databases is block cloning (pull request #13392), along with new systems interfaces for
FreeBSD, which PostgreSQL should hopefully be able to use for fast cloning of databases
and database objects with finer granularity than whole datasets.

THOMAS MUNRO is an open source database hacker working for Microsoft Azure, who
is usually logged into a FreeBSD box.

4 of 4

9FreeBSD Journal • January/February 2023

OOur virtual lab will consist of a FreeBSD Host system that uses the FreeBSD Jails tech-
nology to provide each system we want to install within the lab its own separate
environment to run services and perform its duties. These duties could be any

number of things like serving up web pages, storing and retrieving database records, que-
rying and answering DNS requests, caching system update files, etc. The idea is to build a
solid foundation that will enable future growth for our virtual lab. Given that the nature of
FreeBSD Jails is to provide a lightweight system for containing our services, we can rest as-
sured knowing that any number of rabbit holes we may find ourselves in won’t limit our
creativity or exploration due to reaching our resource limitations. We can have a separate
environment for each idea and not have to worry about the expense of provisioning anoth-
er operating system to support the services necessary for that idea to flourish. I’ve experi-
mented with many different methods of hosting operating system installs for my work and
I’m pleasantly surprised by the peace of mind I get when provisioning a new jail. It’s so eco-
nomical! I’m no longer burdened with a financial concern and a question of how long this
expense will be ongoing, rather it’s just another environment in my ever growing lab and
doesn’t inherently come with a minimum monthly fee to use it. Not to get too technical
and go down a financial rabbit hole regarding the cost of electricity, internet connectivity,
host hardware; yes, I agree those things have a cost, but once they are in place, the addition
of new hosts isn’t anywhere near the considerations and expenses that go into the initial
lab setup. I recommend repurposing an existing machine as the host machine, maybe even
a laptop, as it comes with a built in battery backup, giving you time to gracefully shutdown
your systems in the event of a sustained power outage. The issue of needing multiple phys-
ical network interfaces to connect physical Ethernet switches to Ethernet cables and access
points that your physical hosts will use are not a material concern in our virtual lab. These in-
terfaces can be created with words in a text file and virtual Ethernet cables can be created
to connect the pieces of our virtual network.

FreeBSD Host
This host machine will need a few network interfaces.

We want the host to have its own way out to the internet.
This can be a good ole DHCP assigned address provid-
ed by a local router, or your host could be performing the
role of router and have a direct connection to the outside
world through a modem. However your host gets its inter-
net connection, we’ll want to have an additional network
interface that we can use solely for our lab network. This in-
terface may have a name like em0, igb0, or similar depend-
ing on the network card driver and the number of installed

BY ROLLER ANGEL

1 of 9

 Virtual Lab –
 BSD Programming Workshop




10FreeBSD Journal • January/February 2023

interfaces. Even if we don’t have multiple physical network interfaces, we can always make
a separate network interface to use with cloned_interfaces. In my case, I’m repurposing
some laptops. One has a working WiFi card I use for connecting to the internet. This is an
older Asus ROG laptop from the early 2010s. It has a built in Ethernet port as well. On my X1
Carbon 7th Gen ThinkPad, there aren’t built in Ethernet ports. I just use the USB port and
my Android USB Tethering. However, I’m most excited about the Dell Precision laptop. It’s a
great lab host as it comes with an Intel Xeon processor and can handle 128GB of RAM and
multiple NVME hard drives. It has a built in ethernet port on the back of the laptop and the
second one is a USB-C dongle that has an Intel igb0 ethernet port on it that I use for the
dedicated interface for the lab network. Finally, old towers are also great as a host, there are
some fantastic PCI network cards you can install with mulitple Ethernet ports. The key here
is to find what works for you, install FreeBSD and get going with our virtual lab. See the Get-
ting Started With FreeBSD Workshop from the July/August 2022 FreeBSD Journal issue if
you’d like to get some tips on installing and configuring FreeBSD.

Virtual Network Design
Just like in the physical server world

where we have multiple physical Ethernet
ports on our router/firewall systems, we
can provision multiple interfaces for our
lab router/firewall system which I will re-
fer to as the gateway from now on. These
interfaces will be connected to each
other via bridges. Think of an Ethernet
switch from a physical network, a bridge
provides similar functionality. And for our
Ethernet cables, we will use epair(4) inter-
faces. These consist of two sides, side A
and side B. We’ll hook up side A to the bridge and side B to our jail. This way all the jails can
communicate with each other over the virtual bridge much like physical hosts in a network
connected via Ethernet cable to a switch would be able to communicate with one another.
The gateway jail will have an additional virtual cable to connect to a separate bridge that al-
lows connectivity outside the lab and onto the internet. All jails will set their default route to
point to this gateway. The way we give that separate bridge the ability to connect to the out-
side world is by assigning a physical interface as a member of the bridge. Again, this is akin
to plugging the Ethernet cable into the switch, but in this case the Ethernet cable is plugged
into the FreeBSD Host system and is then virtually plugged into the bridge. By doing this,
the other virtual Ethernet cables that are also members of the same bridge will be able to
communicate with it and get their packets flowing in and out of the lab environment.

Let’s break it down, each jail gets its own network using a technology called vnet. We at-
tach our physical interface on the FreeBSD Host to one virtual bridge and we create a sec-
ond virtual bridge for our lab network that has only virtual interfaces from lab jails connect-
ed to it. We then use routing and firewall rules to push packets around as we see fit.

2 of 9


 Virtual Lab – BSD Programming Workshop

11FreeBSD Journal • January/February 2023

Firewall
We’ll be using PF for the firewall. The way FreeBSD Jails works is that each jail is sharing

the host kernel, so if there’s a kernel module that you want to have access to inside the jail,
you just need to allow it and then configure access in the jail.conf settings for the par-
ticular jail. Take a look at the /etc/defaults/devfs.rules file. For our gateway to use the
PF firewall, we’ll need to set the configuration of the jail to use the pf ruleset listed in this
file. We’ll setup our own custom devfs rules later on and include the configuration from the
devfsrules_jail_vnet rule.

Configuration
Now that we’ve covered what we’re going to do, let’s get to doing it. We start with a

FreeBSD Host running 13.1-RELEASE. As described above, this host should have an active
internet connection. We’ll use that connection to download some files for use in creating
our jails. The host has NTPD running, so it gets accurate time. Check for any services listen-
ing on the host with sockstat -46 and turn them off if unused. Remember that the host
should be limited in what it does—we’ll have plenty of fun things to do in jails inside our lab,
so do your best to limit the services on the host. I plan on doing any management of my
host in person by logging in with the attached keyboard and screen so I’ve not enabled SSH
on the host.

Now we’re ready to enable jails. A simple sysrc jail_enable=YES will do the trick. No
need to install any package, jail management is built into FreeBSD. Take a look at the READ-
ME file in /usr/share/examples/jails for some examples of how you might configure
your jails. As you will see, there are many ways to go about jail configuration. I’ve done my
research and picked the configuration method you’ll see here. You’re welcome to give one
of the other approaches a try and see what fits. If you do go about this task another way,
please consider writing about it so others can see what you’ve found useful and give it a try
themselves. At this point, we’ve verified our host machine is ready for hosting jails and have
enabled the jail service so we can do a quick reboot double check that minimal services are
listening on the host and move on to creating the base configuration for all our jails to use.
When editing configuration files we’ll be using vim, for basic editing tasks you really only
need to know a handful of things, spend a few minutes going through the interactive exer-
cises as part of the command vimtutor to get your bearings and you’ll be a vim novice in
no-time at all.

Note: We’re running all the following commands as the root user. Type sudo -i to be-
come root.

edit jail.conf

vim /etc/jail.conf

put the following into /etc/jail.conf

$labdir=”/lab”;
$domain=”lab.bsd.pw”;
path=”$labdir/$name”;
host.hostname=”$name.$domain”;
exec.clean;

3 of 9

 Virtual Lab – BSD Programming Workshop

12FreeBSD Journal • January/February 2023

exec.start=”sh /etc/rc”;
exec.stop=”sh /etc/rc.shutdown”;
exec.timeout=90;
stop.timeout=30;
mount.devfs;
exec.consolelog=”/var/tmp/${host.hostname}”;

base.txz
mkdir -p /lab/media/13.1-RELEASE
cd /lab/media/13.1-RELEASE
fetch http://ftp.freebsd.org/pub/FreeBSD/releases/amd64/13.1-RELEASE/base.txz

Gateway Jail
mkdir /lab/gateway
tar -xpf /lab/media/13.1-RELEASE/base.txz -C /lab/gateway

edit jail.conf

vim /etc/jail.conf

add to the bottom of the file

gateway {
 ip4=inherit;
}

feel free to add a user account to the jail with the following optional command, for this
article we’re just going to be using the user root

chroot /lab/gateway adduser

set the root password for the jail

chroot /lab/gateway passwd root

setup DNS resolution using OpenDNS servers

vim /lab/gateway/etc/resolv.conf

add the following lines to resolv.conf

nameserver 208.67.222.222
nameserver 208.67.220.220

copy the hosts time zone setting

cp /etc/localtime /lab/gateway/etc/

create an empty file system table

touch /lab/gateway/etc/fstab

4 of 9

 Virtual Lab – BSD Programming Workshop

13FreeBSD Journal • January/February 2023

start jail

jail -vc gateway

login to jail

jexec -l gateway login -f root

logout of the jail

logout

list jails

jls

stop the jail

jail -vr gateway

create devfs.rules

vim /etc/devfs.rules

add the following lines to devfs.rules

[devfsrules_jail_gateway=666]
add include $devfsrules_jail_vnet
add path bpf* unhide

restart devfs

service devfs restart

verify devfs rules

devfs rule showsets

assign our new ruleset to the gateway jail

vim /etc/jail.conf

add the following line to the gateway { } config block

devfs_ruleset=666;

restart the gateway jail

service jail restart gateway

verify ruleset was applied to gateway jail

jls -j gateway devfs_ruleset

we expect to see 666 as the output of the above command

load the PF kernel module on host

sysrc -f /boot/loader.conf pf_load=YES
kldload pf

5 of 9

 Virtual Lab – BSD Programming Workshop

14FreeBSD Journal • January/February 2023

enable PF on gateway jail

sysrc -j gateway pf_enable=YES

edit pf.conf on gateway jail

vim /lab/gateway/etc/pf.conf

add the following config

ext_if = “e0b_gateway”
int_if = “e1b_gateway”
table <rfc1918> const { 192.168.0.0/16, 172.16.0.0/12, 10.0.0.0/8 }

#Allow anything on loopback
set skip on lo0

#Scrub all incoming traffic
scrub in
no nat on $ext_if from $int_if:network to <rfc1918>

#NAT outgoing traffic
nat on $ext_if inet from $int_if:network to any -> ($ext_if:0)

#Reject anything with spoofed addresses
antispoof quick for { $int_if, lo0 } inet

#Default to blocking incoming traffic, but allowing outgoing traffic
block all
pass out all

#Allow LAN to access the rest of the world
pass in on $int_if from any to any
block in on $int_if from any to self

#Allow LAN to ping us
pass in on $int_if inet proto icmp to self icmp-type echoreq

Configuring the Virtual Network
Setup an interface. Here we’re using the dedicated network card named alc0 and as-

signing it a name of lab0. All further configuration will use the interface name lab0 and the
actual physical device it’s assigned to can be changed by editing one line of configuration.
This way it’s easy to switch our interface if we move our lab to another host or add a new
network interface down the road with a different name such as igb0, re0, or em0.

sysrc ifconfig_alc0_name=lab0
sysrc ifconfig_lab0=up
service netif restart

6 of 9

 Virtual Lab – BSD Programming Workshop

15FreeBSD Journal • January/February 2023

copy the Jail Interface Bridge automation script into our lab scripts directory and make
it executable

mkdir /lab/scripts
cp /usr/share/examples/jails/jib /lab/scripts/
chmod +x /lab/scripts/jib

edit jail.conf

vim /etc/jail.conf

Gateway jail.conf
At this point, we’re ready to move from inheriting the ip4 network from the host and
use vnet, remove the gateway {} configuration block from /etc/jail.conf and replace it
with the following

gateway {
 vnet;
 vnet.interface=e0b_$name, e1b_$name;
 exec.prestart+=”/lab/scripts/jib addm $name lab0 labnet”;
 exec.poststop+=”/lab/scripts/jib destroy $name”;
 devfs_ruleset=666;
}

create the internal LAN network for the jails in the lab

sysrc cloned_interfaces=vlan2
sysrc ifconfig_vlan2_name=labnet
sysrc ifconfig_labnet=up
service netif restart

destroy and recreate gateway

jail -vr gateway
jail -vc gateway

configure networking for gateway jail

sysrc -j gateway gateway_enable=YES
sysrc -j gateway ifconfig_e0b_gateway=SYNCDHCP
sysrc -j gateway ifconfig_e1b_gateway=”inet 10.66.6.1/24”
service jail restart gateway
jexec -l gateway login -f root

test connectivity

host bsd.pw
ping -c 3 bsd.pw

exit the jail

logout

7 of 9

 Virtual Lab – BSD Programming Workshop

16FreeBSD Journal • January/February 2023

create another jail that only has one interface that’s attached to the labnet LAN net-
work

vim /etc/jail.conf

add the following to the bottom of the file

client1 {
 vnet;
 vnet.interface=”e0b_$name”;
 exec.prestart+=”/lab/scripts/jib addm $name labnet”;
 exec.poststop+=”/lab/scripts/jib destroy $name”;
 devfs_ruleset=4;
 depend=”gateway”;
}

make the directory structure for the new jail

mkdir /lab/client1
tar -xpf /lab/media/13.1-RELEASE/base.txz -C /lab/client1

set the root password

chroot /lab/client1 passwd root

setup DNS resolution using OpenDNS servers

vim /lab/client1/etc/resolv.conf

add the following lines to resolv.conf

nameserver 208.67.222.222
nameserver 208.67.220.220

copy the hosts time zone setting

cp /etc/localtime /lab/client1/etc/

create an empty file system table

touch /lab/client1/etc/fstab

start jail

jail -vc client1

configure networking for client1 jail

sysrc -j client1 ifconfig_e0b_client1=”inet 10.66.6.2/24”
sysrc -j client1 defaultrouter=”10.66.6.1”
service jail restart client1

login to jail

jexec -l client1 login -f root

8 of 9

 Virtual Lab – BSD Programming Workshop

17FreeBSD Journal • January/February 2023

test connectivity

host bsd.pw
ping -c 3 bsd.pw
ping -c 3 10.66.6.1

grab a sample tcsh profile

fetch -o .tcshrc http://bsd.pw/config/tcshrc
chsh -s tcsh

exit the jail

logout

The next time you login, you’ll have a green prompt due to the tcshrc settings, enjoy!
Now you have a virtual lab with it’s own virtual network that has a physical interface re-
served for the outbound connection to the internet. Since we named the interface lab0,
we can easily update it. Go ahead and give that a try. For instance, you can plug in an An-
droid phone that has an internet connection, WiFi or Cellular is fine, as either will do. Go to
the network settings on the phone after you plug it into the host and enable USB Tethering.
A ue0 interface will now be available for use. Update the line in /etc/rc.conf that says if-
config_alc0_name=”lab0” to be ifconfig_ue0_name=”lab0”. Reboot. Login to either
jail and test connectivity. Your network has been swapped out. Your lab is now mobile!

I hope you had fun following along with this article. I’m super passionate about FreeBSD
and sharing what I learn with others brings me joy. I hope you do amazing things with
FreeBSD in your lab and I look forward to chatting with many of you at one of the fantastic
BSD conferences.

ROLLER ANGEL spends most of his time helping people learn how to accomplish their
goals using technology. He’s an avid FreeBSD Systems Administrator and Pythonista who
enjoys learning amazing things that can be done with Open Source technology — especial-
ly FreeBSD and Python — to solve issues. He’s a firm believer that people can learn anything
they wish to set their minds to. Roller is always seeking creative solutions to problems and en-
joys a good challenge. He’s driven and motivated to learn, explore new ideas, and to keep his
skills sharp. He enjoys participating in the research community and sharing his ideas.

9 of 9

 Virtual Lab – BSD Programming Workshop

18FreeBSD Journal • January/February 2023

ZFS combines the roles of volume manager and independent file system into one, giving
multiple advantages over a stand-alone file system. It is renowned for speed, flexibility, and,
most importantly, taking great care to prevent data loss. While many traditional file systems
had to exist on a single disk at a time, ZFS is aware of the underlying structure of the disks
and creates a pool of available storage, even on multiple disks. The existing file system will
grow automatically when extra disks are added to the pool, immediately becoming available
to the file system.

Getting Started
FreeBSD can mount ZFS pools and datasets during system initialization. To enable it, add

this line to /etc/rc.conf:

zfs_enable=”YES”

Then start the service:

service zfs start

Identify Hardware
Before setting up ZFS, identify the device names of the disk associated with the system.

A quick way of doing this is with:

egrep da[0-9]|cd[0-9] /var/run/dmesg.boot

The output should identify the device names, examples throughout the rest of this guide
will use the default SCSI names: da0, da1, and da2. If the hardware differs, make sure to use
the correct device names instead.

BY DREW GURKOWSKI

1 of 5

An Introduction
to ZFS

19FreeBSD Journal • January/February 2023

Creating a Single Disk Pool
To create a simple, non-redundant pool using a single disk device:

zpool create example /dev/da0

To create files for users to browse within the pool:

cd /example
ls
touch testfile

The new file can be viewed using ls:

ls -al

We can already start using more advanced ZFS features and properties. To create a data-
set within the pool with compression enabled:

zfs create example/compressed
zfs set compression=on example/compressed

The example/compressed dataset is now a ZFS compressed file system.
Disable compression with:

zfs set compression=off example/compressed

To unmount a file system, use zfs umount and then verify with df:

zfs umount example/compressed
df

Verify that example/compressed is not included as a mounted file under the output.
The file system can be re-mounted with zfs:

zfs mount example/compressed
df

With the file system mounted, the output should include a line similar to the one below:

example/compressed 17547008 0 17547008 0% /example/compressed

ZFS datasets are created just like any other file system, the following example creates a
new file system called data:

zfs create example/data

Use df to see the data and space usage (some of the output has been removed for clari-
ty).

df
 . . .
example/compressed 17547008 0 17547008 0% /example/compressed
example/data 17547008 0 17547008 0% /example/data

Because these file systems are built on ZFS, they draw from the same pool for storage.
This eliminates the need for volumes and partitions that other file systems rely on.

2 of 5

20FreeBSD Journal • January/February 2023

To destroy the file systems and then the pool that is no longer needed:

zfs destroy example/compressed
zfs destroy example/data
zpool destroy example

RAID-Z
RAID-Z pools require three or more disks but offer protection from data loss if a disk

were to fail. Because the ZFS pools can use multiple disks, support for RAID is inherent in
the design of the file system

To create a RAID-Z pool, specifying the disks to add to the pool:

zpool create storage raidz da0 da1 da2

With the zpool created, a new file system can be made in that pool:

zfs create storage/home

Enable compression and store an extra copy of directories and files:

zfs set copies=2 storage/home
zfs set compression=gzip storage/home

A RAID-Z pool is a great place to store crucial system files, such as the home directory
for users.

cp -rp /home/* /storage/home
rm -rf /home /usr/home
ln -s /storage/home /home
ln -s /storage/home /usr/home

File system snapshots can be created to roll back to later, the snapshot name is marked in
yellow and can be whatever you want:

zfs snapshot storage/home@11-01-22

ZFS creates snapshots of a dataset, allowing users to back up a file system for roll backs
or data recovery in the future.

zfs rollback storage/home@11-01-22

To list all available snapshots, zfs list can be used:

zfs list -t snapshot storage/home

Recovering RAID-Z
Every software RAID has a method of monitoring its state. View the status of RAID-Z de-

vices using:

zpool status -x

If all pools are Online and everything is normal, the message shows:

all pools are healthy

3 of 5

21FreeBSD Journal • January/February 2023

If there is a problem, perhaps a disk being in the Offline state, the pool state will look like
this:

 pool: storage
 state: DEGRADED
status: One or more devices has been taken offline by the administrator.
 Sufficient replicas exist for the pool to continue functioning in a
 degraded state.
action: Online the device using ‘zpool online’ or replace the device with
 zpool replace.
 scrub: none requested
config:

 NAME STATE READ WRITE CKSUM
 storage DEGRADED 0 0 0
 raidz1 DEGRADED 0 0 0
 da0 ONLINE 0 0 0
 da1 OFFLINE 0 0 0
 da2 ONLINE 0 0 0

errors: No known data errors

“OFFLINE” shows the administrator took da1 offline using:

zpool offline storage da1

Power down the computer now and replace da1. Power up the computer and return da1
to the pool:

zpool replace storage da1

Next, check the status again, this time without -x to display all pools:

zpool status storage
 pool: storage
 state: ONLINE
 scrub: resilver completed with 0 errors on Fri Nov 4 11:12:03 2022
config:

 NAME STATE READ WRITE CKSUM
 storage ONLINE 0 0 0
 raidz1 ONLINE 0 0 0
 da0 ONLINE 0 0 0
 da1 ONLINE 0 0 0
 da2 ONLINE 0 0 0

errors: No known data errors

4 of 5

22FreeBSD Journal • January/February 2023

Data Verification
ZFS uses checksums to verify the integrity of stored data, these data checksums can be

verified (which is called scrubbing) to ensure integrity of the storage pool:

zpool scrub storage

Only one scrub can be run at a time due to the heavy input/output requirements. The
length of the scrub depends on how much data is stored in the pool. After scrubbing com-
pletes, view the status with zpool status:

zpool status storage
 pool: storage
 state: ONLINE
 scrub: scrub completed with 0 errors on Fri Nov 4 11:19:52 2022
config:

 NAME STATE READ WRITE CKSUM
 storage ONLINE 0 0 0
 raidz1 ONLINE 0 0 0
 da0 ONLINE 0 0 0
 da1 ONLINE 0 0 0
 da2 ONLINE 0 0 0

errors: No known data errors

Displaying the completion date of the last scrubbing helps decide when to start another.
Routine scrubs help protect data from silent corruption and ensure the integrity of the pool.

ZFS Administration
ZFS has two main utilities for administration: The zpool utility controls the operation of

the pool and allows adding, removing, replacing, and managing disks. The zfs utility allows
creating, destroying, and managing datasets, both file systems and volumes.

While this introductory guide won’t cover ZFS administration, you can refer to zfs(8) and
zpool(8) for other ZFS options.

Further Resources
While both the non-redundant and RAID-Z pools created using this guide will work in

most use cases, more complex or specialized systems may require further ZFS manage-
ment and setup. This guide barely scrapes the surface of what can be done using ZFS as
it is an extremely powerful and customizable file system. The OpenZFS wiki has expansive
documentation on installation, ZFS system administration, and manual pages. If tuning is re-
quired due to system architecture, ZFS tuning guides can be found on both the OpenZFS
and FreeBSD wiki pages.

DREW GURKOWSKI, FreeBSD Foundation

5 of 5

Donate to the Foundation!

Support
 FreeBSD

You already know that FreeBSD is an internationally
recognized leader in providing a high-performance,
secure, and stable operating system. It�s because of
you. Your donations have a direct impact on the Project.

Please consider making a gift to support FreeBSD for the
coming year. It�s only with your help that we can continue
and increase our support to make FreeBSD the high-
performance, secure, and reliable OS you know and love!

Your investment will help:

Funding Projects to Advance FreeBSD

Increasing Our FreeBSD Advocacy and

Providing Additional Conference
Resources and Travel Grants

Continued Development of the FreeBSD
Journal

Protecting FreeBSD IP and Providing
Legal Support to the Project

Purchasing Hardware to Build and
Improve FreeBSD Project Infrastructure

Making a donation is quick and easy.
freebsdfoundation.org/donate

®

®

Dear FreeBSD Letters Columnist,

How are you? I am fine. Well, mostly fine. Sort of fine.
Okay, no, I am not fine at all. I am a new sysadmin
and utterly lost and am hoping you can offer
guidance. I’m setting up a new web server, just like
this issue is about, and I’m stopped in the installer.
I hear all these things about optimizing filesystems
for different applications, and there’s lots of blog
posts about ways to optimize, but I’m not sure which
advice to take. Whatever I set up I must live with for
years! Please help me make less bad choices.

 —New Sysadmin

Dear NS,
Your letter is something of a relief, as it provides ample distraction from the horrors of

administering the web server I set up in 2017, or my Sendmail configuration from 1992. It’s
like getting my mind off my abscessed tooth by busting a few of my ribs. Well done!

You might be a new sysadmin, but at least you understand that you must live with your
bad decisions throughout the server’s lifespan. Yes, you could get all DevOps and dynam-

ically redeploy hosts with improved settings, but all
you’re doing is reducing the time you must live with
one set of decisions before replacing them with a
different set of equally bad ones. A change of poor
choices is not as good as a rest.

How do you optimize a filesystem for a database
at install time? My answer is: don’t. Premature optimi-
zation is the root of all evil, along with poor privilege

management and nano. You have no idea how your database will interact with the filesys-
tem until you run the application under real load. The only sensible choice is to arrange your
new system so that you will have empty disks to move your database to. Yes, this is pretty
much the same thing as devopsing to a new host, except it’s not a new host and you don’t
need Ansible. If you’re using one of those virtual host providers that offers block storage,
that’s dandy, except you’ll be formatting those blocks with a filesystem. Where The Cloud
is really “other people’s computers,” Block Storage is “other people’s cast-off hard drives ar-
ranged in a Redundant Array of Inexpensive Crap.” The main advantage is you’re not the
person who needs to trace the alarm beep to a drive tray.

1 of 3

How do you
optimize a filesystem
for a database
at install time?

24FreeBSD Journal • January/February 2023

by Michael W Lucas

freebsdjournal.org

If you insist on optimizing your filesystems, well, here’s what you do.
First off, understand that storage devices are lying liars that lie. The newest solid state

storage maintains a malformed compatibility with hard drives released in the previous cen-
tury, which were built on standards designed for punch cards, which had their roots in
17th-century looms and the Luddites, so every time you plug in a storage device you’re put-
ting someone out of work but there’s no ethical data storage under capitalism so go for it.
The main lie that needs to concern you is the sector size. Today’s drives overwhelmingly use
4K sectors, except for some NVMe devices that support multiple sector sizes but I don’t
have any of those so I’ll pretend they don’t exist. You need to make sure that the partitions—
not the filesystems, the partitions—on your drives align with those 4K sector sizes. If the fan-

cy boot loader you like requires a 98K GPT partition, it
fills nineteen and a half disk sectors. Drives claim that
they’ll save you, but that’s another lie. That next par-
tition better begin at 100K, a nice multiple of 4, or all
your filesystem blocks will be split between drive sec-
tors and every interaction with the hardware will take
twice as long and burn out the drive twice as quickly.

Once you have partitions, the filesystem blocks
need to also be multiples of 4K. ZFS defaults to 128K
stripes. UFS defaults to block sizes of 32K, which lets it
use 4K fragments, so it should be good as-is but don’t
get clever and think that smaller blocks mean better

performance because—no matter what a bunch of old blog posts say—they don’t.
There you go. You can report to management that your filesystems are tuned for your

hardware. Return to playing nethack.
But that’s the partitions, I hear some of you whine. What about the filesystems? Filesys-

tems need tuning! Balderdash, I say! You wouldn’t tuna fish, why tune a filesystem? Filesys-
tems are written for lazy people. Leave them alone, they have only caused you as much pain
as their programmers insisted on, and that was only because marketing insisted on planned
obsolescence to compel upgrades. BSD operating systems are not driven by profit, and user
pain increases support requests, so the amount of filesystem agony has been methodical-
ly reduced until there’s hardly any. Why, using filesystems barely qualifies as “torment” any-
more. Any changes are likely to increase your pain.

You’re still here? You still want advice?
Huh. You do know that therapists build careers out of helping people like you, right?
Fine.
Your filesystem should reflect your data. If you know that your data consists of, say, many

64KB files, you can set your blocks to that size. You know your own data, you should be able
to figure this out. If your data is less predictable, don’t optimize.

Databases can tempt even the most jaded sysadmin into optimizing their filesystem. Da-
tabases have predictable block sizes. MySQL uses a 16K block, so you could configure the
underlying ZFS dataset to use a recordsize of 16K. MySQL can compress its data, as can ZFS.
Attempting to compress already-compressed data wastes system resources. Study your ap-
plication and pick a place to compress data.

Don’t configure UFS to use 16K blocks, even when it’s supporting MySQL. A UFS block
has eight fragments, and thanks to the underlying disk each fragment has a minimum size

2 of 3

What about
the filesystems?
Filesystems
need tuning!
Balderdash, I say!

25FreeBSD Journal • January/February 2023

of 4K. Putting two UFS fragments on each disk drive sector would shatter performance.
Tuning your MySQL install to use larger blocks on UFS might make sense, but again, leave
the filesystem alone.

Postgres? 8K blocks everywhere by default. Again, tuning the database to match the disk
might make sense, but 8K blocks on either ZFS or UFS ruin system performance. If your
data demands 8K blocks, however, your best option is to use ZFS and set an 8K record size.

But in general, leave bad enough alone unless you want to make things worse. Which is
a very common impulse among people who won’t get the therapy they need. But rest as-
sured, a few months of struggling to understand the interactions between applications and
filesystems will soon make you an experienced system administrator.

You poor slob.

Have a question for Michael?
Send it to letters@freebsdjournal.org

MICHAEL W LUCAS has written over fifty books, and the UN’s “Special Ambassador To
Make Lucas Shut Up” was accidentally-on-purpose crushed beneath a stack of them. He
wrote one book about UFS and two on ZFS. As the ZFS books were co-written with Allan
Jude, they might even contain something helpful.

3 of 3

Pluggable Authentication Modules:
 Threat or Menace?

PAM is one of the most misunderstood parts of systems
administration. Many sysadmins live with authentication
problems rather than risk making them worse. PAM’s very
nature makes it unlike any other Unix access control system.

If you have PAM misery or PAM mysteries, you need PAM
Mastery!

“Once again Michael W Lucas nailed it.” — nixCraft

PAM Mastery by Michael W Lucas
https://mwl.io

26FreeBSD Journal • January/February 2023

freebsdjournal.org

27FreeBSD Journal • January/February 2023

We were thrilled to be part of the Rocky Mountain Celebration of Women in
Computing Conference, September 29-30, 2022, here in Boulder, Colorado!
The Rocky Mountain Celebration of Women in Computing (RMCWiC) is a
regional meeting modeled after the highly successful international Grace

Hopper Celebration. The goal of RMCWiC is to encourage the research and career inter-
ests of local women in computing. RMCWiC has been held every two years since 2008
with a pause in 2020

RMCWiC offers an opportunity for students to present their research and to network
with leaders from academia, government, and industry. In this way, RMCWiC provides a
unique opportunity for technical women from Colorado and neighboring states to come

Just a few years ago, we were gaining momentum on showcasing FreeBSD at women in
computing conferences and university groups.
But that came to a standstill when Covid hit. We
are now kickstarting that effort to attend more
of these types of events, from meetups to cele-
bration of women in computer conferences. So,
I was thrilled when I saw the local Rocky Moun-
tain Celebration of Women in Computing was
taking place right here in Boulder, Colorado in
September!

First, I love these events, because they are
smaller and it’s easier to talk to attendees about
FreeBSD. This event brought in around 300 at-
tendees from Colorado and surrounding states.
I always love the energy of young folks as they
meet others with similar interests in computing,
while they learn from amazing role models in
various technology fields.

I had the opportunity to give a talk on Open Source and why people should get involved.
Of course, I used FreeBSD as an example of an open source project they should consider.
After my talk, there was a career fair, where Justin Gibbs and I staffed a FreeBSD table, giv-
ing us the opportunity to talk with many of the attendees about FreeBSD. It was crazy loud,
and everyone was wearing masks, so it was difficult, but we made it work. We had lots of at-
tendees stop by our table to talk and ask us questions.

BY DEB GOODKIN

The goal of The Rocky

Mountain Celebration of

Women in Computing is

to encourage the research

and career interests of

local women in computing.

1 of 4

Rocky Mountain Celebration
of Women in Computing

Conference Report

28FreeBSD Journal • January/February 2023

All in all, I’d say this was a great event for the Project, the students, and the Foundation.
We always appreciate an opportunity to educate people about FreeBSD and encourage
them to contribute to the project.

In 2023, we will be identifying a few women in computing conferences that we’d like to
attend. Let us know if there is one you are familiar with that we should attend. Or maybe
you’d like to present at one and staff a table in their career fair. We’re here to support you if
you choose that path!

DEB GOODKIN is the Executive Director of the FreeBSD Foundation. She’s thrilled to
be in her 15th year at the Foundation and is proud of her hardworking and dedicated
team. She spent over 20 years in the data storage industry in engineering development,
technical sales, and technical marketing. When not working, you’ll find her on her road
or mountain bike, running, hiking with her dogs, skiing the slopes of Colorado, or read-
ing a good book.

2 of 4

Conference Report

all the storage; we use ZFS to replicate the data between cluster nodes; we use
compression and snapshots. And we heavily use Capsicum to make it all secure.

We want to be sure that even if someone breaks into a single session, he can-
not access other sessions. He cannot actually access anything, because if he
breaks in before authentication, he won't be granted access to connect to the
server. Only after successful authentication will we provide a connection to the
destination server.

And Capsicum makes it really clean and very efficient actually.
Al lan: You don't have to enumerate all the things you can't do. You're saying
you're only allowed to do these things?

• Pawel: Yes. This is capability ideology. You only grant the exact rights or access
to resources that the process requires. Which is not UNIX ideology because, of
course, if you are running a UNIX program, it has access to everything.
Al lan: Was there anything else you wanted to talk about?

• Pawel: Not really. •

Sept/Oct 2019 23

FreeBSD is internationally recognized as an innovative
leader in providing a high-performance, secure, and stable
operating system.
Not only is FreeBSD easy to install, but it runs a huge number

full source code.

The FreeBSD Community is proudly supported by

T

Help Create the Future.
Join the FreeBSD Project!

The FreeBSD Project is looking for

Find out more by

Checking out our website

Downloading the Software

for people like you to help continue
developing this robust operating system.
Join us!

Already involved?

Don�t forget to check out the latest
grant opportunities at
freebsdfoundation.org

29FreeBSD Journal • January/February 2023

In the last 30 years, the computers we use have grown unimaginably faster. The 1995 Al-
pha AXP paper talked about designing for a machine’s continuing the trend of the previ-
ous 25 years, getting 1000 times faster.

We have certainly managed to meet that goal, the 386 machines that were the original
target of FreeBSD are akin to the micro controllers we use in keyboards today.

Even with these changes, the core of computer performance has remained the same, ex-
ecute fewer instructions per unit of work, and things will go faster. This fundamental truth
underlying networking has led to several different approaches to improving performance.
We have worked on mechanisms that moved work away from our CPU and, instead, into
the network card with checksum offload. If the card runs the instructions to checksum out-
going packets, then our precious CPU time can be spent doing other things.

Checksum offload saw great results, and we started to move other things away from
the CPU and into the network interface. TCP Segment Offload (TSO) was the next great
mechanism that improved performance for a network sender. Rather than forming the IP
packets for the TCP segments we will send, we can form one template and send that with
a large block of data to the card. The network interface handles the segmenting as it places
the packets onto the wire. TSO gives huge benefits
to a TCP sender, providing us the ability to saturate
10-Gigabit network interfaces well before we run
out of even a single core.

TSO lets us be more efficient with precious re-
sources. We reduce the number of bus (memory
and PCI) transactions required to send each packet
by batching them together and creating the final
chunks at the point of transmission. This is straight-
forward for TCP to do, most of the time if we are
bulk sending a stream of data and the chunking of
data is clear. To mirror these improvements on the
TCP receiver, we have Large Receive Offload (LRO).
LRO lets us again reduce the number of transac-
tions required to maintain high-rate data transfers.

For UDP, Linux has generic mechanisms that attempt to replicate TSO-like mechanisms.
This support comes with Generic Segment Offload (GSO) and Generic Receive Offload
(GRO). GSO enables huge improvements on the order or 20% for a UDP sender, GRO is
more difficult to measure, but the mechanism is there.

FreeBSD has excellent support for TSO and LRO, but is lacking mechanisms similar to
GSO and GRO. At EuroBSDCon in Vienna last year I spoke to John Baldwin about a mecha-
nism similar to GRO that he is working on, which he calls Packet Batching.

1 of 2

BY TOM JONES AND JOHN BALDWIN

Packet Batching

FreeBSD has excellent

support for TSO and

LRO, but is lacking

mechanisms similar

to GSO and GRO.

30FreeBSD Journal • January/February 2023

TJ: What is the background to the packet batching work?
JB: The idea of packet batching on receive has been around for a while, at least in the form
of a wish list item I’ve heard various people mention several times. We already have some
forms of packet batching specific to TCP for both sending (TSO) and receiving (LRO). This
packet batching aims to be more generic than LRO so that it can apply to other protocols
(primarily UDP).
TJ: Why is the work needed?
JB: The goal of packet batching approaches such as TSO and LRO is to amortize per-pack-
et costs (various checks in the network stack on header fields, etc.) by doing them once per
batch rather than once per packet. The cost of per-packet overheads becomes an increas-
ingly worse problem as network speeds increase faster than CPU speeds. It is true that one
of the fixes for this problem, in general, which does help with per-packet overhead, is hor-
izontal scaling by using RSS to distribute packets across separate queues bound to differ-
ent CPUs. However, you can’t distribute a single flow across multiple cores, and batching
schemes are aimed at making the performance of a single queue more efficient.
TJ: What new features/enhancements does the work make possible?
JB: The goal is higher PPS and/or reduced CPU usage for network received workloads. I
don’t expect it to help with TCP when LRO is enabled, mostly to help with UDP.
TJ: How can people test the work? Normally we need to emphasize testing with more di-
verse workloads, does this apply here?
JB: Benchmarking would be welcome. My initial set of simple benchmarks using iperf3 were
mixed and not a clear enough win to justify the changes. The changes do add complexi-
ty, so it needs to be a clear win in some workloads, I think, before it should be considered a
commit candidate. I have not observed any regressions in my benchmarks to date, just mea-
ger to zero gains.
TJ: How would you like feedback?
JB: E-mail directly to me is probably the best way to send feedback for now. At some point
in the future, I will start a public RFC thread on net@ and/or arch@ at which point that
thread will be the best place to send feedback. Folks wishing to test the patches or review
them can find them at https://github.com/freebsd/freebsd-src/compare/main...bsdjhb:-
freebsd:cxgbe_batching.

From John’s responses here, it isn’t yet clear where the benefits should be seen. iperf3
measurements can’t simulate the workload of a very busy server. For Packet Batching to of-
fer a benefit in FreeBSD it is likely that more workloads need to be tested and tuned for. By
pulling down John’s github branch and experimenting with your network traffic, you can
help establish a new receiver optimization in FreeBSD.

TOM JONES wants FreeBSD-based projects to get the attention they deserve. He lives in
the North East of Scotland and offers FreeBSD consulting.

JOHN BALDWIN is a systems software developer. He has directly committed changes to the
FreeBSD operating system for 20 years across various parts of the kernel (including x86 plat-
form support, SMP, various device drivers, and the virtual memory subsystem) and userspace
programs. In addition to writing code, John has served on the FreeBSD core and release en-
gineering teams. He has also contributed to the GDB debugger and LLVM. John lives in Con-
cord, California, with his wife, Kimberly, and three children: Janelle, Evan, and Bella.

2 of 2

Packet Batching

31FreeBSD Journal • January/February 2023

T he Desktop experience can be formative. I got my first PC in 1990 as an 8th Grade
graduation gift. (Thanks Dad!) It helped instill my interest in computers and it got
me through high school. I used it mostly for playing Zork, Jeopardy and, of course,
writing papers on Word Perfect. The interface was rather clunky, but for the pur-

poses of a small-town high school student in the 90s, it worked quite well. Once college
came about, a new machine came my way and a GUI that made things work so much bet-
ter. Using a computer became part of everyday life. In fact, one of the selling points of my
university was that every dorm had its own desktop. Fast forward 20+ years, and the stan-
dards for a usable desktop are quite high. Intuitive, fast, pretty graphics, and speedy wi-fi
are all expected. FreeBSD’s desktop experience over the years has had its ups and downs.
Twenty or so years ago, FreeBSD and Linux were mostly neck and neck in terms of desktop
usability. Unfortunately, as time went on, FreeBSD did fall behind. The desktop experience
became a lower priority. However, catch up eventually ensued and within the last 10 or so
years, focusing on the desktop has increasingly become of greater importance for many
members in the community. To help understand more about the Foundation’s work on the
desktop experience, we sat down with Ed Maste, Senior Director of Technology.

Unsurprisingly, one question the Foundation often gets is where the desktop experience
falls in our list of priorities. The answer: Well, it varies. Because the Foundation’s main goal is
to support the Project in technical areas that aren’t being fully addressed by the communi-
ty, the desktop sponsored work ebbs and flows. When work stagnated about 10 years ago
and the Project began to fall behind in terms of hardware support, the Foundation funded
Kostik Belousov to work on Intel Graphics Drivers. More recently though, the Project has
moved to using the Linux Kernel Interface (KPI) to help keep drivers up to date. The Foun-
dation funded Bjorn Zeeb to work on the wireless side, and about 2 years ago, it funded Em-
manual Vadot to work on graphics drivers.

These days, the FreeBSD community has continued the graphics work via the Linux KPI,
while the Foundation is funding Bjorn to do the same on the wireless side. The net result is
that generally, you can take a contemporary x86 laptop or desktop system, and the graph-
ics and wireless will just work. The hope with this method is that as each, new generation

BY ANNE DICKISON

1 of 2

The Foundation
 and the FreeBSD

Desktop

32FreeBSD Journal • January/February 2023

of hardware comes out, we’ll be able to take the latest upstream drivers and just use them
without any sort of significant rework to make them work on FreeBSD. Ed notes that while
using the Linux KPI might not be the most popular solution, it does seem to be the most
developer-efficient way to keep the drivers up to date.

“In an ideal world, with unlimited resources and an unlimited supply of qualified techni-
cal people, I would just have developers create bespoke FreeBSD drivers. While the current
method may have its detractors, the result is that FreeBSD has a working driver that is per-
formant and featureful, that should allow us to basically remain up to date.”

Speaking of up to date, Ed was quick to mention one caveat when it comes to wireless
drivers. While the wi-fi does work out of the box on many desktop systems, the speed is
sometimes lacking in comparison to contemporary wi-fi standards. That doesn’t mean you
can’t use FreeBSD as your daily desktop though. It’s fast enough for video, conference calls,
and web browsing. Ed mentioned how Bjorn’s work has made the wi-fi on his Framework
laptop stable and reliable. But when it comes to downloading large files, you will notice slow-
er speeds. The Foundation has extended Bjorn’s contract into 2023 and he is working on
those standards now with the goal of having it available in FreeBSD 14.0, if not 13.2.

However, as mentioned above, FreeBSD can be used as your daily driver, an aspect that
is very important to Ed and the Foundation. One of the reasons the Foundation has cho-
sen to support the wi-fi efforts as of late is that there’s a huge amount of value in being
able to use the operating system that you’re developing on as your desktop machine. In
fact, Ed sees that as being connected to the Project’s long-term viability and the ability to
bring on new users.

“Let’s take someone who is in university, I think it really is the case that FreeBSD is the
best operating system for someone who is interested in learning about operating sys-
tem internals. Someone who wants to become an operating system developer or wants
to explore and learn about operating systems. FreeBSD is advanced enough that it can do
what you need, but you can still find a niche and make your own impact. But, without a us-
er-friendly desktop experience, it’s hard to make the argument that someone should try
FreeBSD if they’re already familiar with Linux on their laptop.”

Thanks to great work from members of the community along with Foundation support-
ed efforts in key areas, the FreeBSD desktop experience is on a positive trajectory. As we
head into 2023, Ed says the Foundation plans to continue to support Bjorn’s wi-fi work and
take another look at the installer to help make sure that you’re able to get a usable graphical
desktop environment--out of the box. Of course, that all may change as 2023 progresses,
but ultimately, Ed and his team are dedicated to working with other community members
to produce a modern and user-friendly desktop experience.

ANNE DICKISON joined the Foundation in 2015 and brings over 20 years experience in
technology-focused marketing and communications. Specifically, her work as the Marketing
Director and then Co-Executive Director of the USENIX Association helped instill her com-
mitment to spreading the word about the importance of free and open source technologies.

2 of 2

BSD Events taking place through April 2023
BY ANNE DICKISON
Please send details of any FreeBSD related events or events
that are of interest for FreeBSD users which are not listed here
to freebsd-doc@FreeBSD.org.

FreeBSD Office Hours
https://wiki.freebsd.org/OfficeHours

Join members of the FreeBSD community for FreeBSD Office Hours. From general Q&A
to topic-based demos and tutorials, Office Hours is a great way to get answers to your
FreeBSD-related questions.

Past episodes can be found at the FreeBSD YouTube Channel.
https://www.youtube.com/c/FreeBSDProject.

33FreeBSD Journal • January/February 2023

SCALE 20X
March 9-12, 2023
Pasadena, CA
https://www.socallinuxexpo.org/blog/scale-20x

SCaLE is the largest community-run open-source and free software conference in North
America. It is held annually in the greater Los Angeles area. Roller Angel will also be hosting a
FreeBSD workshop during the conference.

Open Source 101
March 23, 2023
Charlotte, NC
https://opensource101.com/

Open Source 101 is a one-day educational conference covering the processes and tools
foundational to open source, open tech, and the open web. All sessions will be delivered vir-
tually/online and at an introductory or intermediate level to allow for the best onramp or
refresh possible. Target audience includes developers, technologists, students and decision
makers. The format includes TED-style keynote talks as well as track sessions from industry
experts. The FreeBSD Foundation is pleased to be a Media Partner.

AsiaBSDCon 2023
March 30-April 2, 2023
Tokyo, Japan
https://2023.asiabsdcon.org/

AsiaBSDCon is for anyone developing, deploying and using systems based on FreeBSD,
NetBSD, OpenBSD, DragonFlyBSD, Darwin and MacOS X. It is a technical conference and
aims to collect the best technical papers and presentations available to ensure that the latest
developments in our open source community are shared with the widest possible audience.

