
10FreeBSD Journal • July/August 2022

Backstory—Inheriting a Unix Course
Back in 2002, when I was an undergraduate computer science student, I made my first

real contact with a Unix system. I vividly remember my first programming lecture when the
professor opened both his ThinkPad laptop and the lecture itself with these words: “There
are two types of professors in this department: those who use Unix — that is the group I
belong to — and there is the group that uses Windows — and that’s everyone else.” He not
only taught us programming, but he did it all in the command line, displaying programs
with cat, editing them in vi, running make to compile, showing slides in X11. All very basic, yet
somehow very appealing (maybe because I grew
up with DOS, never knowing what I was missing in
a terminal). After all, running Linux or any kind of
Unix on your machine back then showed that you
were hip and cool in computer science terms.

I attended all the lectures this professor taught
— the advanced programming class, then operat-
ing systems and distributed systems. By that time,
I also had my own laptop loading Linux, and shortly
after discovering FreeBSD, I ran that exclusively.

There was another course taught by the same
professor — not a part of the main curriculum —
called Unix for Developers. In this course, Unix
was the primary learning objective. This was clear-
ly old-school, but, nevertheless, interesting to me.
We learned about Unix tools to edit files efficiently and wrote scripts in shell and awk to add
missing functionality when needed. The course was challenging, but I was eager to learn
and try out as much as possible on my own system.

As time went on, the professor eventually switched to a Mac (with many of the students
doing the same), got involved in a lot more lectures and project work and no longer had
time to teach Unix for Developers. This occurred after I had graduated and had worked at

BY BENEDICT REUSCHLING

1 of 7

Teaching
an Undergraduate
Unix Course

Running Linux or any kind

of Unix on your machine

back then showed that

you were hip and cool in

computer science terms.

11FreeBSD Journal • July/August 2022

the department as a lab engineer. He must have remembered my enthusiasm for the sub-
ject when he asked whether I would be willing to take over his Unix for Developers course. I
agreed and he outlined how it was handled. It had become a bit outdated at the time, cov-
ering Linux kernel 2.4 when 2.6 was already out, so I set out not only to update the content,
but to also put in my own bits of BSD here and there.

A few years after teaching the course in German, I was asked whether I would be willing
to teach it in English for our exchange students. As many of the concepts are in English and
don’t translate very well into German, I went over the whole script again and translated it.
I’ve been running it in English ever since, even occasionally using extracts as tutorials at con-
ferences. But let’s go back to the early days...

The Organizational Structure
So here I was, with a required lecture and a semester to fill with course content. The

course is taught in the winter term, which means roughly 15 weeks between October and
January with a Christmas break in between. The written exam is scheduled for February,
which leaves about two weeks between the last
lecture and the exam date for the students to pre-
pare.

There is a weekly, 90-minute lecture and a
three-hour lab. Because of the popularity of the
elective course, there are typically 40 students tak-
ing the course. This means that each lab group of
roughly 16 students meets every 14 days, alternat-
ing with the other group so each have 5 lab dates
in total.

The labs are not graded but need to be com-
pleted by each student group (typically done in
pairs) to be permitted to take the exam at the end.
There is also no midterm evaluation — the final grade is determined by the exam result.
This scenario has been debated many times and whether the labs should be graded given
the effort students put into them. Other classes in this German University follow the same
structure (with a few exceptions), so it’s pretty much established form.

Since this is an elective course, I only get students that are interested in the topic. No stu-
dent is required take my course to get their degree. They must have a certain number of
elective courses listed in their records, but the classes can be chosen freely. Not only does
this reduce the overall number of students, but I get two types of students: those who want
to learn Unix and know very little about it, and those who know Unix quite well already and
want to learn even more (or want to get an easy grade). Later, we will see that balancing
these two groups is not always easy...

The Lecture
As previously mentioned, when I took over the lecture it was outdated as it had not been

offered for a while. I thought I could put some BSD content into it to make it more Unix ag-
nostic since I needed to update slides anyway.

During the very first introductory lecture each semester, it was typical for a student to
ask: “which Linux distro are we going to use?” That question usually causes conflicts, as there

2 of 7

So here I was, with a

required lecture and

a semester to fill with

course content.

12FreeBSD Journal • July/August 2022

are a lot of distributions out there. If I’d say Ubuntu, then the Linux Mint folks are disap-
pointed, and if I say Mint, then the Arch Linux users are appalled. To avoid this (and to give
everyone an equal chance to learn something new without sacrificing some familiar con-
cepts), I usually answer the question with: “All of them and none. We’re using FreeBSD, but if
someone wants to use their distro of choice, then I won’t stop you. After all, this is an intro-
duction and not an indoctrination course.”

I explain to the students that if they are new, beginning with FreeBSD is as good as any
Linux distribution and the concepts carry over well. For those who already know a Linux dis-
tro, they can opt to dip their toes into a BSD system and discover a lot of the basics are the
same. This usually appeases everyone, and I avoid the distro wars entirely. However, if stu-
dents chose to run on their own favorite distribution, they don’t get any help from me. It’s
their system, their choice, their administrative work, and not mine. The popularity of certain
Linux distros changes with each student generation, while FreeBSD has happily remained
mostly the same--stable, free of surprises, and easy to get started with. Interestingly, a lot of
the stuff I teach is distribution agnostic, so there is little to no difference between systems.
We can sometimes compare differences in class when I do demos (more on that later), but
in essence, the commands we use all do what we want them to.

Here is what the course offers:
•	Unix Overview (basics like logging in, commands like ls, cp, etc.)
•	Editors (vi/vim crash course)
•	Shell (command history, tab completion, redirections, pipes, here documents,

background jobs)
•	Shell scripting (big part on variables, control structures, loops, debugging)
•	Shell scripting II (cdialog programming, functions, and traps)
•	grep, sed, awk (extracting data from files, manipulating it in various ways,

awk-programming)
•	Filesystems (ZFS gets introduced here)
•	Ansible (Setup, running ad-hoc commands, writing playbooks and change multiple jails

in parallel)
This is a lot for 15 weeks, even though it may not look like much. One might argue that

Filesystems don’t belong in a programming-oriented lecture. That was a remnant from
when I took the course, and I thought replacing ZFS for the regular filesystem concepts was
a good compromise. Other parts like shell scripting were extended after I learned that some
(but not all) of the professors also teach it as part of the mandatory course on operating
systems. I added concepts like dialog programming (think of the FreeBSD installer to get an
idea of how this may look), functions and traps. They fit together nicely since traps need to
call functions when they’re executing.

Some of the content changes more often over time, depending on my own interests and
based on student feedback. Realistically, one could only comfortably present roughly 40
slides in a 90-minute lecture, considering questions and spending 2-3 minutes per slide.

When the pandemic hit, that format was no longer doable, so most colleagues and I
switched to the inverted classroom model. In this teaching format, students study the mate-
rial up-front, and the lectures are used to address questions and discuss the material. The in-
verted classroom allows the teacher to provide more material up-front and use the lectures
to gauge whether there are common problems that should be explained in class for every-
one. It also requires more initiative from the students. If there are not many questions, I as-
sume everything is understood (which can backfire for the shy students), and I do a couple

3 of 7

13FreeBSD Journal • July/August 2022

of demos by sharing my terminal on a projector or in a video call. I’ve found that students
like this format as they can try out things right away on their own machines, they get to see
me make errors (nobody’s perfect), and it gives the lecture a more dynamic nature rather
than going through the material slide by slide.

Content gets added and updated based on student feedback. When I see that students
struggle with something, I create a couple of extra slides to help them grasp that concept.
This also depends on whether the students have had prior experience with the subject or
are completely new to Unix. Overall, I’ve found that there is something new to learn even for
seasoned Unix users, so it does not matter too much if there are some students who have
had prior exposure. Typically, ZFS and/or Ansible is both new and exciting to the students
because of the capabilities they provide. This is especially true for ZFS. I have had students
tell me later — when I see them again in our mas-
ter’s program — that they are glad I taught it and
that they use it at home for their own NAS.

The Labs
Lab exercises are intended to have students

demonstrate that they have understood a certain
topic and can apply it to a given problem. They typ-
ically work in pairs and present their results to me
for evaluation. They need to get all 5 labs complet-
ed to take the exam. The exercises follow the ma-
terial being taught in the lecture, but there can also
be parts that are only explained on the lab assign-
ment sheet and not in the lecture. This can be be-
cause it is too small to cover in class or is a separate
topic that does not fit into the current curriculum.

Lab assignments typically involve getting to
know something more about the system, doing a
programming exercise (or before that, creating useful shell pipelines), text processing, mak-
ing configuration changes in the system and similar tasks. The most difficult lab for me —
the teacher — is always the first one — setting up the Unix system. Remember that we have
two types of students. While some struggle with even the most basic installer, others bring
a perfectly set up system to the lab and leave after 5 minutes of showing it to me. It’s easy if
you’ve done it with at least one distribution (learning about the FreeBSD specifics is typically
easy enough), but if it’s the first time, it can be difficult for a newcomer. The overall goal of
this lab is to have a running system at the end for everyone to use and follow in class. Once
that has been accomplished, the subsequent labs are much easier for participants. They can
use their installed system and are basically all on the same level as far as the system is con-
cerned.

I’ve also tried out different formats over the years to see which works best in getting ev-
eryone on the same page — so as not to overwhelm the newcomers and not to bore the
experienced students. At the beginning, using the projector, I walked through the installer
in a VirtualBox VM with the students, explaining concepts and terms as they came up. That
worked somewhat, but the advanced students were moving ahead to the next screen and
the explanations turned into a lecture of their own.

4 of 7

Lab exercises are

intended to have

students demonstrate

that they have

understood a certain

topic and can apply it

to a given problem.

14FreeBSD Journal • July/August 2022

Then I switched to providing instructions as to what the installed system should have at
the end — a certain partition layout, a local user separate from root, and a running network.
This tended to create a lot of different results, even though they all used the same virtual
hardware platform. Some didn’t remember their passwords in the lab 14 days later or had
made their partitions too small and couldn’t install any software on it. In addition, cheating
was much easier, as one student could pass around a finished VM image, and the other stu-
dents simply imported that on their machines. The students did not learn much from sim-
ply running through the installer and hitting enter a couple of times with no clue as to what
was going on behind the scenes (partitioning, DHCP calls to the network, etc.).

To prevent cheating and to give students a bit more information about what was going
on, I provided instructions on how to do the installation manually. They would drop to the
shell and do everything by hand: set up partitions, extract FreeBSD source archives, make
basic settings for the network, and install the boot loader. All of this was accompanied by in-
structions on what the commands they were using
did. To prevent cheating, I gave instructions to label
their partitions in gpart after the uniquely generat-
ed disk ID from VirtualBox. That way, each system
had its own ID and I could easily compare them.

That worked well to a certain extent. A couple of
students would reboot after the installation only to
find themselves with an unbootable system. They
must have written the boot code to the wrong par-
tition — like the one used for swap by not getting
the ID in gpart right. I also had a few students stop
the installation in between, suspend the VM to do
something else, and later try to continue, only to
find that the virtual CD provided by the FreeBSD
ISO image would no longer be mounted, making
all inputs result in “command not found” errors. Yet other students booted their systems
just fine, worked with them and then in a later lab would reboot for the first time (suspend-
ing the VM all the time) and find themselves in an unbootable system — with all the solu-
tions inside the unbootable partition. Not good, especially since those students would ask
me what to do and have me figure out the particulars of their install from months ago.

Although I refined my manual installation instructions to include regular VM snapshots
at certain points to go back to, other problems remained. Students did not read my expla-
nations but would simply look for the next command to enter in a 12-page document (in-
cluding images). That, of course, defeats the purpose of trying to teach them a little about
how a Unix system like FreeBSD is installed and what components are involved. Again, the
newcomers struggled with this more than the seasoned Unix users. Luckily, the number of
struggling students was limited to only a few, while the rest did fine with this lab.

I’m currently doing a separate project with a small student group with the goal of pro-
viding course participants with a ready-made machine (jail) running some application. They
have to keep this machine with the application running while I inject certain errors that the
students have to find and fix. A global hiscore list displays how quickly each team solved it
based on points given by a check program that runs over these systems to figure out if and
when an injected error is no longer present. Of course, I could inject different errors for

5 of 7

A couple of students

would reboot after the

installation only to find

themselves with an

unbootable system.

15FreeBSD Journal • July/August 2022

each group or even multiple ones. From shutting down services to removing execute bits or
whole files — the possibilities are endless (at least in my mind). Students learn how to keep
things running, they don’t have to deal with installing it properly in the first place (which is
what they typically find at a company), and learn skills to find and fix common errors. We’re
still fleshing out the details, but I think it will be engaging for students.

The Exam
What can I write about the exam without giving away too much of the content? Since I

switched to an English-only lecture a couple of years ago, students fear that they will not
understand the questions. But that turned out not to be a problem. The questions are typi-
cally programming related like “find the error in this short shell script,” which bridges the hu-
man language gap quite nicely. There is multiple choice, fill in the blanks, write a short script
on your own, or tell me what CoW in ZFS terms means. All are familiar question types for
students at this point in their studies.

From the results, I can see that newcomers have an equal chance of getting a good
grade in this course as those with prior exposure to a Unix system. I can’t tell if the latter
group studies at all for the exam, but I can certainly say that not studying at all does not
guarantee a good grade. Since the exam typically contains material from the labs in differ-
ent form, I can also tell afterwards which of the two in the lab group really did the exercises
and who did not. That is a late revelation for the students and for me, but sometimes my in-
tuition about which student is the better one is wrong.

Aftermath
Once grading is done and the students have had a chance to review their exams (which

they rarely do), the class officially ends. But that does not mean the work is done for the
teacher. Since this is a yearly course, I have time over the summer to relax and reflect on it.
From the feedback and experiences in the lecture and labs, I refine or even completely re-
write certain parts — typically the ones that evoked a lot of questions during the labs or
were small points raised by the group in the exam.

I also find cool new things in the Unix space that I want to teach in the future. During my
sysadmin work, I occasionally come across a piece of code or a little problem that later be-
comes an exam question. Collecting these over the summer break refreshes the course
content not only for me, but for the next generation of students. So, it is rare that two con-
secutive courses will be taught completely the same. That would be boring to me and the
students and lab, and exam solutions from previous years would propagate over time.

Can I teach everything that Unix has to offer or that I think students should know? Cer-
tainly not. I can scratch the surface and hope that students find it sufficiently interesting to
continue learning about it on their own after the course. Some of the more advanced top-
ics are covered by colleagues who go deeper into subjects like managing cloud application
development, systems programming in Rust, and similar topics offered as elective courses.
Some students complain that I don’t cover docker, but then I remind them that we’re look-
ing at jails which also have cool features.

Of course, you also have to address recent developments and trends. Whereas a couple
of years ago, we’d still have to do basic HTML introductions in another course, we can now
assume that many students already possess that knowledge from their school days or pri-
vate dabbling. The same is true for hardware. A lot of students have never built their own

6 of 7

16FreeBSD Journal • July/August 2022

computer and have only used complete systems. Talking about interactions between com-
ponents like CPU, RAM, and storage may seem new to those students, even though that is
covered in the mandatory operating systems class. If students only bring a tablet or are only
used to a graphical UI, it’s difficult to introduce them to a text-based shell with a blinking
cursor. This is not a FreeBSD-only problem, as each Unix eventually revolves around using
the shell, even though it runs in a bells-and-whistles GUI.

I think students are happy to get an introduction to Unix that goes beyond what they
learn in their operating systems classes. While those classes usually revolve around how a
scheduler works, what the MMU does, and how system calls are good to know for program-
mers, my course is a more hands on, day-to-day use of Unix as an operating system for end
users. It’s certainly not perfect and has to constantly adapt to the changing times, but I like
the current concept and students do as well.

BENEDICT REUSCHLING is a documentation committer in the FreeBSD project and
member of the documentation engineering team. In the past, he served on the FreeBSD
core team for two terms. He administers a big data cluster at the University of Applied Sci-
ences, Darmstadt, Germany. He’s also teaching a course “Unix for Developers” for under-
graduates. Benedict is one of the hosts of the weekly bsdnow.tv podcast.

7 of 7

all the storage; we use ZFS to replicate the data between cluster nodes; we use
compression and snapshots. And we heavily use Capsicum to make it all secure.

We want to be sure that even if someone breaks into a single session, he can-
not access other sessions. He cannot actually access anything, because if he
breaks in before authentication, he won't be granted access to connect to the
server. Only after successful authentication will we provide a connection to the
destination server.

And Capsicum makes it really clean and very efficient actually.
Al lan: You don't have to enumerate all the things you can't do. You're saying
you're only allowed to do these things?

• Pawel: Yes. This is capability ideology. You only grant the exact rights or access
to resources that the process requires. Which is not UNIX ideology because, of
course, if you are running a UNIX program, it has access to everything.
Al lan: Was there anything else you wanted to talk about?

• Pawel: Not really. •

Sept/Oct 2019 23

FreeBSD is internationally recognized as an innovative
leader in providing a high-performance, secure, and stable
operating system.
Not only is FreeBSD easy to install, but it runs a huge number

full source code.

The FreeBSD Community is proudly supported by

T

Help Create the Future.
Join the FreeBSD Project!

The FreeBSD Project is looking for

Find out more by

Checking out our website

Downloading the Software

for people like you to help continue
developing this robust operating system.
Join us!

Already involved?

Don�t forget to check out the latest
grant opportunities at
freebsdfoundation.org

https://www.bsdnow.tv/

