
13FreeBSD Journal • November/December 2022

DTrace is a software tracing framework built into FreeBSD that allows users to
inspect and modify the currently running system in real time. It is high-

ly extensible and was originally built for Solaris, but has since been ported many times to
other environments such as FreeBSD, macOS, Windows and Linux. This article will focus on
DTrace usage in FreeBSD with examples and give a summary of recent developments in the
DTrace space on FreeBSD.

DTrace in Short
Operating systems are very complicated pieces of software which have many compo-

nents. A single tracing system attempting to support tracing of nearly the entire OS can be
overwhelming given their complexity. In order to simplify this as well as to account for future
extensions, DTrace introduces the notion of a provider. Providers live in the kernel as kernel
modules by default in FreeBSD and are responsible for implementing the necessary func-
tionality to instrument a particular component of the OS. They expose DTrace probes which
are names for locations in the OS code that can be dynamically instrumented with script-
able routines written in the D programming language. Some example providers shipped with
FreeBSD include the function boundary tracing provider (fbt.ko) — responsible for instru-
mentation of kernel function entry and exit points, the profile provider (profile.ko) which
provides probes associated with a fixed time-based interrupt specified by the script-writer,
the PID provider (fasttrap.ko) which implements fbt but for user processes and the li-
braries they link to and various others. While deep knowledge of DTrace is not required in
order to understand this article, those wishing to know more about DTrace may want to
check out the user guide1, specification2, FreeBSD Handbook Page³, whitepaper⁴, book⁵ and
various FreeBSD wiki pages that can be found such as the list of one-liners⁶. Furthermore, a
number of previous FreeBSD Journal editions featured articles on DTrace7,8,9.

Simple Examples
Probes are specified via a provider:module:function:name 4-tuple. Each of the en-

tries can be globbed or left blank to mean “everything”. We use an example toy snooper
script as an introduction to D. The script tells us which programs users are running. Note
that we specify the -x quiet option to avoid additional information that DTrace would
otherwise output.

BY DOMAGOJ STOLFA

DTrace:
New Additions to
an Old Tracing System

1 of 9

https://illumos.org/books/dtrace/preface.html#preface
https://github.com/opendtrace/documentation
https://docs.freebsd.org/en/books/handbook/dtrace/
https://www.cs.princeton.edu/courses/archive/fall05/cos518/papers/dtrace.pdf
https://www.brendangregg.com/dtracebook/
https://wiki.freebsd.org/DTrace/One-Liners

14FreeBSD Journal • November/December 2022

dtrace -x quiet -n 'proc:::exec { printf(“user = %u, gid = %u: %s\n”, uid, gid,
stringof(args[0])); }'
user = 1001, gid = 1001: /usr/sbin/service
user = 1001, gid = 1001: /bin/kenv
user = 1001, gid = 1001: /sbin/sysctl
user = 1001, gid = 1001: /sbin/env
user = 1001, gid = 1001: /bin/env
user = 1001, gid = 1001: /usr/sbin/env
user = 1001, gid = 1001: /usr/bin/env
user = 1001, gid = 1001: /etc/rc.d/sendmail
user = 1001, gid = 1001: /bin/kenv
user = 1001, gid = 1001: /sbin/sysctl
user = 1001, gid = 1001: /bin/ls

As we can see, D is very similar to C in its syntax aside from a couple of special forms
of syntax specific to it. Unlike C, it does not support loops so any form of looping must be
done by manually unwinding the loop. In the above example we can access the user and
group id through uid and gid built-in variables.

DTrace also supports aggregating the trace results together in various ways. For example,
we can count up the system calls each program is doing:

dtrace -n 'syscall:::entry { @syscall_agg[execname, pid] = count(); }'
dtrace: description 'syscall:::entry ' matched 1148 probes
 sh 46569 7
 sh 46570 7
 syslogd 703 16
 sshd 848 17
 devd 501 20
 ntpd 771 24
 sh 46565 93
 dtrace 46568 138
 ps 46570 254
 sshd 46564 27517
 ls 46569 35755

Using @ as a prefix to a variable makes it an aggregate variable. @syscall_agg is
indexed by two keys, however one can keep adding keys. The aggregation output for
@syscall_agg should be read as:

execname pid count

Our final example will be one with stack traces. DTrace allows the user to gather stack
traces both in the kernel and userspace using stack() and ustack() routines respective-
ly. Furthermore, DTrace can be extended with language-specific stack unwinders. One such
example is the jstack() action, which provides the user a legible backtrace from a Java
program. In our example, we focus on stack():

2 of 9

15FreeBSD Journal • November/December 2022

dtrace -x quiet -n 'io:::start { @[stack()] = count(); }'
 zfs.ko`zio_vdev_io_start+0x2f5
 zfs.ko`zio_nowait+0x15f
 zfs.ko`vdev_mirror_io_start+0xfd
 zfs.ko`zio_vdev_io_start+0x1eb
 zfs.ko`zio_nowait+0x15f
 zfs.ko`arc_read+0x14aa
 zfs.ko`dbuf_read+0xc84
 zfs.ko`dmu_tx_check_ioerr+0x84
 zfs.ko`dmu_tx_count_write+0x191
 zfs.ko`dmu_tx_hold_write_by_dnode+0x64
 zfs.ko`zfs_write+0x500
 zfs.ko`zfs_freebsd_write+0x39
 kernel`VOP_WRITE_APV+0x194
 kernel`vn_write+0x2ce
 kernel`vn_io_fault_doio+0x43
 kernel`vn_io_fault1+0x163
 kernel`vn_io_fault+0x1cc
 kernel`dofilewrite+0x81
 kernel`sys_writev+0x6e
 kernel`amd64_syscall+0x12e
 1

 zfs.ko`zio_vdev_io_start+0x2f5
 zfs.ko`zio_nowait+0x15f
 zfs.ko`zil_lwb_write_done+0x360
 zfs.ko`zio_done+0x10d6
 zfs.ko`zio_execute+0xdf
 kernel`taskqueue_run_locked+0xaa
 kernel`taskqueue_thread_loop+0xc2
 kernel`fork_exit+0x80
 kernel`0xffffffff810a35ae
 1

This D script counts up all of the kernel stack traces that lead to I/O on a block device.
We omit the aggregation name as we only have one aggregation in this script and our key
is stack() — a built-in DTrace action returning an array of program counters which are
later resolved to symbols when printing results. DTrace can also gather stacks using the
profile provider in order to gather on-CPU stack traces, making it possible to generate
Flame Graphs10.

New Developments
dwatch

A new tool called dwatch was developed by Devin Teske (dteske@freebsd.org) and up-
streamed to FreeBSD 11.2. dwatch makes DTrace much easier to use for common use-cas-

3 of 9

https://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html
mailto:dteske@freebsd.org

dwatch supports filtering

based on jails, groups,

processes and many other

features that make it

worthwhile to learn.

16FreeBSD Journal • November/December 2022

es than the dtrace command line tool. Going back to our toy snooping example, one can
simply run:

dwatch execve

to get nicely filtered output with more information than our simple snooper shown above.

dwatch execve
INFO Watching 'syscall:freebsd:execve:entry' ...
2022 Nov 24 18:46:53 1001.1001 sh[46565]: sudo ps auxw
2022 Nov 24 18:46:53 0.0 sudo[46920]: ps auxw
2022 Nov 24 18:46:55 1001.1001 sh[46565]: ls
2022 Nov 24 18:47:01 1001.1001 sh[46565]: ls -lapbtr
2022 Nov 24 18:47:09 1001.1001 sh[46924]: kenv -q rc.debug
2022 Nov 24 18:47:09 1001.1001 sh[46924]: /sbin/sysctl -n -q kern.boottrace.enabled
2022 Nov 24 18:47:09 1001.1001 sh[46565]: env -i -L -/daemon HOME=/ PATH=/sbin:/
bin:/usr/sbin:/usr/bin /etc/rc.d/sendmail onestop
2022 Nov 24 18:47:09 1001.1001 env[46565]: /bin/sh /etc/rc.d/sendmail onestop
2022 Nov 24 18:47:09 1001.1001 sh[46924]: kenv -q rc.debug
2022 Nov 24 18:47:09 1001.1001 sh[46924]: /sbin/sysctl -n -q kern.boottrace.enabled

Furthermore, dwatch supports filtering based on jails, groups, processes and many oth-
er features that make it worthwhile to learn for even the most seasoned DTrace users. All
along the dwatch tower11 is an excellent talk that introduces dwatch and goes over its fea-
tures in detail. Similarly, the dwatch(1) man page in FreeBSD has a lot of good examples for
those interested to try out.

CTFv3
Compact C Type Format (CTF) is a format used to

encode C type information in FreeBSD ELF binaries. It
allows DTrace to know C type layouts for target binaries
(processes, the kernel) so that scripts written by users
can refer to those types and explore them. In the past
DTrace only supported a total of 2^15 C types in a sin-
gle binary encoded as CTF due to the way that CTFv2
was implemented. This limitation was a source of many
bug reports in FreeBSD relating to DTrace. In March of
this year, Mark Johnston (markj@freebsd.org) commit-
ted changes which switches DTrace to use CTFv3 in-
stead which raises not only the number of C types that
can be manipulated by DTrace, but also various other limits in CTF.

kinst – A New DTrace Provider for Instruction-level Tracing
A 2022 Google Summer of Code project successfully completed by Christos Margiolis

(christos@freebsd.org) and mentored by Mark Johnston (markj@freebsd.org) implement-
ed and upstreamed instruction-level tracing to FreeBSD. The provider that implements this

4 of 9

https://papers.freebsd.org/2018/bsdcan/teske-all_along_the_dwatch_tower/
https://papers.freebsd.org/2018/bsdcan/teske-all_along_the_dwatch_tower/
https://papers.freebsd.org/2018/bsdcan/teske-all_along_the_dwatch_tower/
mailto:markj@freebsd.org
mailto:christos@freebsd.org
mailto:markj@freebsd.org

17FreeBSD Journal • November/December 2022

functionality is called kinst. It reuses parts of the fbt mechanism and extends it to instru-
ment arbitrary points of a kernel function, rather than just the entry and exit points.

Kernel developers reading this might already see the potential of kinst when it comes
to analyzing call stacks from certain branches in a function. As a result finding bugs and
performance issues in FreeBSD could be made easier and faster. For a demonstration, we
consider scenarios resembling the following C-style pseudo-code:

if (__predict_false(rarely_true)) {
	 return (slow_operation());
} else {
	 return (get_from_cache());
}

In this example, we focus on a particular function in the FreeBSD kernel that has behavior
similar to this. The simplified and stripped down version of it is:

void
_thread_lock(struct thread *td)
{
 ...
 if (__predict_false(LOCKSTAT_PROFILE_ENABLED(spin__acquire)))
 goto slowpath_noirq;
 spinlock_enter();
 ...
 if (__predict_false(m == &blocked_lock))
 goto slowpath_unlocked;
 if (__predict_false(!_mtx_obtain_lock(m, tid)))
 goto slowpath_unlocked;
 ...
 _mtx_release_lock_quick(m);
slowpath_unlocked:
 spinlock_exit();
slowpath_noirq:
 thread_lock_flags_(td, 0, 0, 0);
}

It’s immediately noticeable that there are two slow paths: slowpath_unlocked and
slowpath_noirq. In the two slow paths, either spinlock_exit() or thread_lock_
flags_() is called, whereas _mtx_release_lock_quick() is just an atomic compare-and-
swap instruction on amd64. In order to use kinst to identify the call stacks which end up in
the slow paths, we first need to disassemble the function in some way. One possible way of
doing so is using kgdb in FreeBSD (pkg install gdb):

kgdb
(kgdb) disas /r _thread_lock
Dump of assembler code for function _thread_lock:

5 of 9

18FreeBSD Journal • November/December 2022

...
0xffffffff80bc7dcc <+124>: 5d pop %rbp
 0xffffffff80bc7dcd <+125>: e9 4e 72 09 00 jmp 0xffffffff80c5f020
<witness_lock>
 0xffffffff80bc7dd2 <+130>: 48 c7 43 18 00 00 00 00 movq $0x0,0x18(%rbx)
 0xffffffff80bc7dda <+138>: e8 e1 43 4e 00 call 0xffffffff810ac1c0
<spinlock_exit>
 0xffffffff80bc7ddf <+143>: 8b 75 d4 mov -0x2c(%rbp),%esi
...
 0xffffffff80bc7df2 <+162>: 41 5d pop %r13
 0xffffffff80bc7df4 <+164>: 41 5e pop %r14
 0xffffffff80bc7df6 <+166>: 41 5f pop %r15
 0xffffffff80bc7df8 <+168>: 5d pop %rbp
 0xffffffff80bc7df9 <+169>: e9 82 00 00 00 jmp 0xffffffff80bc7e80
<thread_lock_flags_>

In this case, we can take the instructions at offset +138 and +169, which are the function
calls to spinlock_exit() and thread_lock_flags_(). Using those offsets, we can now
write our DTrace script:

dtrace -n 'kinst::_thread_lock:138,kinst::_thread_lock:169 { @[stack(),
probename] = count(); }'
...
 0xcf566bb0
 kernel`ipi_bitmap_handler+0x87
 kernel`0xffffffff810a48b3
 kernel`vm_fault_trap+0x71
 kernel`trap_pfault+0x22d
 kernel`trap+0x48c
 kernel`0xffffffff810a2548
 138 8

Those familiar with DTrace might notice that this could have easily been implemented
using speculative tracing instead of needing to use kinst. However, one can easily imagine
scenarios where the “slow path” or its equivalent is not a simple function call or where the
same function call might be present in all of the branches.

kinst also has other implications on the DTrace ecosystem on FreeBSD. Historically,
there has been a problem with instrumentation of inlined functions in the kernel using fbt.
The mechanisms used to implement kinst could help extend fbt in order to support reli-
able tracing of inlined functions.

Ongoing work
DTrace and eBPF – a Comparison

Mateusz Piotrowski (0mp@FreeBSD.org) has been working on the performance analy-
sis of DTrace on FreeBSD and how it compares to eBPF on Linux. Some of the results were
presented12 this year at EuroBSDcon 2022. This work could lead to interesting results which

6 of 9

mailto:0mp@FreeBSD.org
https://github.com/freebsd/freebsd-papers/pull/112

19FreeBSD Journal • November/December 2022

could serve as a basis for further optimization of DTrace. This would make enabling instru-
mentation on performance-critical systems less disruptive.

HyperTrace
HyperTrace is a framework built on top of DTrace which allows the user to apply DTrace-

like tracing techniques using the D programming language to tracing virtual machines. It
grew out of the CADETS project at the University of Cambridge in the UK. As a simple ex-
ample, we look at our original snooper script and extend it to use HyperTrace:

dtrace -x quiet -En 'FreeBSD-14*:proc:::exec { printf(“%s: user = %u, gid = %u:
%s\n”, vmname, uid, gid, stringof(args[0])); }'
scylla1-webserver-0: user = 0, gid = 0: /usr/sbin/dtrace
scylla1-webserver-0: user = 0, gid = 0: /sbin/ls
scylla1-webserver-0: user = 0, gid = 0: /bin/ls
scylla1-client-0: user = 0, gid = 0: /usr/sbin/sshd
scylla1-client-0: user = 0, gid = 0: /bin/csh
scylla1-client-0: user = 0, gid = 0: /usr/bin/resizewin
scylla1-client-0: user = 0, gid = 0: /usr/sbin/iperf
scylla1-client-0: user = 0, gid = 0: /usr/bin/iperf
scylla1-client-0: user = 0, gid = 0: /usr/local/bin/iperf
host: user = 0, gid = 0: /bin/sh
host: user = 0, gid = 0: /usr/libexec/atrun
scylla1-client-0: user = 0, gid = 0: /bin/sh
scylla1-client-0: user = 0, gid = 0: /usr/libexec/atrun
scylla1-client-1: user = 0, gid = 0: /bin/sh
scylla1-client-1: user = 0, gid = 0: /usr/libexec/atrun
scylla1-client-2: user = 0, gid = 0: /bin/sh
scylla1-client-2: user = 0, gid = 0: /usr/libexec/atrun
scylla1-client-3: user = 0, gid = 0: /bin/sh
scylla1-client-3: user = 0, gid = 0: /usr/libexec/atrun
scylla1-webserver-0: user = 0, gid = 0: /bin/sh
scylla1-webserver-0: user = 0, gid = 0: /usr/libexec/atrun

We modified the script in order two new things: the prefix of where each of the process-
es was executed using the built-in variable vmname and a 5th tuple entry in the probe spec-
ification: FreeBSD-14*. This allows the user to specify which target machines (VMs) to in-
strument and can be controlled through command-line flags to support name resolution
via things like the OS version or the machine’s hostname.

Similar changes can be made to our block I/O example:

dtrace -x quiet -En 'scylla1-*:io:::start { @[vmname, immstack()] = count(); }'
...
 scylla1-webserver-0
 devstat_start_transacti+0x90
 g_disk_start+0x316
 g_io_request+0x2d7
 g_part_start+0x289

7 of 9

20FreeBSD Journal • November/December 2022

 g_io_request+0x2d7
 g_io_request+0x2d7
 ufs_strategy+0x83
 VOP_STRATEGY_APV+0xd2
 bufstrategy+0x3e
 bufwriteL+0x80
 vfs_bio_awrite+0x24f
 flushbufqueues+0x52a
 buf_daemon+0x1f1
 fork_exit+0x80
 fork_trampoline+0xe
 aio_process_rw+0x10c
 aio_daemon+0x285
 fork_exit+0x80
 fork_trampoline+0xe
 fork_trampoline+0xe
 10598
 scylla1-client-0
 g_disk_start+0x316
 g_io_request+0x2d7
 g_part_start+0x289
 g_io_request+0x2d7
 g_io_request+0x2d7
 ufs_strategy+0x83
 VOP_STRATEGY_APV+0x9e
 bufstrategy+0x3e
 bufwriteL+0x3e
 vfs_bio_awrite+0x24f
 flushbufqueues+0x52a
 buf_daemon+0x1f1
 fork_exit+0x80
 fork_trampoline+0xe
 fork_trampoline+0xe
 aio_process_rw+0x10c
 aio_daemon+0x285
 fork_exit+0x80
 fork_trampoline+0xe
 fork_trampoline+0xe
 10605

Here a new DTrace action immstack() is used which works similar to stack() but sym-
bol resolution happens in the kernel rather than during time of printing output.

HyperTrace works by aiming to execute the entire D script on the host kernel rather than
running DTrace inside the guest, while each of the guests is responsible for instrumenting
itself and issuing a synchronous hypercall (akin to a system call in an OS) to the host when
the probe is executed on the guest. This kind of design enables keeping global state across

8 of 9

9 of 9

21FreeBSD Journal • November/December 2022

all of the guests and host in one place — increasing the overall expressiveness of D when it
comes to tracing VMs. The work is still in progress and can be viewed on GitHub13.

Further Reading
1. https://illumos.org/books/dtrace/preface.html#preface
2. https://github.com/opendtrace
3. https://docs.freebsd.org/en/books/handbook/dtrace/
4. https://www.cs.princeton.edu/courses/archive/fall05/cos518/papers/dtrace.pdf
5. https://www.brendangregg.com/dtracebook/
6. https://wiki.freebsd.org/DTrace/One-Liners
7. https://freebsdfoundation.org/wp-content/uploads/2014/05/DTrace.pdf
8. https://issue.freebsdfoundation.org/publication/?m=29305&i=417423&p=14&ver=html5
9. http://www.onlinedigeditions.com/publication/?m=29305&i=536657&p=4&ver=html5
10. https://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html
11. https://papers.freebsd.org/2018/bsdcan/teske-all_along_the_dwatch_tower/
12. https://github.com/freebsd/freebsd-papers/pull/112
13. https://github.com/cadets/freebsd

DOMAGOJ STOLFA is a Research Assistant at the University of Cambridge working on
dynamic tracing of virtualized systems. He has been working with bhyve and DTrace on
FreeBSD and contributing patches since 2016. Domagoj is also a teaching assistant on the
Advanced Operating Systems courses at the University of Cambridge, teaching operating
systems concepts with FreeBSD using DTrace and PMCs.

https://github.com/cadets/freebsd
https://illumos.org/books/dtrace/preface.html#preface
https://github.com/opendtrace
https://docs.freebsd.org/en/books/handbook/dtrace/
https://www.cs.princeton.edu/courses/archive/fall05/cos518/papers/dtrace.pdf
https://www.brendangregg.com/dtracebook/
https://wiki.freebsd.org/DTrace/One-Liners
https://freebsdfoundation.org/wp-content/uploads/2014/05/DTrace.pdf
https://issue.freebsdfoundation.org/publication/?m=29305&i=417423&p=14&ver=html5
http://www.onlinedigeditions.com/publication/?m=29305&i=536657&p=4&ver=html5
https://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html
https://papers.freebsd.org/2018/bsdcan/teske-all_along_the_dwatch_tower/
https://github.com/freebsd/freebsd-papers/pull/112
https://github.com/cadets/freebsd

