
27FreeBSD Journal • September/October 2022

SSH is a multipurpose tool used by pretty much anyone running and administering a
Unix machine, logging in from one to the next more often than not. Secure, en-

crypted logins as SSH’s core functionality are a great day-to-day help, but the daemon can
do much more. Plenty of use cases are possible and I will only describe the ones that I use,
which is by no means a complete list. I’ll start with some basic hardening options and then
move on to more sophisticated uses.

Login Options
SSH users that want to log into a system should use SSH keys instead of the keyboard-in-

teractive authentication. Ideally, the latter authentication method (showing a password
prompt) should be completely disabled to prevent any password script kiddie from constantly
trying to break into poorly secured systems with weak user passwords. On some systems that
I run for less tech-savvy users (I tried educating them on ssh keys, but to no avail), I still have to
enable it. However sad this may be, I can still lock
down the system to limit logins to a certain group
of users and force some users to not use the key-
board-interactive method. Let’s look at these one
by one.

The SSH daemon is configured by the configu-
ration file /etc/ssh/sshd_config. You can
limit the users who are able to log in with the
AllowUsers or AllowGroups directive. Even if a
local user tries to log in and provides the correct
password, as long as they are not listed in those
directives, the login is still denied. In my use case,
all the non-tech savvy usernames start with “abc”,
followed by their individual user ID. We can use
wildcards to match on this username like this:

AllowUsers abc*

Use sshd -t or even -T (for more tests) to check the validity of the sshd_config file be-
fore you restart the daemon to make these changes take effect. This line excludes the script
kiddies from trying usernames like root, admin, and such. It’s not completely secure but adds
an extra hurdle to overcome. The AllowGroups directive does the same for a group of users.

BY BENEDICT REUSCHLING

SSH Tips and Tricks
PRACTICAL

SSH users that want to
log into a system should
use SSH keys instead of
the keyboard-interactive
authentication.

1 of 6

PRACTICAL

28FreeBSD Journal • September/October 2022

User groups are easier to manage at a central location. Your new colleagues will certainly ap-
preciate getting access immediately without having to visit your office first and beg to be let
into that server. If they’re added to the group, they can log in right away. Otherwise, you have
to modify the AllowUsers line each time. The same is true when someone leaves, so do
yourself a favor and use groups so as not to spend the rest of your days managing SSH access
to a system that the whole company logs into.

Denying logins for certain users or even groups is possible with the DenyUsers or
DenyGroups command, respectively. April Fools jokes aside, this is useful for restricting cer-
tain users in a group from accessing the system until they’ve returned the only existing keys
to the server room (or are back from their vacations). The following order of directives is used
when processing a mixture of such entries: DenyUsers, AllowUsers, DenyGroups, and then
AllowGroups.

Restricting individual users’ login methods is
also possible using a match statement. This is
comparable in function to an if statement and
when such a match occurs, they override the
global settings of sshd_config. Other match
lines further down the file could undo settings
made in previous match blocks, but let’s keep this
example simple for now.

The system described above where both key-
board-interactive and public key are used is mon-
itored by a special user called monitoring. It peri-
odically logs in with its own special SSH key, runs
certain checks (disk full?), and reports the results
back to the central monitoring server. This user
should not be allowed to log in via the keyboard,
since compromising this user would basically
mean root access as some of the checks run with elevated privileges. That is why we tell the
SSH server to only allow public key authentication when this user logs in. The match state-
ment looks like this:

Match User monitoring
 AuthenticationMethods publickey

Other users still use the global settings, but once the monitoring user comes along, the
AuthenticationMethods setting gets overridden for this case. Other criteria for a match state-
ment are Group, Host, LocalAddress, LocalPort, RDomain (the routing domain), and Address.
Be careful here not to trust certain networks a user pretends to come from as this may be
spoofed or rerouted. Find something that matches as little as possible to avoid long process-
ing times or matching too many items, defeating the purpose of matching.

Note that not all keywords from sshd_config are changeable in a match statement, but
many of them are. A full list is available in sshd_config(5). Happy matchmaking!

2 of 6

Restricting individual
users’ login methods
is also possible using
a match statement.

PRACTICAL

29FreeBSD Journal • September/October 2022

Disconnecting Hung SSH Sessions
Has the following ever happened to you? You are logged in remotely on a server — doing

some work — when suddenly your terminal freezes and you can’t send any more commands
to it? Or, you closed the lid of your laptop and opened it again at a different network location
and can’t get back to the session leaving you stuck at the terminal? I imagine you nodding in
agreement, so here’s why: it is because the server did not notice the network interrupt that
may have happened and can’t re-establish the connection. If this annoys you, check out the
net/mosh package and see if that helps you.

How do you get the frozen shell back or at least properly disconnect? Even though it seems
that there is no more communication happening between your SSH client and the server,
there are still special commands that the server understands. Enter the following sequence of
commands on the frozen terminal:

Enter ~ .

This sends a special interrupt command causing the server to immediately disconnect the
session, returning control to your local shell session. Try it on a live session by hitting Enter, the
tilde character followed by the dot. Be quick about it. Once it works, you’ll quickly memorize
this as a good practice if only to impress your co-workers with your knowledge.

Other sequences are documented in the ESCAPE CHARACTERS section of ssh(1). Typ-
ing the sequence Enter, ~, and ? displays a list of escape sequences. Note that not all are sup-
ported by each SSH daemon, but in my experience, the disconnect works reliably.

The Hidden Login Script
Did you know that you can run a script each time a user successfully logs into a system via

SSH? The file /etc/ssh/sshrc that does this magic does not exist by default. When it is cre-
ated and made executable, the SSH daemon will execute the commands listed in it. This hap-
pens after the environment files are read and right before the user’s shell (or a command) is
started.

Why would that be useful, you ask? It allows for custom initialization routines to run for this
user. For example, a shell script could use the user’s name for log in (available as $USER) and
ensure access permissions and ownership on the home directory are still restricted to that
user. An error is echoed to stderr if the home directory does not exist for some reason. A
simple script that does this may look like the following:

#!/bin/sh

HOMEDIR=”/home/${USER}”

Restore restrictive home directory permissions
if [-d ${HOMEDIR}]; then
 chmod 0700 ${HOMEDIR}
 chown ${USER}: ${HOMEDIR}
else

3 of 6

PRACTICAL

30FreeBSD Journal • September/October 2022

 echo “Home directory ${HOMEDIR} does not exist” >&2
fi

Make sure the file is executable just like any other shell script to activate it the next time
someone logs in. Other environment variables are available to use as well. Note that this runs
every time a user logs in — even for file transfers via scp/sftp. Don’t put in complicated code
that takes a while to execute or the user will have to wait to finish the login process. For sneaky,
behind-the-scenes actions, this is a good way as every user who successfully logs has to pass
through the script.

Cheap, Yet Effective VPN
Virtual private networks have sprung up as paid services. They allow a secure connection

between endpoints by tunneling the traffic and encrypting it over the internet. This helped
people stay connected with the office during the
pandemic, and even before that, when support
personnel had to fix a server at ungodly hours
of the day to prevent business interruptions. For
Josephine random person, the aforementioned
paid services enabled them to buy things cheaper
by faking their origin connection to come from a
different country. This could range from airplane
tickets to as yet unreleased episodes of your fa-
vorite show on your favorite streaming service.
While this may not yield success in all cases, it is
nevertheless a convenient service to use.

How (and when) does SSH come into play?
Well, each time we are on an untrusted, unen-
crypted network and we don’t want prying eyes
reading our traffic. This is often the case at train
stations, airports, hotels, and libraries that offer free public WIFI. The connections there are of-
ten not (or not well) encrypted and shared between many different users--a perfect use case
for an SSH-based VPN solution. It does not cost us anything since we have all the tools avail-
able. All that is needed is a publicly available host reachable on the internet that you can legiti-
mately log in to.

Instead of directly connecting from our origin host O to the destination host D, we let our
traffic take a little detour via host P. This takes care of giving the network packets a different
origin address. Instead of your original host O, the packets will all be fetched by host P and for-
warded to you via a SOCKS proxy. The destination D will communicate with host P, handling
all requests, and each answer or result sent to P is forwarded to O in return. The SOCKS proxy
will allow your browser to send and receive the packets, just like you’d browse a normal web
page directly. It may be a bit slower than you are normally used to — because of the redirec-
tions between you and host P (the proxy) — but this is worth it to hide our origin address and
the extra encryption you’ll get — for free.

4 of 6

Virtual private networks
have sprung up as paid
services.

PRACTICAL

31FreeBSD Journal • September/October 2022

Here’s How To Do It
Open a new terminal and type in the following, replacing the sshproxyhost.example.com

with your SSH host the internet:

$ ssh -vD8080 -fCN sshproxyhost.example.com

This looks complicated, so let’s explain each of the options provided:
•	v: Gives SSH verbose output and may be omitted later once you’re familiar with what’s

going on. At the beginning, it helps to debug the process and will emit any error messages
that you wouldn’t see normally.

•	D 8080: This defines the local, dynamic port for the forwarding. On your local machine,
the provided port (Note: 8080 in this case, a different one can be selected as long as it is
unused by other daemons) is opened as a local socket with the other endpoint being the
secure connection to the proxy server (creating it in the process).

•	f: Puts the SSH process in the background so that the shell can still take other com-
mands. Note that if you need to provide a password to log in, this will not work well. Gen-
erate an SSH key (using ssh-keygen(1)) for this connection and exchange it with the
proxy host (ssh-copy-id(1)) for passwordless logins. This option is not strictly necessary,
but useful once the whole process works.

•	C: Compresses the encrypted VPN data. Depending on your network and processor
speed, this may slow down or speed up the connection. Experiment with this option and re-
move it if it is too slow on the shabby hotel service where you’re staying for one night only.

•	N: SSH expects to run an interactive shell on the remote host, but we don’t need this for
our VPN. This option will not let SSH open a terminal and will only forward the ports--
which is what we want.

Each of these options is explained further in ssh(1).
A typical session will emit similar messages to his one when using -v:

OpenSSH_8.6p1, LibreSSL 3.3.6
debug1: Reading configuration data /Users/bcr/.ssh/config
debug1: /Users/bcr/.ssh/config line 1: Applying options for *
debug1: /Users/bcr/.ssh/config line 16: Applying options for sshproxyhost.example.com
debug1: Reading configuration data /etc/ssh/ssh_config
debug1: /etc/ssh/ssh_config line 21: include /etc/ssh/ssh_config.d/* matched no files
debug1: /etc/ssh/ssh_config line 54: Applying options for *
debug1: Authenticator provider $SSH_SK_PROVIDER did not resolve; disabling
debug1: auto-mux: Trying existing master
debug1: Requesting forwarding of dynamic forward LOCALHOST:8080 -> *
debug1: mux_client_request_session: master session id: 7
...
debug1: Connection to port 8080 forwarding to socks port 0 requested.
debug1: channel 3: new [dynamic-tcpip]
...
debug1: channel 8: new [dynamic-tcpip]

5 of 6

32FreeBSD Journal • September/October 2022

debug1: channel 7: free: direct-tcpip: listening port 8080 for sshproxyhost.example.
com port 443, connect from 127.0.0.1 port 58994 to 127.0.0.1 port 8080, nchannels 9

This confirms that the VPN is established. The line

debug1: Requesting forwarding of dynamic forward LOCALHOST:8080 -> *

shows how it works: you connect to your localhost port 8080. From there (follow the arrow),
connections are established into the wide, wild world (www) of the internet. Replies are sent
back in the reverse direction.

Your browser (or any other application that should use this VPN tunnel) simply needs to
be set to use this SOCKS proxy in their connection settings. Look for an option like “manual
proxy configuration”, set the socks host to “127.0.0.1” (localhost, see above), the port to 8080
(or the one you specified), and SOCKS5 proxy if there is such an option.

That’s it. Now, we should check if it works by browsing to a service like https://www.
whatismyip.com (or similar sites) that display your public IP address. If this shows the IP of the
host you used in your SSH command (sshproxyhost.example.com in my example), the VPN
works. Wherever you next point your browser, the websites will establish connections, ex-
change traffic with this particular host and dutifully send you the traffic. Nice, isn’t it?

Some Words of Warning
As long as the SSH connection is open to the target system, the VPN tunnel is established.

Be sure to re-establish the tunnel after your laptop goes to sleep as it may have disconnected
you after some time of inactivity. If you’re renting a server on the internet to be a proxy for this
purpose or someone else pays for the traffic on this system, don’t overdo it, as it may drive up
costs. This is not a free solution in that case and if you use this often, you might as well pay for
a professional VPN solution that gives you a couple servers across the world to choose from.

Also, be aware that you are not completely invisible. The SSH logs of the server used as a
proxy will record your login information. Don’t do any malicious or harmful activities with this.
We won’t send your next issue of the FreeBSD Journal to the prison planet that they put you
on when they catch you.

I hope these tips and tricks were useful and will help in your day-to-day SSH interactions.
Make sure to check out the man pages for both the client (ssh(1)) and the server (sshd(8)).
For a more fun and comprehensive reading experience about all things SSH, I highly recom-
mend the SSH Mastery book by Michael W. Lucas.

BENEDICT REUSCHLING is a documentation committer in the FreeBSD project and
member of the documentation engineering team. In the past, he served on the FreeBSD
core team for two terms. He administers a big data cluster at the University of Applied Sci-
ences, Darmstadt, Germany. He’s also teaching a course “Unix for Developers” for under-
graduates. Benedict is one of the hosts of the weekly bsdnow.tv podcast.

PRACTICAL

6 of 6

