
Dear FreeBSD Letters Columnist,

How are you? I am fine. Well, mostly fine. Sort of fine.
Okay, no, I am not fine at all. I am a new sysadmin
and utterly lost and am hoping you can offer
guidance. I’m setting up a new web server, just like
this issue is about, and I’m stopped in the installer.
I hear all these things about optimizing filesystems
for different applications, and there’s lots of blog
posts about ways to optimize, but I’m not sure which
advice to take. Whatever I set up I must live with for
years! Please help me make less bad choices.

	 —New Sysadmin

Dear NS,
Your letter is something of a relief, as it provides ample distraction from the horrors of

administering the web server I set up in 2017, or my Sendmail configuration from 1992. It’s
like getting my mind off my abscessed tooth by busting a few of my ribs. Well done!

You might be a new sysadmin, but at least you understand that you must live with your
bad decisions throughout the server’s lifespan. Yes, you could get all DevOps and dynam-

ically redeploy hosts with improved settings, but all
you’re doing is reducing the time you must live with
one set of decisions before replacing them with a
different set of equally bad ones. A change of poor
choices is not as good as a rest.

How do you optimize a filesystem for a database
at install time? My answer is: don’t. Premature optimi-
zation is the root of all evil, along with poor privilege

management and nano. You have no idea how your database will interact with the filesys-
tem until you run the application under real load. The only sensible choice is to arrange your
new system so that you will have empty disks to move your database to. Yes, this is pretty
much the same thing as devopsing to a new host, except it’s not a new host and you don’t
need Ansible. If you’re using one of those virtual host providers that offers block storage,
that’s dandy, except you’ll be formatting those blocks with a filesystem. Where The Cloud
is really “other people’s computers,” Block Storage is “other people’s cast-off hard drives ar-
ranged in a Redundant Array of Inexpensive Crap.” The main advantage is you’re not the
person who needs to trace the alarm beep to a drive tray.

1 of 3

How do you
optimize a filesystem
for a database
at install time?

24FreeBSD Journal • January/February 2023

by Michael W Lucas

freebsdjournal.org

If you insist on optimizing your filesystems, well, here’s what you do.
First off, understand that storage devices are lying liars that lie. The newest solid state

storage maintains a malformed compatibility with hard drives released in the previous cen-
tury, which were built on standards designed for punch cards, which had their roots in
17th-century looms and the Luddites, so every time you plug in a storage device you’re put-
ting someone out of work but there’s no ethical data storage under capitalism so go for it.
The main lie that needs to concern you is the sector size. Today’s drives overwhelmingly use
4K sectors, except for some NVMe devices that support multiple sector sizes but I don’t
have any of those so I’ll pretend they don’t exist. You need to make sure that the partitions—
not the filesystems, the partitions—on your drives align with those 4K sector sizes. If the fan-

cy boot loader you like requires a 98K GPT partition, it
fills nineteen and a half disk sectors. Drives claim that
they’ll save you, but that’s another lie. That next par-
tition better begin at 100K, a nice multiple of 4, or all
your filesystem blocks will be split between drive sec-
tors and every interaction with the hardware will take
twice as long and burn out the drive twice as quickly.

Once you have partitions, the filesystem blocks
need to also be multiples of 4K. ZFS defaults to 128K
stripes. UFS defaults to block sizes of 32K, which lets it
use 4K fragments, so it should be good as-is but don’t
get clever and think that smaller blocks mean better

performance because—no matter what a bunch of old blog posts say—they don’t.
There you go. You can report to management that your filesystems are tuned for your

hardware. Return to playing nethack.
But that’s the partitions, I hear some of you whine. What about the filesystems? Filesys-

tems need tuning! Balderdash, I say! You wouldn’t tuna fish, why tune a filesystem? Filesys-
tems are written for lazy people. Leave them alone, they have only caused you as much pain
as their programmers insisted on, and that was only because marketing insisted on planned
obsolescence to compel upgrades. BSD operating systems are not driven by profit, and user
pain increases support requests, so the amount of filesystem agony has been methodical-
ly reduced until there’s hardly any. Why, using filesystems barely qualifies as “torment” any-
more. Any changes are likely to increase your pain.

You’re still here? You still want advice?
Huh. You do know that therapists build careers out of helping people like you, right?
Fine.
Your filesystem should reflect your data. If you know that your data consists of, say, many

64KB files, you can set your blocks to that size. You know your own data, you should be able
to figure this out. If your data is less predictable, don’t optimize.

Databases can tempt even the most jaded sysadmin into optimizing their filesystem. Da-
tabases have predictable block sizes. MySQL uses a 16K block, so you could configure the
underlying ZFS dataset to use a recordsize of 16K. MySQL can compress its data, as can ZFS.
Attempting to compress already-compressed data wastes system resources. Study your ap-
plication and pick a place to compress data.

Don’t configure UFS to use 16K blocks, even when it’s supporting MySQL. A UFS block
has eight fragments, and thanks to the underlying disk each fragment has a minimum size

2 of 3

What about
the filesystems?
Filesystems
need tuning!
Balderdash, I say!

25FreeBSD Journal • January/February 2023

of 4K. Putting two UFS fragments on each disk drive sector would shatter performance.
Tuning your MySQL install to use larger blocks on UFS might make sense, but again, leave
the filesystem alone.

Postgres? 8K blocks everywhere by default. Again, tuning the database to match the disk
might make sense, but 8K blocks on either ZFS or UFS ruin system performance. If your
data demands 8K blocks, however, your best option is to use ZFS and set an 8K record size.

But in general, leave bad enough alone unless you want to make things worse. Which is
a very common impulse among people who won’t get the therapy they need. But rest as-
sured, a few months of struggling to understand the interactions between applications and
filesystems will soon make you an experienced system administrator.

You poor slob.

Have a question for Michael?
Send it to letters@freebsdjournal.org

MICHAEL W LUCAS has written over fifty books, and the UN’s “Special Ambassador To
Make Lucas Shut Up” was accidentally-on-purpose crushed beneath a stack of them. He
wrote one book about UFS and two on ZFS. As the ZFS books were co-written with Allan
Jude, they might even contain something helpful.

3 of 3

Pluggable Authentication Modules:
 Threat or Menace?

PAM is one of the most misunderstood parts of systems
administration. Many sysadmins live with authentication
problems rather than risk making them worse. PAM’s very
nature makes it unlike any other Unix access control system.

If you have PAM misery or PAM mysteries, you need PAM
Mastery!

“Once again Michael W Lucas nailed it.” — nixCraft

PAM Mastery by Michael W Lucas
https://mwl.io

26FreeBSD Journal • January/February 2023

freebsdjournal.org

