
9FreeBSD Journal • January/February 2023

OOur virtual lab will consist of a FreeBSD Host system that uses the FreeBSD Jails tech-
nology to provide each system we want to install within the lab its own separate
environment to run services and perform its duties. These duties could be any

number of things like serving up web pages, storing and retrieving database records, que-
rying and answering DNS requests, caching system update files, etc. The idea is to build a
solid foundation that will enable future growth for our virtual lab. Given that the nature of
FreeBSD Jails is to provide a lightweight system for containing our services, we can rest as-
sured knowing that any number of rabbit holes we may find ourselves in won’t limit our
creativity or exploration due to reaching our resource limitations. We can have a separate
environment for each idea and not have to worry about the expense of provisioning anoth-
er operating system to support the services necessary for that idea to flourish. I’ve experi-
mented with many different methods of hosting operating system installs for my work and
I’m pleasantly surprised by the peace of mind I get when provisioning a new jail. It’s so eco-
nomical! I’m no longer burdened with a financial concern and a question of how long this
expense will be ongoing, rather it’s just another environment in my ever growing lab and
doesn’t inherently come with a minimum monthly fee to use it. Not to get too technical
and go down a financial rabbit hole regarding the cost of electricity, internet connectivity,
host hardware; yes, I agree those things have a cost, but once they are in place, the addition
of new hosts isn’t anywhere near the considerations and expenses that go into the initial
lab setup. I recommend repurposing an existing machine as the host machine, maybe even
a laptop, as it comes with a built in battery backup, giving you time to gracefully shutdown
your systems in the event of a sustained power outage. The issue of needing multiple phys-
ical network interfaces to connect physical Ethernet switches to Ethernet cables and access
points that your physical hosts will use are not a material concern in our virtual lab. These in-
terfaces can be created with words in a text file and virtual Ethernet cables can be created
to connect the pieces of our virtual network.

FreeBSD Host
This host machine will need a few network interfaces.

We want the host to have its own way out to the internet.
This can be a good ole DHCP assigned address provid-
ed by a local router, or your host could be performing the
role of router and have a direct connection to the outside
world through a modem. However your host gets its inter-
net connection, we’ll want to have an additional network
interface that we can use solely for our lab network. This in-
terface may have a name like em0, igb0, or similar depend-
ing on the network card driver and the number of installed

BY ROLLER ANGEL

1 of 9

 Virtual Lab –
	 BSD Programming Workshop




10FreeBSD Journal • January/February 2023

interfaces. Even if we don’t have multiple physical network interfaces, we can always make
a separate network interface to use with cloned_interfaces. In my case, I’m repurposing
some laptops. One has a working WiFi card I use for connecting to the internet. This is an
older Asus ROG laptop from the early 2010s. It has a built in Ethernet port as well. On my X1
Carbon 7th Gen ThinkPad, there aren’t built in Ethernet ports. I just use the USB port and
my Android USB Tethering. However, I’m most excited about the Dell Precision laptop. It’s a
great lab host as it comes with an Intel Xeon processor and can handle 128GB of RAM and
multiple NVME hard drives. It has a built in ethernet port on the back of the laptop and the
second one is a USB-C dongle that has an Intel igb0 ethernet port on it that I use for the
dedicated interface for the lab network. Finally, old towers are also great as a host, there are
some fantastic PCI network cards you can install with mulitple Ethernet ports. The key here
is to find what works for you, install FreeBSD and get going with our virtual lab. See the Get-
ting Started With FreeBSD Workshop from the July/August 2022 FreeBSD Journal issue if
you’d like to get some tips on installing and configuring FreeBSD.

Virtual Network Design
Just like in the physical server world

where we have multiple physical Ethernet
ports on our router/firewall systems, we
can provision multiple interfaces for our
lab router/firewall system which I will re-
fer to as the gateway from now on. These
interfaces will be connected to each
other via bridges. Think of an Ethernet
switch from a physical network, a bridge
provides similar functionality. And for our
Ethernet cables, we will use epair(4) inter-
faces. These consist of two sides, side A
and side B. We’ll hook up side A to the bridge and side B to our jail. This way all the jails can
communicate with each other over the virtual bridge much like physical hosts in a network
connected via Ethernet cable to a switch would be able to communicate with one another.
The gateway jail will have an additional virtual cable to connect to a separate bridge that al-
lows connectivity outside the lab and onto the internet. All jails will set their default route to
point to this gateway. The way we give that separate bridge the ability to connect to the out-
side world is by assigning a physical interface as a member of the bridge. Again, this is akin
to plugging the Ethernet cable into the switch, but in this case the Ethernet cable is plugged
into the FreeBSD Host system and is then virtually plugged into the bridge. By doing this,
the other virtual Ethernet cables that are also members of the same bridge will be able to
communicate with it and get their packets flowing in and out of the lab environment.

Let’s break it down, each jail gets its own network using a technology called vnet. We at-
tach our physical interface on the FreeBSD Host to one virtual bridge and we create a sec-
ond virtual bridge for our lab network that has only virtual interfaces from lab jails connect-
ed to it. We then use routing and firewall rules to push packets around as we see fit.

2 of 9


 Virtual Lab – 	 BSD Programming Workshop

11FreeBSD Journal • January/February 2023

Firewall
We’ll be using PF for the firewall. The way FreeBSD Jails works is that each jail is sharing

the host kernel, so if there’s a kernel module that you want to have access to inside the jail,
you just need to allow it and then configure access in the jail.conf settings for the par-
ticular jail. Take a look at the /etc/defaults/devfs.rules file. For our gateway to use the
PF firewall, we’ll need to set the configuration of the jail to use the pf ruleset listed in this
file. We’ll setup our own custom devfs rules later on and include the configuration from the
devfsrules_jail_vnet rule.

Configuration
Now that we’ve covered what we’re going to do, let’s get to doing it. We start with a

FreeBSD Host running 13.1-RELEASE. As described above, this host should have an active
internet connection. We’ll use that connection to download some files for use in creating
our jails. The host has NTPD running, so it gets accurate time. Check for any services listen-
ing on the host with sockstat -46 and turn them off if unused. Remember that the host
should be limited in what it does—we’ll have plenty of fun things to do in jails inside our lab,
so do your best to limit the services on the host. I plan on doing any management of my
host in person by logging in with the attached keyboard and screen so I’ve not enabled SSH
on the host.

Now we’re ready to enable jails. A simple sysrc jail_enable=YES will do the trick. No
need to install any package, jail management is built into FreeBSD. Take a look at the READ-
ME file in /usr/share/examples/jails for some examples of how you might configure
your jails. As you will see, there are many ways to go about jail configuration. I’ve done my
research and picked the configuration method you’ll see here. You’re welcome to give one
of the other approaches a try and see what fits. If you do go about this task another way,
please consider writing about it so others can see what you’ve found useful and give it a try
themselves. At this point, we’ve verified our host machine is ready for hosting jails and have
enabled the jail service so we can do a quick reboot double check that minimal services are
listening on the host and move on to creating the base configuration for all our jails to use.
When editing configuration files we’ll be using vim, for basic editing tasks you really only
need to know a handful of things, spend a few minutes going through the interactive exer-
cises as part of the command vimtutor to get your bearings and you’ll be a vim novice in
no-time at all.

Note: We’re running all the following commands as the root user. Type sudo -i to be-
come root.

edit jail.conf

vim /etc/jail.conf

put the following into /etc/jail.conf

$labdir=”/lab”;
$domain=”lab.bsd.pw”;
path=”$labdir/$name”;
host.hostname=”$name.$domain”;
exec.clean;

3 of 9

 Virtual Lab – 	 BSD Programming Workshop

12FreeBSD Journal • January/February 2023

exec.start=”sh /etc/rc”;
exec.stop=”sh /etc/rc.shutdown”;
exec.timeout=90;
stop.timeout=30;
mount.devfs;
exec.consolelog=”/var/tmp/${host.hostname}”;

base.txz
mkdir -p /lab/media/13.1-RELEASE
cd /lab/media/13.1-RELEASE
fetch http://ftp.freebsd.org/pub/FreeBSD/releases/amd64/13.1-RELEASE/base.txz

Gateway Jail
mkdir /lab/gateway
tar -xpf /lab/media/13.1-RELEASE/base.txz -C /lab/gateway

edit jail.conf

vim /etc/jail.conf

add to the bottom of the file

gateway {
 ip4=inherit;
}

feel free to add a user account to the jail with the following optional command, for this
article we’re just going to be using the user root

chroot /lab/gateway adduser

set the root password for the jail

chroot /lab/gateway passwd root

setup DNS resolution using OpenDNS servers

vim /lab/gateway/etc/resolv.conf

add the following lines to resolv.conf

nameserver 208.67.222.222
nameserver 208.67.220.220

copy the hosts time zone setting

cp /etc/localtime /lab/gateway/etc/

create an empty file system table

touch /lab/gateway/etc/fstab

4 of 9

 Virtual Lab – 	 BSD Programming Workshop

13FreeBSD Journal • January/February 2023

start jail

jail -vc gateway

login to jail

jexec -l gateway login -f root

logout of the jail

logout

list jails

jls

stop the jail

jail -vr gateway

create devfs.rules

vim /etc/devfs.rules

add the following lines to devfs.rules

[devfsrules_jail_gateway=666]
add include $devfsrules_jail_vnet
add path bpf* unhide

restart devfs

service devfs restart

verify devfs rules

devfs rule showsets

assign our new ruleset to the gateway jail

vim /etc/jail.conf

add the following line to the gateway { } config block

devfs_ruleset=666;

restart the gateway jail

service jail restart gateway

verify ruleset was applied to gateway jail

jls -j gateway devfs_ruleset

we expect to see 666 as the output of the above command

load the PF kernel module on host

sysrc -f /boot/loader.conf pf_load=YES
kldload pf

5 of 9

 Virtual Lab – 	 BSD Programming Workshop

14FreeBSD Journal • January/February 2023

enable PF on gateway jail

sysrc -j gateway pf_enable=YES

edit pf.conf on gateway jail

vim /lab/gateway/etc/pf.conf

add the following config

ext_if = “e0b_gateway”
int_if = “e1b_gateway”
table <rfc1918> const { 192.168.0.0/16, 172.16.0.0/12, 10.0.0.0/8 }

#Allow anything on loopback
set skip on lo0

#Scrub all incoming traffic
scrub in
no nat on $ext_if from $int_if:network to <rfc1918>

#NAT outgoing traffic
nat on $ext_if inet from $int_if:network to any -> ($ext_if:0)

#Reject anything with spoofed addresses
antispoof quick for { $int_if, lo0 } inet

#Default to blocking incoming traffic, but allowing outgoing traffic
block all
pass out all

#Allow LAN to access the rest of the world
pass in on $int_if from any to any
block in on $int_if from any to self

#Allow LAN to ping us
pass in on $int_if inet proto icmp to self icmp-type echoreq

Configuring the Virtual Network
Setup an interface. Here we’re using the dedicated network card named alc0 and as-

signing it a name of lab0. All further configuration will use the interface name lab0 and the
actual physical device it’s assigned to can be changed by editing one line of configuration.
This way it’s easy to switch our interface if we move our lab to another host or add a new
network interface down the road with a different name such as igb0, re0, or em0.

sysrc ifconfig_alc0_name=lab0
sysrc ifconfig_lab0=up
service netif restart

6 of 9

 Virtual Lab – 	 BSD Programming Workshop

15FreeBSD Journal • January/February 2023

copy the Jail Interface Bridge automation script into our lab scripts directory and make
it executable

mkdir /lab/scripts
cp /usr/share/examples/jails/jib /lab/scripts/
chmod +x /lab/scripts/jib

edit jail.conf

vim /etc/jail.conf

Gateway jail.conf
At this point, we’re ready to move from inheriting the ip4 network from the host and
use vnet, remove the gateway {} configuration block from /etc/jail.conf and replace it
with the following

gateway {
 vnet;
 vnet.interface=e0b_$name, e1b_$name;
 exec.prestart+=”/lab/scripts/jib addm $name lab0 labnet”;
 exec.poststop+=”/lab/scripts/jib destroy $name”;
 devfs_ruleset=666;
}

create the internal LAN network for the jails in the lab

sysrc cloned_interfaces=vlan2
sysrc ifconfig_vlan2_name=labnet
sysrc ifconfig_labnet=up
service netif restart

destroy and recreate gateway

jail -vr gateway
jail -vc gateway

configure networking for gateway jail

sysrc -j gateway gateway_enable=YES
sysrc -j gateway ifconfig_e0b_gateway=SYNCDHCP
sysrc -j gateway ifconfig_e1b_gateway=”inet 10.66.6.1/24”
service jail restart gateway
jexec -l gateway login -f root

test connectivity

host bsd.pw
ping -c 3 bsd.pw

exit the jail

logout

7 of 9

 Virtual Lab – 	 BSD Programming Workshop

16FreeBSD Journal • January/February 2023

create another jail that only has one interface that’s attached to the labnet LAN net-
work

vim /etc/jail.conf

add the following to the bottom of the file

client1 {
 vnet;
 vnet.interface=”e0b_$name”;
 exec.prestart+=”/lab/scripts/jib addm $name labnet”;
 exec.poststop+=”/lab/scripts/jib destroy $name”;
 devfs_ruleset=4;
 depend=”gateway”;
}

make the directory structure for the new jail

mkdir /lab/client1
tar -xpf /lab/media/13.1-RELEASE/base.txz -C /lab/client1

set the root password

chroot /lab/client1 passwd root

setup DNS resolution using OpenDNS servers

vim /lab/client1/etc/resolv.conf

add the following lines to resolv.conf

nameserver 208.67.222.222
nameserver 208.67.220.220

copy the hosts time zone setting

cp /etc/localtime /lab/client1/etc/

create an empty file system table

touch /lab/client1/etc/fstab

start jail

jail -vc client1

configure networking for client1 jail

sysrc -j client1 ifconfig_e0b_client1=”inet 10.66.6.2/24”
sysrc -j client1 defaultrouter=”10.66.6.1”
service jail restart client1

login to jail

jexec -l client1 login -f root

8 of 9

 Virtual Lab – 	 BSD Programming Workshop

17FreeBSD Journal • January/February 2023

test connectivity

host bsd.pw
ping -c 3 bsd.pw
ping -c 3 10.66.6.1

grab a sample tcsh profile

fetch -o .tcshrc http://bsd.pw/config/tcshrc
chsh -s tcsh

exit the jail

logout

The next time you login, you’ll have a green prompt due to the tcshrc settings, enjoy!
Now you have a virtual lab with it’s own virtual network that has a physical interface re-
served for the outbound connection to the internet. Since we named the interface lab0,
we can easily update it. Go ahead and give that a try. For instance, you can plug in an An-
droid phone that has an internet connection, WiFi or Cellular is fine, as either will do. Go to
the network settings on the phone after you plug it into the host and enable USB Tethering.
A ue0 interface will now be available for use. Update the line in /etc/rc.conf that says if-
config_alc0_name=”lab0” to be ifconfig_ue0_name=”lab0”. Reboot. Login to either
jail and test connectivity. Your network has been swapped out. Your lab is now mobile!

I hope you had fun following along with this article. I’m super passionate about FreeBSD
and sharing what I learn with others brings me joy. I hope you do amazing things with
FreeBSD in your lab and I look forward to chatting with many of you at one of the fantastic
BSD conferences.

ROLLER ANGEL spends most of his time helping people learn how to accomplish their
goals using technology. He’s an avid FreeBSD Systems Administrator and Pythonista who
enjoys learning amazing things that can be done with Open Source technology — especial-
ly FreeBSD and Python — to solve issues. He’s a firm believer that people can learn anything
they wish to set their minds to. Roller is always seeking creative solutions to problems and en-
joys a good challenge. He’s driven and motivated to learn, explore new ideas, and to keep his
skills sharp. He enjoys participating in the research community and sharing his ideas.

9 of 9

 Virtual Lab – 	 BSD Programming Workshop

