
11FreeBSD Journal • September/October 2022

The FreeBSD kernel includes a cryptographic services framework used by other ker-
nel subsystems for data encryption and authentication. Consumers of this framework
include GELI, IPsec, kernel TLS offload, and ZFS. This framework is most common-

ly referred to by the acronym OCF. Originally, OCF stood for the OpenBSD Cryptograph-
ic Framework (https://www.openbsd.org/papers/crypt-service.pdf), but over time it has be-
come an acronym for the OpenCrypto Framework.

History of OCF
The OpenCrypto framework was first imported into FreeBSD 5.0 as a port of the

OpenBSD Cryptographic Framework by Sam Leffler in 2002. This initial version was primari-
ly focused on supporting encryption and authentication of network packets for IPsec. It
also included a character device driver, /dev/crypto, which supported custom ioctl()
commands to permit userland applications to off-
load cryptographic operations to cryptography
co-processors.

OCF supported two different modes: symmet-
ric and asymmetric. In symmetric mode, consum-
ers (such as IPsec) first created a session describ-
ing parameters such as the algorithms to use and
key lengths. Sessions were bound to crypto device
drivers (either co-processor drivers or a software
driver). Once a session was created, the consumer
could issue one or more requests against a session.
Each request performed a single operation such
as encrypting or decrypting a buffer. Consumers
explicitly destroyed a session once it was no longer
needed. Asymmetric mode, however, worked differently. Rather than using sessions, each
asymmetric operation was dispatched individually, and OCF chose a driver for each opera-
tion. Asymmetric operations were intended to assist with public-key cryptography and per-
formed arithmetic on “big-numbers” such as computing a modulus according to the
Chinese Remainder Theorem. Asymmetric operations were only used by user processes via
/dev/crypto.

BY JOHN BALDWIN

1 of 10

OCF supported two

different modes:

symmetric and

asymmetric.

Refactoring the
Kernel Cryptographic
Services Framework

12FreeBSD Journal • September/October 2022

Symmetric sessions in OCF supported cipher and digest algorithms that were contem-
porary at the time. Supported ciphers included Cipher Block Chaining (CBC) modes of
Data Encryption Standard (DES) and Triple-DES. Digest algorithms included Hash-based
Message Authentication Codes (HMAC) constructions of MD5 and SHA-1. In addition, En-
crypt-then-Authenticate (EtA) combinations of ciphers and HMACs were also supported.

Over time, a few additional algorithms were added such as SHA-2 digests and AES-XTS.
However, the largest set of changes came in FreeBSD 11.0 with the addition of AES-CTR (a
stream cipher) and AES-GCM an Authenticated Encryption with Associated Data (AEAD al-
gorithm) by John-Mark Gurney. Modern versions of TLS and IPsec prefer AEAD algorithms
and have deprecated other constructions such as EtA.

State of OCF in FreeBSD 11
During the 12.0 development cycle, I ported

two Linux crypto drivers to FreeBSD (ccr(4) and
an out-of-tree driver). This was my first experience
with OCF, and I came away feeling that the inter-
face had some quirks that resulted in extra “busy
work” in crypto device drivers.
Linked-Lists for Transforms

Symmetric cryptographic operations in OCF
are managed via sessions. OCF consumers create
sessions describing the types of operations to be
performed (algorithms to use, key sizes, etc.). In-
dividual operations are then invoked on a session
permitting drivers to cache state (such as precom-
puted key schedules) across operations. In 11.0, OCF session parameters were described by
a linked-list of structures. Each structure defined either a single data transformation (such
as symmetric encryption or compression) or a single digest computation. Sessions using a
combination of algorithms (such as EtA) used separate structures for the encryption and
authentication steps. Cryptographic operations also used a linked-list of crypto descriptors
(one for each session parameter structure) describing the range of the data buffer on which
to perform each operation as well as ancillary data such as keys and explicit Initialization
Vectors (IVs) or nonces.

OCF in 11.0 did not define a specific order for session structures (e.g., encryption before
authentication). Instead, consumers were free to construct the linked-list in an arbitrary or-
der. As a result, drivers first walked the linked-list determining if there were unsupported
combinations (e.g. multiple ciphers) as well as saving pointers to supported transforms (typi-
cally a cipher pointer and an auth pointer). Once this pass completed, drivers validated trans-
form-specific parameters such as requested algorithms and key lengths. Operation descrip-
tors were similar except that the order mattered. In particular, the cryptosoft(4) software
driver depended on iterating over each descriptor in sequence to perform the desired set of
operations. Other device drivers walked the descriptor chain validating that the chain con-
tained the right number and type of descriptors (matching the session) again saving point-
ers to specific descriptors (e.g. cipher and auth descriptors) before completing the request.

2 of 10

Over time, a few

additional algorithms

were added.

13FreeBSD Journal • September/October 2022

Working with the linked-lists was not overly difficult, but it was tedious and resulted in a
lot of code duplicated across drivers. Another common theme was that the OCF layer itself
did not perform checks that were not driver-specific (such as validating the list of operation
descriptors against the session). Instead, every driver was required to duplicate these checks.
Similarly, OCF did not perform centralized checks on session parameters such as reject-
ing requests to create sessions with invalid parameters such as a cipher session with a key
length that was not defined for the associated algorithm. These checks were instead dupli-
cated across drivers.
AEAD Support

AEAD algorithms combine both encryption and authentication in a single algorithm.
These algorithms provide similar functionality to EtA cipher suites but with a few chang-
es. Notably, AEAD algorithms use a single key and
nonce to provide both encryption and authentica-
tion. Under the covers, existing AEAD ciphers typ-
ically consist of separate encryption and authen-
tication algorithms and derive separate keys and
nonces for each from the user-supplied values. For
example, AES-GCM uses AES-CTR for its cipher.
AES-GCM is commonly used with a 12-byte nonce
which is used as the upper 12 bytes of the IV with
AES-CTR. The low 4 bytes are used as a count-
er which is incremented for each block of cipher-
text. The keysteam for block 1 is used as part of the
computation of the authentication tag and the ci-
phertext is encrypted starting with the keystream
for block 2.

In 11.0, OCF used separate session parameters
and crypto descriptors for the cipher and authenti-
cation “sides”. Consumers had to specify the same
inputs such as keys and nonces for both sides, and drivers were required to check that both
sides were consistent. In addition, due to a quirk of how some parts of OCF managed au-
thentication algorithms, separate algorithm constants were defined for each key size (128,
192, and 256 bits) for the GMAC side of AES-GCM. Again, consumers had to ensure the
GMAC constant matched the key size and drivers had to check for mismatches.

Crypto operations for AEAD in 11.0 also worked a bit differently than EtA requiring sepa-
rate AEAD vs EtA logic in drivers. For EtA, OCF assumed that authentication was performed
over a single region containing both auth-only data (such as the ESP header for IPsec) and
the ciphertext. Furthermore, it assumed that these regions of the buffer were contiguous in
the input data buffer such that they could be described by a single descriptor. This approach
worked well with cryptosoft(4)’s implementation. AEAD algorithms, however, require more
explicit separation of auth-only data (also known as Additional Associated Data (AAD)) from
the ciphertext. AEAD algorithms define the order in which AAD is input into the authenti-
cation computation relative to the ciphertext regardless of the location within the associat-
ed data buffer. Existing AEAD algorithms also include the length of the AAD and ciphertext

3 of 10

Working with the

linked-lists was not overly

difficult, but it was tedious

and resulted in a lot of

code duplicated across

drivers.

When an OCF consumer

creates a new session, the

OCF framework chooses a

driver to service requests

for the new session.

14FreeBSD Journal • September/October 2022

regions as inputs into the authentication function. To simplify the implementation of AEAD
algorithms, the authentication descriptor for AEAD operations only covered the AAD re-
gion. It was implicit that the authentication algorithm must also be executed on the cipher-
text region described by the cipher descriptor. Secondly, decryption operations for AEAD
algorithms verified the supplied authentication digest, or tag, and failed the request with an
error (EBADMSG) if it did not match. For EtA, OCF in 11.0 always computed the digest on the
input and required the caller to save a copy of the original digest and to compare against
the computed digest after the EtA operation completed.
IV/Nonce Handling

Crypto descriptors in OCF for cipher operations supported a tri-state of possible settings
for dealing with IVs or nonces. First, an IV could
either be supplied in a location in the data buffer
(such as is commonly done in EtA algorithms for
IPsec) or in a separate array in the descriptor. This
choice was indicated by a flag in the descriptor. In
the case that the IV was located in the data buffer,
the driver would generate a random IV and insert
it into the buffer for encryption operations unless
the consumer set a second flag. In practice, none
of the drivers in the tree supported generating IVs
in hardware, so every driver duplicated the same
block of code for managing IVs. This block of code
had to check for invalid combinations of flags and,
if the second flag wasn’t set, call arc4rand(9) to
generate a random IV to insert into the data buffer
prior to encryption or authentication.
Session Handles

OCF sessions were named by integer IDs in 11.0. When a driver created a new session,
it allocated a driver-private integer ID and returned it to the caller. This integer ID was sup-
plied by the session consumer for each operation associated with a session as well as when
removing a session. All existing drivers allocate driver-specific state for each session. When
an operation is performed or a session is deleted, drivers use the session’s integer ID to lo-
cate this driver-specific state. Existing drivers in the tree either used a O(n) loop to locate the
driver-specific state for each request, or they used a lock to protect access to a resizable ar-
ray of pointers.
Session Probing

When an OCF consumer creates a new session, the OCF framework chooses a driver to
service requests for the new session. In 11.0, this process was simplistic. Drivers registered
a list of algorithms supported by OCF during their initialization. When a session was creat-
ed, the framework would select a driver based on the requested algorithms. However, if the
driver failed to create a new session because it did not support one of the other parameters
(e.g., a key size, or if a device only supported standalone encryption or authentication but
not combined EtA operations), OCF would propagate that failure back to the caller. Spe-
cifically, OCF would not try to fallback to another driver. For example, if OCF initially chose

4 of 10

15FreeBSD Journal • September/October 2022

a coprocessor driver that failed to handle the new session, the framework would not try to
use a software driver which could handle the new session instead.

Streamlining OCF for Drivers and Consumers
As a driver author, OCF felt a bit clunky and required a fair amount of duplicated code

among drivers. Some of this duplication was due to flexibility that did not seem needed. For
example, using linked-lists for session parameters and operation descriptors permitted an
arbitrary number and order of transformations. In practice, however, the operations used ei-
ther required a single operation at a time, or a combination of one cipher and one authen-
ticator such as EtA. On the other hand, OCF did not include flexibility that would be useful
for some use cases. For example, KTLS did not always perform in-place encryption. To cater
to OCF in 11 assuming in-place encryption, KTLS support via OCF had to copy the data into
the output buffer before handing the data off to a crypto driver. KTLS also does not store
its AAD inline in the on-wire format, but instead
combines metadata about each TLS record along
with some on-wire data from the TLS record to
form the AAD.

To make OCF easier to work with, OCF has
been refactored in the past couple of years. The
primary goal of this refactoring has been to im-
prove ease of use for driver authors. Improving
performance is a secondary goal, and it is hoped
that reducing complexity will have that benefit
by leading to simpler drivers. All the changes de-
scribed below shipped in FreeBSD 13.0, though the
first change was made in 12.0.
Opaque Session Handles

The first refactoring was implemented in
FreeBSD 12.0 by Conrad Meyer. Conrad replaced
the integer session IDs used as a handle for OCF
sessions with a new crypto_session_t opaque type. Under the hood these handles hold
a pointer to a per-session structure allocated by the OCF framework. This per-session struc-
ture contains memory reserved for driver-specific session state. Drivers now provide the
desired size for their driver-specific session state when registering with OCF. Before OCF
asks a driver to initialize a new session, OCF allocates memory for the driver-specific session
state. Drivers can obtain a pointer to this per-session state at any time via crypto_driver_
session() as a cheap, O(1) operation. When a session is freed, OCF zeroes and frees this
driver-private structure as well. This removes the need for drivers to manage the lifecycle of
driver-specific session structures using a model similar to that of device_get_softc() in
new-bus.
Session Parameters

FreeBSD 13.0 introduced a new flat structure to describe symmetric cryptography ses-
sions. This structure (struct crypto_session_params documented in crypto_ses-
sion(9)) replaced the linked list of session structures and includes parameters such as key,

5 of 10

As a driver author,

OCF felt a bit clunky

and required a fair amount

of duplicated code among

drivers.

16FreeBSD Journal • September/October 2022

digest, and nonce lengths, session-wide keys, and a mode. Supported modes include stand-
alone compression, encryption, and authentication as well as EtA and AEAD modes that
combine both encryption and authentication. For device drivers the loop iterating over the
linked list of session structures checking for multiple ciphers as well as identifying the cipher
vs authentication structures has been removed. Instead, drivers can use switch statements
on the mode and algorithm-specific fields (such as csp_cipher_algorithm and csp_
auth_algorithm) to validate session structures and determine if a session is supported.

The parameter structure also includes room for future expansion. Including an explicit
mode permits future combinations such as TLS’s Mac-then-Encrypt (MtE) to be implement-
ed if desired. In addition, the parameter structure includes a flags field to request optional
features. During the initial conversion of drivers, all drivers were updated to reject sessions
with a non-zero flags field. As new feature flags are added, drivers can opt-in to supporting
sessions with those features by relaxing the checks on the flags field. If at least one driver
supports each new feature that is added, this al-
lows consumers to use new features without re-
quiring changes in all crypto drivers. In practice this
means that new optional features must be sup-
ported by the cryptosoft(4) driver.
Session Probing

FreeBSD 13.0 also introduced a new crypto driv-
er method, cryptodev_probesession. When a
new symmetric session is created, OCF invokes this
new method on each eligible driver. Drivers can ex-
amine all the session parameters including the ses-
sion mode and key lengths to determine if an indi-
vidual session is supported. If a driver supports a session, it returns a bidding value from this
method that OCF uses to choose the best-suited driver. Bidding values are similar to those
used by DEVICE_PROBE(9) where a positive value indicates an error and the negative value
closest to zero is considered the “best” driver. Unlike DEVICE_PROBE(9), there are no special
semantics for a return value of zero. Three bidding values are currently defined for coproces-
sor drivers, accelerated software drivers (such as aesni(4)), and plain software drivers.

Previously OCF did not provide a good way of distinguishing accelerated software drivers
from coprocessor and plain software drivers. Prior to 13.0, accelerated software drivers were
marked as coprocessor (“hardware”) drivers to ensure they were preferred to plain software
drivers. However, this also meant that userland requests submitted via /dev/crypto were
enabled for accelerated software drivers by default. If userland software such as OpenSSL is
going to use accelerated software instructions (such as AES-NI on x86), it is more efficient
for userland to use those instructions directly rather than paying the additional overhead
of system calls to encrypt or decrypt data. Userland requests via /dev/crypto only make
sense when using a coprocessor (and even for many smaller requests the system call
overhead can still outweigh the benefits of offloading operations to a coprocessor). The
cryptodev_probesession hook provides preference for accelerated software drivers
while avoiding conflating them with coprocessor drivers.

6 of 10

The parameter structure

also includes room

for future expansion.

17FreeBSD Journal • September/October 2022

Crypto Requests
FreeBSD 13.0 features a flattened crypto request structure (struct cryptop described

in crypto_request(9)). This structure existed in older FreeBSD versions, but it no longer con-
tains a pointer to a linked-list of descriptors. Instead, the information previously stored in de-
scriptors such as the size and layout of regions in the data buffer such as AAD and payload
are now described by members of the structure. Pointers to per-operation keys and sepa-
rate IVs are stored directly in the structure as well. The new members in the structure as-
sume that symmetric requests operate on a buffer containing AAD, IV, payload, and MAC
regions. (Note that some regions are optional depending on the session parameters and
request flags.) EtA modes are expected to apply authentication on both the AAD and en-
crypted payload regions while AEAD modes treat the AAD and payload regions as defined
by the associated algorithm.

IV/nonce handling for requests has also been simplified. The OCF layer now generates
any random nonces requested by a consumer be-
fore passing a request down to drivers. Drivers now
only have to determine if the IV is stored inline in
the data buffer or as a separate input in the re-
quest structure. A new helper function, crypto_
read_iv(), permits drivers to fetch the IV from a
request into a local buffer. This function eliminated
duplicated code to read the IV from a request in al-
most all drivers.
Crypto Buffers

FreeBSD 13.0 added additional abstractions for
buffers holding data used as inputs and outputs
of symmetric cryptographic requests. Prior to 13.0,
crypto requests supported different types of data buffers including flat kernel buffers and
struct mbuf chains. The type of buffer was encoded via flags in the crp_flags field of
struct cryptop and an overloaded pointer pointed to the backing store. Two helper rou-
tines for moving data in and out of a crypto request’s data buffer (crypto_copydata()
and crypto_copyback()) accepted the flags field and overloaded pointer as arguments to
support different data buffer types.

13.0 adds a new struct crypto_buffer type to describe a crypto data buffer. The
structure includes an enum member which defines the type of the buffer as well as a union
of type-specific fields. This permits buffer types which require more than a single pointer to
describe. Using a dedicated type also permitted adding support for separate input and out-
put buffers by storing two structures in struct cryptop. The existing crypto_copyda-
ta() and crypto_copyback() routines now accept the crypto request in place of the indi-
vidual fields.

Two new API extensions further reduce duplicated code in drivers. First, new bus_dma(9)
functions, bus_dmamap_load_crp() and bus_dmamap_load_crp_buffer(), permit
loading a mapping for a crypto data buffer associated with a crypto request. This is primarily
useful for coprocessor drivers which need to construct a DMA scatter/gather list to pass on
to the coprocessor. Second, a cursor abstraction, primarily useful for software drivers, allows

IV/nonce handling

for requests has also

been simplified.

7 of 10

18FreeBSD Journal • September/October 2022

drivers to iterate over virtual address ranges of a crypto data buffer. Cursors are bound to a
crypto buffer when initialized. Drivers can then iterate over a data buffer either by copying
data, which implicitly advances the cursor, or explicitly seeking forward. Logic specific to in-
dividual data buffer types is isolated in the implementation of crypto cursors rather than du-
plicated in software drivers. More details on the crypto cursor API can be found in crypto_
buffer(9). These extensions permit adding new data buffer types without modifying most
existing drivers.

Finally, new helper routines have been added on
the consumer side of the OCF API that are used
to initialize the data buffer in a crypto request.
Each crypto buffer data type has dedicated
crypto_use_*() and crypto_use_output_*()
routines that initialize a crypto request’s data buf-
fers. For example, crypto_use_buf() configures
a crypto request to use a flat kernel data buffer as
its input buffer. If a consumer does not specify a
separate output buffer via one of crypto_use_
output_*(), then the same data buffer is modi-
fied in place as both the input and output buffer.
Semantics Changes

Along with these structural changes, OCF in
13.0 also enforces several semantic changes. Some
of these changes fall out from the structural changes while others are intentional towards
the goal of simplifying drivers.

1.	 	 Sessions can now use at most one cipher and one authentication algorithm.
2.	 �Sessions can only combine multiple algorithms in specific modes. For example, a ses-

sion cannot mix compression and encryption.
3.	 Sessions can either use per-operation or per-session keys but not both.
4.	 �Sessions which use per-operation keys instead of per-session keys must use the same

key lengths for all operations.
5.	 AEAD sessions now use a single algorithm constant and key.
6.	 �EtA sessions now validate checksums and fail operations with a bad MAC with

EBADMSG similar to AEAD sessions.
7.		 �Accelerated software drivers such as aesni(4) are now marked as software drivers in-

stead of hardware drivers.
Existing consumers generally required only modest changes. Primarily these consisted

of coping with structural changes such as using the session parameters structure. The only
change that did not fall into this category was the change to validate MACs for EtA sessions.
However, this generally simplified consumers by aligning code paths between AEAD and
EtA sessions.
Driver Testing

The initial import of OCF included limited support for validating crypto drivers. The
tools/tools/crypto subdirectory contained several utilities. Most of these fetched sta-
tistics for specific drivers or subsystems. One utility, cryptotest.c, did support some testing,

Finally, new helper

routines have been

added on the consumer

side of the OCF API.

8 of 10

9 of 10

19FreeBSD Journal • September/October 2022

but it was primarily focused on measuring performance. For encryption algorithms it both
encrypted and decrypted a random buffer and verified that the decryption result matched
the original plaintext. However, it did not verify if the encrypted message matched a known-
good standard. Similarly, for authentication algorithms this tool did no verification at all. It
simply measured the performance of performing N operations.

Along with the changes to support AES-CTR and AES-GCM in 11.0, John-Mark Gurney
added support for validating drivers against a set of Known Answer Tests (KAT) published by
the National Institute of Standards and Technology. The test vectors can be installed via the
security/nist-kat port or package. The test/sys/opencrypto/crypotest.py script is able
to run these tests against crypto drivers and report any failures.

These two tests did have a few limitations. Both
tests only supported a subset of algorithms sup-
ported by OCF. The KAT tests were an improve-
ment over cryptotest.c since they validated encryp-
tion results against a trusted third party. However,
the error reporting from the KAT tests was not
detailed, and it was not easy to run an individual
test against a driver when investigating a mismatch
rather than the full battery of tests.

13.0 adds a new testing utility: tools/tools/
crypto/cryptocheck.c. This utility uses
OpenSSL’s software cryptography as a gold stan-
dard to compare driver output against. This per-
mits testing a broader range of algorithms. The
cryptocheck utility also permits testing either indi-
vidual operations or a set of operations spanning
different sizes and/or algorithms. While the pa-
rameters such as keys and data buffers are popu-
lated with random data for each test, the userland
RNG is not seeded so that the specific data inputs
for individual tests are repeatable across multiple runs. Various parameters can be specified
for tests including the sizes of plaintext buffers, keys, AAD, nonces, and MACs. For EtA and
AEAD algorithms, cryptocheck also verifies that corrupted encryption buffers are detected
and rejected with an error.
Documentation

The existing crypto(9) manual page has been updated and split into several pages. cryp-
to_session(9) describes the session parameter structure and APIs to create and manage
symmetric sessions. crypto_request(9) describes the symmetric crypto request structure
and related APIs. crypto_buffer(9) describes crypto buffer cursors and other APIs that work
on crypto request data buffers. crypto_driver(9) describes APIs for use by crypto drivers that
are not described in one of the other pages. The crypto(7) page has been reformatted as
a list of tables grouped by algorithm type and extended to cover all of the algorithms sup-
ported by OCF.

Various parameters

can be specified for tests

including the sizes of

plaintext buffers, keys,

AAD, nonces, and MACs.

10 of 10

20FreeBSD Journal • September/October 2022

Subsequent Changes
The set of changes above in 13.0 were authored by myself and mostly landed as a single

commit. Since then, OCF has been further extended by various developers.
Alan Somers added a new type of crypto data buffer that contains a list of VM pages.

This permitted the use of unmapped I/O with GELI which improved performance by elimi-
nating page table and TLB maintenance operations. Due to the abstractions around crypto
data buffers, Alan’s changes only touched a small number of crypto drivers directly. Most
drivers worked with the new buffer type without requiring any changes.

I added support for separate output buffers and separate AAD buffers as new session
feature flags. These improve the performance for kernel TLS by removing the need for
data copies and for allocating temporary I/O vec-
tors (struct iovec arrays). Since these requests
were added as optional features, only drivers which
wished to support kernel TLS needed to be updat-
ed to support these features.

Marcin Wojtas from Semihalf added anoth-
er session feature to support extended sequence
numbers (ESN) in IPsec for non-AEAD ciphers.

Support for additional AEAD ciphers have also
been added. AES-CCM (used by OpenZFS) was in-
cluded in 13.0. ChaCha20-Poly1305 (used by TLS
and WireGuard) shipped in 13.1.

13.0 also removes support for older, deprecated
ciphers and authenticators such as DES, TripleDES,
Blowfish, and MD5-HMAC.

Conclusion
OCF still has lots of room for improvement, but the refactoring in 13.0 has succeeded

in streamlining the API reducing code duplication and “busy” work in both drivers and con-
sumers. (Mark Johnston told me that two OCF drivers he added in 13.0 were much easier
to write due to the refactoring.) The changes sufficiently improved performance to permit
kernel TLS to switch to using OCF instead of a private software crypto interface. The refac-
toring also provided a flexible base upon which other developers have been able to extend. I
wish to thank Chelsio Communications and Netflix for sponsoring my OCF work in 13.0.

JOHN BALDWIN is a systems software developer. He has directly committed changes to
the FreeBSD operating system for over twenty years across various parts of the kernel (in-
cluding x86 platform support, SMP, various device drivers, and the virtual memory subsys-
tem) and userspace programs. In addition to writing code, John has served on the FreeBSD
core and release engineering teams. He has also contributed to the GDB debugger. John
lives in Concord, California with his wife, Kimberly, and three children: Janelle, Evan, and Bella.

OCF still has lots of

room for improvement,

but the refactoring in

13.0 has succeeded in

streamlining the API.

