
59FreeBSD Journal • November/December 2022

For a long time, monitoring systems and services running on them has been done as
part of a sysadmin’s job. This serves many purposes:
•	 is the system generally reachable (Availability),
•	 answers the question of what did the system do last week on Sunday at 4 a.m.?

(Metrics)
•	 alerts IT personnel (often at ungodly hours) about unusually high processes and

other events out of the ordinary (Alerting)
Sysadmins typically collect these metrics at a central location for further study and visual-

ization, which helps more than logging into individual systems and running tail -F /var/
log/messages or other logfiles. Finding when a problem started by seeing a spike in CPU
usage or a dramatic decline in available disk space at the beginning of the month is clearly
visible from a graph. When alerts are configured,
notifications are sent about certain events (is the
system reachable at all?) or if certain thresholds are
reached (only 10% free disk space left). All of these
have traditionally been done by software such as
Munin, CheckMK, Nagios or Zabbix among others.

Prometheus is a fairly young monitoring proj-
ect in the open source space. It did become a
well-established solution—mainly in the Kuberne-
tes and Cloud space—but is also usable in other
environments. The setup was surprisingly easy for
me, after having used a combination of telegraf,
InfluxDB, and Grafana for a long time. Grafana is
also used here as well for the visualization of Dash-
boards. InfluxDB, as the name suggests, serves as
the central storage place for the collected metrics from which Grafana pulls the data. Send-
ing the data was done by Telegraf running on each machine, sending its metrics to InfluxDB at
regular intervals (i.e., every 10 seconds).

Prometheus’ architecture is similar: a central Prometheus server for transforming, stor-
ing, and streamlining the received data, with so-called node_exporters collecting the met-
rics on client machines. Again, Grafana uses the Prometheus data and can display them with
some ready-made dashboards to impress your colleagues and be useful at the same time.

BY BENEDICT REUSCHLING

Prometheus Installation
& Setup

PRACTICAL

Prometheus is
a fairly young
monitoring project in
the open source space.

1 of 7

PRACTICAL

60FreeBSD Journal • November/December 2022

Other components include an alert manager to send various configurable notification types
(email, SMS, pager, chat messages) when certain events occur. To query the data, Prometheus
offers its own query language called PromQL that Grafana understands and uses for the
dashboard content. Users can also write their own ad-hoc queries using PromQL, allowing for
quick searches without having to build a dashboard first.

The logic by which metrics are extracted, formatted, and sent is coded into the exporters.
There are several different exporters available for specific software like databases. Applications
like RabbitMQ, GitLab, and Grafana itself allow the export of their own application states into
a Prometheus-compatible format for monitoring. Written in Go, Prometheus is highly scalable
and does not need too many resources when
running.

In this article, we’ll setup a FreeBSD based
Prometheus server and have clients (Linux and
FreeBSD) send system metrics to it via the node_
exporter. We’ll also use Grafana to visualize the
data in an existing dashboard that we are import-
ing for this purpose.

Prometheus Setup
First, we setup the Prometheus instance on a

FreeBSD system. Freshly installed and connected
to the network, we begin by creating the dataset
where Prometheus stores its data in /var/db/
prometheus. A directory is created by the port
automatically, so this step is not strictly necessary.
However, running it on ZFS as a separate dataset with properties like compression is good
practice.

zfs create -o compression=zstd sys/var/db/prometheus
pkg install prometheus node_exporter

To extract system level metrics from the host, we install the node_exporter on our Pro-
metheus host and all other machines we want to monitor. The Prometheus port installs a de-
fault configuration file called prometheus.yml in the /usr/local/etc path. We’re going
to modify it to fit our needs. The syntax for the configuration file is done in YAML, so be extra
careful to avoid tabs and use the proper indentation with spaces.

prometheus.yml:
my global config
global:
 scrape_interval: 15s # Set the scrape interval to every 15 seconds. Default is ev-
ery 1 minute.
 evaluation_interval: 15s # Evaluate rules every 15 seconds. The default is every 1
minute.

2 of 7

Users can also write
their own ad-hoc queries
using PromQL.

PRACTICAL

61FreeBSD Journal • November/December 2022

 # scrape_timeout is set to the global default (10s).

A scrape configuration containing exactly one endpoint to scrape:
Here it’s Prometheus itself.
scrape_configs:
 # The job name is added as a label `job=<job_name>` to any timeseries scraped from
this config.
 - job_name: “prometheus”
 static_configs:
 - targets:
 - mistwood:9090

 - job_name: bdc
 static_configs:
 - targets:
 - mistwood:9100

 # metrics_path defaults to ‘/metrics’
 # scheme defaults to ‘http’.

Before diving into the configuration bits, we enable the prometheus service and the
node_exporter on FreeBSD to start upon boot.

service prometheus enable
service node_exporter enable

Prometheus provides a web-based interface for querying and displaying the metrics ex-
ported by the systems (called targets in Prometheus lingo). I provide an extra argument to the
start of the Prometheus service to define at which port the web interface should be reachable
on my host called mistwood.

sysrc prometheus_args=”--web.listen-address=mistwood:9090”

Once we have that, we can start the prometheus service and the node_exporter
like this:

service prometheus start
service node_exporter start

After a few seconds, the output of

sockstat -l

should have the following lines in it, confirming both services started successfully:

3 of 7

PRACTICAL

62FreeBSD Journal • November/December 2022

User Address Command PID FD PROTO Local Address Foreign

prometheus prometheus 70027 8 tcp4 mistwood:9090 *:*

nobody node_exporter 2950 3 tcp46 *:9100 *:*

First, let’s see if the node_exporter is extracting some metrics. We can do that by point-
ing our browser to the URL of the host running the node_exporter service (mistwood in my
case), adding the port 9100 and /metrics to the end to form this URL: http://mistwood:9100/
metrics

You can see a list of exported metrics in a namespace separated by underscores. Refresh
this page every 10 seconds and you’ll see updated data collected by the node_exporter.
Since we’re already in the browser, we can also check the status of Prometheus. The URL is
very similar but using the port 9090 (no /metrics at the end) to get to the Prometheus web
interface. Go to the Status pulldown and select Targets to see all configured hosts from the
prometheus.yml above. In this example setup, I have extracted pieces of configuration for
our big data cluster (bdc). Of course, you can pick your own labels instead of “bdc” and the
“mistwood” host is also exchangeable.

Prometheus checks if the hosts are reachable. The node_exporter that we added to
the prometheus.yml file with port 9100 is also listed here and can be reached from here
by clicking on the URL as well. Prometheus also checks the availability of the host, indicated
by the UP in the State column of the endpoint.

Tags can be assigned to a certain host group to logically group them together. All host
metrics collected receive this tag and can be filtered later using the PromQL language or di-
rectly within Grafana. My job name here is called bdc and all the machines that belong to
that group are listed under targets. (I abbreviated it here to have only one FreeBSD and one
Linux host in it.)

Before we dive into visualizations with Grafana, we can also create simple graphs from
the Prometheus web interface by going to the Graph tab. At the top, there is an input field.
On the left the blue Execute button, there is smaller one called the metrics explorer. Click
on it and a search field opens, containing all the names of the metrics collected so far. Pick

4 of 7

PRACTICAL

63FreeBSD Journal • November/December 2022

the one that you want to see. After selecting the metric, click the Graph tab next to Table to
see a visualization of the metric over all your hosts. Click and select a portion to zoom into
that timeframe or use the controls above to zoom out. This is already good to get a quick
overview, but may not be as visually appealing as a full-blown dashboard. We add Grafana to
the mix as it has more capabilities and different ways to display the data in various forms.

At the time of writing this article, Grafana 8 is the current version. Older versions work
just as well, so there is no need to always chase the latest version to get pretty pictures.

pkg install grafana8

Like before, we activate the grafana service to run upon boot and start it right away
with the following two lines:

service grafana enable
service grafana start

Grafana does have a configuration file under /usr/local/etc, but we do not need to
modify it here. Make sure to visit and read the documentation on the Grafana homepage to
change the file for your environment. Wait a little for Grafana to start (check the sockstat
output for a Grafana line listening on port 3000 by default). Browse to the login page for
Grafana on the host that you installed it on with port 3000.

On a fresh installation, Grafana has a default user admin with password admin that needs
to be changed right after the first login to something else. You can also add more users with
different privileges to see only certain dashboards, but right now we need to connect to our
Prometheus metrics first. This is done by adding a data source under the gear icon on the left
(Configuration -> Data Sources). Click the blue button on the left labeled “Add data source”.

5 of 7

64FreeBSD Journal • November/December 2022

We give our datasource a descriptive name and provide the URL that we used earlier to
access the Prometheus web UI on port 9090. At the bottom, click the “Save & Test” button
to check if Grafana can reach your data source. Note: The configuration provided here is
the most basic, which means it is focused on functionality and less on security. In produc-
tion environments, you definitely need to have authentication and encryption of your met-
rics to not give attackers a clue about your infrastructure by reading the metrics. The Pro-
metheus and Grafana webpages both provide documentation on how to do so.

Now that we have a datasource, we want to visualize the data coming from it. We can de-
sign our own dashboards, but my artistic talents go only so far. Other people have put in
time and talent to create beautiful dashboards and provided them for everyone to use at the
Grafana website. You can find them on https://grafana.com/grafana/dashboards/ along with
filters on the left side to only show dashboards based on Prometheus data sources. Filtering
further in the Collector Types pull-down to have Node exporter, the right side of the page au-
tomatically updates based on your filter criteria. Click on one of the search results to see a pre-
view as well as additional information about it. On the right side, copy the dashboard ID to the
Clipboard and change back to your Grafana browser tab.

Go to the dashboards tab on the left and select “Manage”. On the left, there is a button la-
belled “Import”. When clicked, you’re brought to a screen that lets you paste the dashboard ID
you selected earlier and load the dashboard. It’s easy and convenient. Assign the data source
created earlier and finish the import. For your convenience, here are a couple of dashboard
IDs that I use (the last one is even built for FreeBSD use):

•	1860
•	11074
•	4260
You can find the dashboards listed on the Dashboards tab on the left and get to them by

clicking their name. Some have filters at the top to pick a single host to display or select other
criteria like network card or storage media.

Some of the dashboards can be a bit overwhelming in the amount of data they display at
once. I find that an overview dashboard showing me all machines is a good start to see what
is going on. When I identify something out of the ordinary, I drill down into that host with an-

PRACTICAL

6 of 7

https://grafana.com/grafana/dashboards/

PRACTICAL

7 of 7

Write
For Us!
Write

For Us!
Contact Jim Maurer

with your article ideas.
(jmaurer@freebsdjournal.com)

65FreeBSD Journal • November/December 2022

other dashboard that shows me that machine in more detail. Especially the long term trends
that Prometheus provides this way give me a good understanding of whether a certain spike
in memory usage is expected and normal.

For each host that should be monitored, install and start the node_exporter on it.
On the Prometheus host, add the URL to the targets under the static_configs in
prometheus.yml and then restart the prometheus service. That’s fairly straightforward and
is easily automated for a large number of hosts using configuration management tools like
Ansible and others. Try out other node_exporters available on FreeBSD and find a good
dashboard (or create one yourself) that fits your monitoring needs. I find that Prometheus can
show me a lot more metrics than my previous setup. Alerting about certain events is also pos-
sible and there are packages available on FreeBSD to do so. I’ll leave that as a learning exercise
for you.

Prometheus is straightforward to set up and extend with more hosts to monitor. It’s time
for you to steal a little bit of fire from the gods to get better insight into the dark depths of
your hosts and services.

BENEDICT REUSCHLING is a documentation committer in the FreeBSD project and
member of the documentation engineering team. In the past, he served on the FreeBSD
core team for two terms. He administers a big data cluster at the University of Applied Sci-
ences, Darmstadt, Germany. He’s also teaching a course “Unix for Developers” for under-
graduates. Benedict is one of the hosts of the weekly bsdnow.tv podcast.

https://www.bsdnow.tv/

