
July/August 2022

Building the Loom Framework
on FreeBSD

Teaching an Undergraduate
Unix Course

Getting Started with FreeBSD
Workshop

Pragmatic IPv6 (Part 2)

Advocating for FreeBSD
in 2022 and Beyond

Science, Systems, and FreeBSD

Nov/Dec 2019 57

November/December 2021

Open Channel SSD

Building FreeBSD Communities

27 Years with the Perfect OS

WIP/CFT:OccamBSD

2022 Editorial Calendar
• Software and System Management

(January-February)

• ARM64 is Tier 1 (March-April)

• Disaster Recovery (May-June)

• Science, Systems, and FreeBSD (July-August)

• Security (September-October)

• Observability and Metrics (November-December)

LETTER
from the Foundation

Justin Gibbs • Founder of the FreeBSD Foundation,
President and Treasurer of the FreeBSD
Foundation Board

Daichi Goto • Director at BSD Consulting Inc.
(Tokyo)

Dru Lavigne • Author of BSD Hacks and
The Best of FreeBSD Basics

Michael W Lucas Author of more than 40 books including
Absolute FreeBSD, the FreeBSD
Mastery series, and git commit murder

•

Kirk McKusick • Lead author of The Design and
Implementation book series

Hiroki Sato • Director of the FreeBSD Foundation
Board, Chair of AsiaBSDCon, and
Assistant Professor at Tokyo
Institute of Technology

Robert N. M. Watson • Director of the FreeBSD Foundation
Board, Founder of the TrustedBSD
Project, and University Senior Lecturer
at the University of Cambridge

Advisory Board
Anne Dickison • Marketing Director, FreeBSD Foundation

John Baldwin • Member of the FreeBSD Core Team and
Chair of FreeBSD Journal Editorial Board

Tom Jones • FreeBSD Developer, Internet Engineer
and Researcher at the University of
Aberdeen

Allan Jude • CTO at Klara Inc., the global FreeBSD
Professional Services and Support
company

George Neville-Neil • Past President of the FreeBSD Foundation
Board, and co-author of The Design
and Implementation of the FreeBSD
Operating System

Ed Maste • Senior Director of Technology,
FreeBSD Foundation and Member
of the FreeBSD Core Team

Benedict Reuschling • FreeBSD Documentation Committer
and Member of the FreeBSD Core Team

Mariusz Zaborski • FreeBSD Developer

FreeBSD Journal (ISBN: 978-0-615-88479-0) is published 6 times
a year (January/February, March/April, May/June, July/August,

September/October, November/December).
Published by the FreeBSD Foundation,

3980 Broadway St. STE #103-107, Boulder, CO 80304
ph: 720/207-5142 • fax: 720/222-2350
email: info@freebsdfoundation.org

Copyright © 2021 by FreeBSD Foundation. All rights reserved. This magazine may not be
reproduced in whole or in part without written permission from the publisher.

Publisher •
Editor-at-Large •

Design & Production •
Advertising Sales •

Walter Andrzejewski
walter@freebsdjournal.com

James Maurer
jmaurer@freebsdjournal.com

Reuter & Associates

Walter Andrzejewski
walter@freebsdjournal.com
Call 888/290-9469

J O U R N A L
®

S&W PUBLISHING LLC

Editorial Board

PO BOX 3757 CHAPEL HILL, NC 27515-3757

3FreeBSD Journal • July/August 2022

Welcome to the July/August issue
of the FreeBSD Journal!
Summer is ending and a new school year begins in
the northern hemisphere. Brian Kidney opens the is-
sue with an article describing a code tracing and in-
strumentation framework developed on FreeBSD.
Benedict Reuschling writes about his Unix for De-
velopers class that spans topics from system admin-
istration to shell scripting, and Roller Angel walks us
through an interactive workshop for new users of
FreeBSD. Anne Dickison rounds out the articles with
her piece on effective FreeBSD advocacy.

You’ll also find the second installment of Hiro-
ki Sato’s series on using IPv6 on FreeBSD as well as
Tom Jones’ Work-in-Progress column featuring Gleb
Smirnoff’s piece on recent changes to socket buffers
in FreeBSD 14. And, at long last, this issue includes a
couple of conference reports which have been few
and far between over the past two years. We look
forward to more reports in the future as our commu-
nity starts to meet at a more regular cadence again.
By the way, several members of the Journal’s edito-
rial board will be in Vienna, Austria in September for
EuroBSDCon 2022. We look forward to talking with
readers who will be there and plan a report from Vi-
enna in a future issue for those who won’t be able to
attend.

We value feedback from readers whether in per-
son or via email. If you have feedback on articles,
suggestions for topics for a future article, or are in-
terested in writing for the Journal, please email us at
info@freebsdjournal.com.

John Baldwin
Member of the FreeBSD Core Team
and Chair of FreeBSD Journal Editorial Board

mailto:info@freebsdjournal.com

 3 Foundation Letter
By John Baldwin

 34 We Get Letters
Serve the Machines and be Content
by Michael W Lucas

 38 WIP/CFT: Socket Buffers
By Tom Jones and Gleb Smirnoff

 4 1 FreeBSD Developer Summit Report
By Anne Dickison

 43 Electromagnetic Field 2022 Report
By Tom Jones

 46 Events Calendar
By Anne Dickison

Science, Systems, and FreeBSD

4FreeBSD Journal • May/June 2022

July/August 2022

 5 Building the Loom Framework
on FreeBSD

 By Brian Kidney

 10 Teaching an Undergraduate
Unix Course

 By Benedict Reuschling

 17 Getting Started with FreeBSD
Workshop

 By Roller Angel

 20 Pragmatic IPv6 (Part 2)
 By Hiroki Sato

 31 Advocating for FreeBSD in 2022
and Beyond

 By Anne Dickison

5FreeBSD Journal • July/August 2022

When trying to understand code in production, developers log information to be
analyzed offline. This will usually require the decisions up front as to what and
when to log. The answers to these questions are usually based on a determination

of where things could go wrong or previous issues experience in the system. Knowing during
development exactly what information is needed during development is not always possible,
especially when trying to trace data for security reasons.

This is part of the problem faced by the Causal Adaptive Distributed, and Efficient Trac-
ing System (CADETS) research project1. The goal of the project was to use existing mecha-
nisms as well as develop new techniques to instru-
ment FreeBSD to maximize transparency into live
servers. This would give users better insight into
security concerns on their systems, as well as pro-
vide additional information for performance tun-
ing and debugging.

Loom was one of the tools developed as part of
this effort. In this article, we will look at the origi-
nal inspiration for building Loom. We will talk about
how Loom has been expanded beyond its original
purpose. Finally we will discuss what we are work-
ing on for the future of Loom.

Instrumenting for Security
When developers instrument their software, it is usually to track performance or trace

possible points of failure in a system. Similar methodology is often used when adding secu-
rity monitoring, often capturing only a small number of events such as login attempts with
minimal information. Much of this information is logged to different locations on a comput-
er and often is not correlated with other systems. The CADETS team found that this infor-
mation in the kernel could be obtained easily with the use of DTrace, the tracing framework
included as part of the FreeBSD base system. FreeBSD provides many DTrace providers to
allow access to information on kernel components such as system calls, function calls and
network buffers.

1 of 5

BY BRIAN KIDNEY

Building the
Loom Framework
on FreeBSD

In this article, we will look

at the original inspiration

for building Loom.

6FreeBSD Journal • July/August 2022

However, extracting additional information from userland processes DTrace requires
more work. The issues with tracing programs running in userland is the information captured
often lacks context and flexibility. For example, it is easy to write a DTrace script to log all calls
to a specific function in a library, but the script has to be applied each process that will use
that library. We needed a way to be able to instrument the library itself so that the logging
occurs for any program using the library without having to target each program explicitly in
the script. The mechanism needed also to provide provide context for each time the library
function was called, including function name, arguments and executable calling the function.

DTrace provides a mechanism to add tracing probes directly into programs and librar-
ies via Userland Statically Defined Tracing (USDT). The process for creating these probes
requires the developer to write and compile custom code for each probe, include it in the
original source and then use a DTrace specific tool to modify the programs binary object
files to insert calls to the probes. Unfortunately, this process requires changes to the build
process to include an additional tool that modifies your object files directly. Each time the
probe code is changed it is converted to a header file that is included in the original code,
requiring the program to be completely compiled from scratch. We wanted a simpler sys-
tem that allows the user to insert instrumentation at the LLVM Intermediate Representation
(IR) stage, without the need for a complete rebuild. Since FreeBSD uses LLVM as the system
compiler this would make it easier to include our method in the build system.

Our solution to this problem was Loom, a custom LLVM optimization (opt) pass that al-
lowed the user to insert arbitrary code into a program during compile time without modifi-
cation of the original source code and without having to recompile the entire program each
time. As you can see in Figure 1, Loom integrates into the FreeBSD build process as an ad-
ditional opt pass. The original source code is compiled to LLVM IR first and using the Loom
pass and a YAML policy file the additional code is inserted into the program before the final
linker stage.

LLVM
Frontend
(Clang/

Clang++)

LLVM opt
pass

LLVM opt
pass

LLVM
Backend

Loom

Loom PolicySource Code Instrumented
Binary

…

LLVM
Bytecode

Instrumented
LLVM

Bytecode

…

Figure 1: Loom Build Process

Unlike the original USDT method, changes to source code are not needed. In fact, the
source code of the application is not needed. As long as a LLVM IR representation of the
code is available, the instrumentation can be added to the program.

2 of 5

7FreeBSD Journal • July/August 2022

One CADTES use case is to capture all authentication attempts using the Pluggable Au-
thentication Modules (PAM) system. These can come from many sources such as SSH or
sudo, so to capture them all we targeted the PAM library itself. A sample Loom policy YAML
file is given in Listing 1 showing how we where able to instrument PAM to log authentication
attempts from userspace. The example is specifically instrumenting the pam_authenticate
function, capturing all of the arguments to the call. Metadata is used to add context to the
data when it is received by DTrace, allowing the author of the corresponding DTrace script
to differentiate data from various userland probes. As a result, we are able to capture the us-
ername (and other details) of login attempts and the executables from which they come.

strategy: callout
dtrace: userspace
functions:
- callee: [entry]
 metadata:
 name: auth
 id: 1
 name: pam_authenticate

Listing 1: Loom configuration for logging PAM authentication attempts

In the majority of cases, this solution does not require the user to write custom code as
in USDT. To get data into the DTrace system, an experimental system call was written using
the SDT provider from DTrace to pass trace data to the kernel. The policy file provides all of
the information needed to add context to the user data when tracing. The only time addi-
tional development is needed is when the user wants to transform the data in some way be-
fore it is sent to DTrace.

Using Loom allowed us to reproduce the DTrace
USDT functionality without having to integrate the
USDT toolchain into FreeBSD build process. The
system does require a custom system call but it was
a simple change that provided the flexibility to add
and remove instrumentation to applications with-
out any modifications to the source code. Since
the operating system already uses LLVM we could
integrate Loom into the build by adding additional
build targets for programs and libraries to produce
the LLVM IR output. Then Loom could be called as an additional build step where needed.

The FreeBSD base system contributed to the ease of this development. The base system
of the operating system not only includes the kernel and userland source to be able to run a
fully functional operating system, but it also includes a unified system for building FreeBSD.
In order to use Loom in our research project we needed to be able to build program and
libraries as bit code objects (BCOs). These BCOs are a binary form of LLVM IR that Loom
can modify for instrumentation and transformation. Since all binaries in FreeBSD use a cen-
tral set of build scripts we only had to modify these to create BCOs for any part of the base
system. Once we had made these modifications we could apply Loom to any program or li-
brary necessary.

3 of 5

In the majority of cases,

this solution does not

require the user to write

custom code as in USDT.

8FreeBSD Journal • July/August 2022

Expanding Loom
For some CADETS use cases it was necessary to transform the data collected before

passing it to DTrace. For example, to avoid name collision between servers in an instru-
mented distributed system the project uses Globally Unique Identifier (GUID) for the us-
ernames so they could be individually tracked in the outputs. To achieve this, a mechanism
was added to allow external code to be inserted into a program through Loom. The user
can add calls to custom functions or libraries as long as the symbols are available at the link
stage of the build process. Though this function-
ality was originally designed to modify data before
logging it, the concept opened up new possibili-
ties such as code transformation in addition to in-
strumentation.

Since the conclusion of the CADETS project,
we have been working on exploring these possibil-
ities, such as the replacement of code within a pro-
gram to use a new API. For example, to test a new
network API would traditionally require changes to
source code, replacing calls to the old API with calls
to the new one. This process is tedious and prone
to human error. We are expanding Loom to han-
dle such tasks without the need for source code
changes. By matching a set of function calls, we
can have Loom remove the original code and re-
place it with one or more calls using of the new API.

One current limitations to this work is the policy file which is used to specify the chang-
es that Loom needs to make. Though we have the ability to make code transformations
with Loom, the current YAML based format is not expressive enough to fully specify trans-
formations. We are currently working on a language that will overcome this limitation.
The aim of this language is to allow for very specific specification of transformations to be
made by Loom.

The Future of Loom on FreeBSD
Loom is a full featured instrumentation and transformation framework. Loom has the

ability to instrument functions and function calls as well as accesses to structure fields, glob-
al variable and pointers. One to one function call replacement is fully implemented and
there is functionally to replace calls to a sequence of functions, though further configura-
tion work is required to make this generally usable. Additionally there is the ability for many
of these configuration to be matched using wildcards or limited within the scope of certain
files from the source code.

Since its use in the CADETS project, Loom has seen interest from developers on oth-
er operating systems such as Linux. Though we have made efforts to support these us-
ers, Loom’s main development continues on FreeBSD. With the upcoming addition of Link
Time Optimization (LTO) in the FreeBSD build system, we will investigate the possibility of
using Loom in the unmodified FreeBSD build system. We will also be use FreeBSD to test
the new Loom configuration language, investigating areas where the transformation system
can help maintain ports of software from other operating systems.

4 of 5

Loom is a full featured

instrumentation

and transformation

framework.

9FreeBSD Journal • July/August 2022

For more information on Loom and to follow future developments you can check out
the project page at github.com/cadets/loom.

Acknowledgements
The author would like to thank those who helped and guided me during this work includ-

ing George Neville-Neil and Domagoj Stolfa for their DTrace help. Thanks to Ed Maste for
his answers to my FreeBSD questions whether it was directly or to connect me with some-
one who knew the answer. Many thanks to all the members of the CADETS Project includ-
ing Robert Watson, Arun Thomas, Silviu Chiricescu, Jon Anderson and Amanda Strand.

The FreeBSD community was great help to our efforts. Whether it was on IRC, mailing
lists or at BSD conferences, it was generally easy to connect with the community and get
answers to questions when we ran into issues. Thanks to the members of the community
who were more than happy help out.

Finally the author would like to thank Jon Anderson for his feedback to improve the
manuscript.

This work has been sponsored by the Defense Advanced Research Projects Agency
(DARPA) and the Air Force Research Laboratory (AFRL), under contract FA8650-15-C-7558.
The views, opinions, and/or findings contained in this paper are those of the authors and
should not be interpreted as representing the official views or policies, either expressed or
implied, of the Department of Defense or the U.S. Government.

1 Anderson, J; Neville-Neil, G. V.; Thomas, A.; Watson, R. N. M. “Cadets: Blending Tracing and
Security on FreeBSD,” FreeBSD Journal, May/June 2017, 12 - 17. 5

BRIAN KIDNEY is an Instructor of Cybersecurity at the College of the North Atlantic in St.
John's, Newfoundland, Canada. He is also completing a PhD in Computer Engineering at
Memorial University. His research interests include privacy and security, specifically as they
relate to operating systems and programming languages. Brian has 20 years of experience
as a Software Engineer developing software for multiple industries.

5 of 5

https://github.com/cadets/loom

10FreeBSD Journal • July/August 2022

Backstory—Inheriting a Unix Course
Back in 2002, when I was an undergraduate computer science student, I made my first

real contact with a Unix system. I vividly remember my first programming lecture when the
professor opened both his ThinkPad laptop and the lecture itself with these words: “There
are two types of professors in this department: those who use Unix — that is the group I
belong to — and there is the group that uses Windows — and that’s everyone else.” He not
only taught us programming, but he did it all in the command line, displaying programs
with cat, editing them in vi, running make to compile, showing slides in X11. All very basic, yet
somehow very appealing (maybe because I grew
up with DOS, never knowing what I was missing in
a terminal). After all, running Linux or any kind of
Unix on your machine back then showed that you
were hip and cool in computer science terms.

I attended all the lectures this professor taught
— the advanced programming class, then operat-
ing systems and distributed systems. By that time,
I also had my own laptop loading Linux, and shortly
after discovering FreeBSD, I ran that exclusively.

There was another course taught by the same
professor — not a part of the main curriculum —
called Unix for Developers. In this course, Unix
was the primary learning objective. This was clear-
ly old-school, but, nevertheless, interesting to me.
We learned about Unix tools to edit files efficiently and wrote scripts in shell and awk to add
missing functionality when needed. The course was challenging, but I was eager to learn
and try out as much as possible on my own system.

As time went on, the professor eventually switched to a Mac (with many of the students
doing the same), got involved in a lot more lectures and project work and no longer had
time to teach Unix for Developers. This occurred after I had graduated and had worked at

BY BENEDICT REUSCHLING

1 of 7

Teaching
an Undergraduate
Unix Course

Running Linux or any kind

of Unix on your machine

back then showed that

you were hip and cool in

computer science terms.

11FreeBSD Journal • July/August 2022

the department as a lab engineer. He must have remembered my enthusiasm for the sub-
ject when he asked whether I would be willing to take over his Unix for Developers course. I
agreed and he outlined how it was handled. It had become a bit outdated at the time, cov-
ering Linux kernel 2.4 when 2.6 was already out, so I set out not only to update the content,
but to also put in my own bits of BSD here and there.

A few years after teaching the course in German, I was asked whether I would be willing
to teach it in English for our exchange students. As many of the concepts are in English and
don’t translate very well into German, I went over the whole script again and translated it.
I’ve been running it in English ever since, even occasionally using extracts as tutorials at con-
ferences. But let’s go back to the early days...

The Organizational Structure
So here I was, with a required lecture and a semester to fill with course content. The

course is taught in the winter term, which means roughly 15 weeks between October and
January with a Christmas break in between. The written exam is scheduled for February,
which leaves about two weeks between the last
lecture and the exam date for the students to pre-
pare.

There is a weekly, 90-minute lecture and a
three-hour lab. Because of the popularity of the
elective course, there are typically 40 students tak-
ing the course. This means that each lab group of
roughly 16 students meets every 14 days, alternat-
ing with the other group so each have 5 lab dates
in total.

The labs are not graded but need to be com-
pleted by each student group (typically done in
pairs) to be permitted to take the exam at the end.
There is also no midterm evaluation — the final grade is determined by the exam result.
This scenario has been debated many times and whether the labs should be graded given
the effort students put into them. Other classes in this German University follow the same
structure (with a few exceptions), so it’s pretty much established form.

Since this is an elective course, I only get students that are interested in the topic. No stu-
dent is required take my course to get their degree. They must have a certain number of
elective courses listed in their records, but the classes can be chosen freely. Not only does
this reduce the overall number of students, but I get two types of students: those who want
to learn Unix and know very little about it, and those who know Unix quite well already and
want to learn even more (or want to get an easy grade). Later, we will see that balancing
these two groups is not always easy...

The Lecture
As previously mentioned, when I took over the lecture it was outdated as it had not been

offered for a while. I thought I could put some BSD content into it to make it more Unix ag-
nostic since I needed to update slides anyway.

During the very first introductory lecture each semester, it was typical for a student to
ask: “which Linux distro are we going to use?” That question usually causes conflicts, as there

2 of 7

So here I was, with a

required lecture and

a semester to fill with

course content.

12FreeBSD Journal • July/August 2022

are a lot of distributions out there. If I’d say Ubuntu, then the Linux Mint folks are disap-
pointed, and if I say Mint, then the Arch Linux users are appalled. To avoid this (and to give
everyone an equal chance to learn something new without sacrificing some familiar con-
cepts), I usually answer the question with: “All of them and none. We’re using FreeBSD, but if
someone wants to use their distro of choice, then I won’t stop you. After all, this is an intro-
duction and not an indoctrination course.”

I explain to the students that if they are new, beginning with FreeBSD is as good as any
Linux distribution and the concepts carry over well. For those who already know a Linux dis-
tro, they can opt to dip their toes into a BSD system and discover a lot of the basics are the
same. This usually appeases everyone, and I avoid the distro wars entirely. However, if stu-
dents chose to run on their own favorite distribution, they don’t get any help from me. It’s
their system, their choice, their administrative work, and not mine. The popularity of certain
Linux distros changes with each student generation, while FreeBSD has happily remained
mostly the same--stable, free of surprises, and easy to get started with. Interestingly, a lot of
the stuff I teach is distribution agnostic, so there is little to no difference between systems.
We can sometimes compare differences in class when I do demos (more on that later), but
in essence, the commands we use all do what we want them to.

Here is what the course offers:
• Unix Overview (basics like logging in, commands like ls, cp, etc.)
• Editors (vi/vim crash course)
• Shell (command history, tab completion, redirections, pipes, here documents,

background jobs)
• Shell scripting (big part on variables, control structures, loops, debugging)
• Shell scripting II (cdialog programming, functions, and traps)
• grep, sed, awk (extracting data from files, manipulating it in various ways,

awk-programming)
• Filesystems (ZFS gets introduced here)
• Ansible (Setup, running ad-hoc commands, writing playbooks and change multiple jails

in parallel)
This is a lot for 15 weeks, even though it may not look like much. One might argue that

Filesystems don’t belong in a programming-oriented lecture. That was a remnant from
when I took the course, and I thought replacing ZFS for the regular filesystem concepts was
a good compromise. Other parts like shell scripting were extended after I learned that some
(but not all) of the professors also teach it as part of the mandatory course on operating
systems. I added concepts like dialog programming (think of the FreeBSD installer to get an
idea of how this may look), functions and traps. They fit together nicely since traps need to
call functions when they’re executing.

Some of the content changes more often over time, depending on my own interests and
based on student feedback. Realistically, one could only comfortably present roughly 40
slides in a 90-minute lecture, considering questions and spending 2-3 minutes per slide.

When the pandemic hit, that format was no longer doable, so most colleagues and I
switched to the inverted classroom model. In this teaching format, students study the mate-
rial up-front, and the lectures are used to address questions and discuss the material. The in-
verted classroom allows the teacher to provide more material up-front and use the lectures
to gauge whether there are common problems that should be explained in class for every-
one. It also requires more initiative from the students. If there are not many questions, I as-
sume everything is understood (which can backfire for the shy students), and I do a couple

3 of 7

13FreeBSD Journal • July/August 2022

of demos by sharing my terminal on a projector or in a video call. I’ve found that students
like this format as they can try out things right away on their own machines, they get to see
me make errors (nobody’s perfect), and it gives the lecture a more dynamic nature rather
than going through the material slide by slide.

Content gets added and updated based on student feedback. When I see that students
struggle with something, I create a couple of extra slides to help them grasp that concept.
This also depends on whether the students have had prior experience with the subject or
are completely new to Unix. Overall, I’ve found that there is something new to learn even for
seasoned Unix users, so it does not matter too much if there are some students who have
had prior exposure. Typically, ZFS and/or Ansible is both new and exciting to the students
because of the capabilities they provide. This is especially true for ZFS. I have had students
tell me later — when I see them again in our mas-
ter’s program — that they are glad I taught it and
that they use it at home for their own NAS.

The Labs
Lab exercises are intended to have students

demonstrate that they have understood a certain
topic and can apply it to a given problem. They typ-
ically work in pairs and present their results to me
for evaluation. They need to get all 5 labs complet-
ed to take the exam. The exercises follow the ma-
terial being taught in the lecture, but there can also
be parts that are only explained on the lab assign-
ment sheet and not in the lecture. This can be be-
cause it is too small to cover in class or is a separate
topic that does not fit into the current curriculum.

Lab assignments typically involve getting to
know something more about the system, doing a
programming exercise (or before that, creating useful shell pipelines), text processing, mak-
ing configuration changes in the system and similar tasks. The most difficult lab for me —
the teacher — is always the first one — setting up the Unix system. Remember that we have
two types of students. While some struggle with even the most basic installer, others bring
a perfectly set up system to the lab and leave after 5 minutes of showing it to me. It’s easy if
you’ve done it with at least one distribution (learning about the FreeBSD specifics is typically
easy enough), but if it’s the first time, it can be difficult for a newcomer. The overall goal of
this lab is to have a running system at the end for everyone to use and follow in class. Once
that has been accomplished, the subsequent labs are much easier for participants. They can
use their installed system and are basically all on the same level as far as the system is con-
cerned.

I’ve also tried out different formats over the years to see which works best in getting ev-
eryone on the same page — so as not to overwhelm the newcomers and not to bore the
experienced students. At the beginning, using the projector, I walked through the installer
in a VirtualBox VM with the students, explaining concepts and terms as they came up. That
worked somewhat, but the advanced students were moving ahead to the next screen and
the explanations turned into a lecture of their own.

4 of 7

Lab exercises are

intended to have

students demonstrate

that they have

understood a certain

topic and can apply it

to a given problem.

14FreeBSD Journal • July/August 2022

Then I switched to providing instructions as to what the installed system should have at
the end — a certain partition layout, a local user separate from root, and a running network.
This tended to create a lot of different results, even though they all used the same virtual
hardware platform. Some didn’t remember their passwords in the lab 14 days later or had
made their partitions too small and couldn’t install any software on it. In addition, cheating
was much easier, as one student could pass around a finished VM image, and the other stu-
dents simply imported that on their machines. The students did not learn much from sim-
ply running through the installer and hitting enter a couple of times with no clue as to what
was going on behind the scenes (partitioning, DHCP calls to the network, etc.).

To prevent cheating and to give students a bit more information about what was going
on, I provided instructions on how to do the installation manually. They would drop to the
shell and do everything by hand: set up partitions, extract FreeBSD source archives, make
basic settings for the network, and install the boot loader. All of this was accompanied by in-
structions on what the commands they were using
did. To prevent cheating, I gave instructions to label
their partitions in gpart after the uniquely generat-
ed disk ID from VirtualBox. That way, each system
had its own ID and I could easily compare them.

That worked well to a certain extent. A couple of
students would reboot after the installation only to
find themselves with an unbootable system. They
must have written the boot code to the wrong par-
tition — like the one used for swap by not getting
the ID in gpart right. I also had a few students stop
the installation in between, suspend the VM to do
something else, and later try to continue, only to
find that the virtual CD provided by the FreeBSD
ISO image would no longer be mounted, making
all inputs result in “command not found” errors. Yet other students booted their systems
just fine, worked with them and then in a later lab would reboot for the first time (suspend-
ing the VM all the time) and find themselves in an unbootable system — with all the solu-
tions inside the unbootable partition. Not good, especially since those students would ask
me what to do and have me figure out the particulars of their install from months ago.

Although I refined my manual installation instructions to include regular VM snapshots
at certain points to go back to, other problems remained. Students did not read my expla-
nations but would simply look for the next command to enter in a 12-page document (in-
cluding images). That, of course, defeats the purpose of trying to teach them a little about
how a Unix system like FreeBSD is installed and what components are involved. Again, the
newcomers struggled with this more than the seasoned Unix users. Luckily, the number of
struggling students was limited to only a few, while the rest did fine with this lab.

I’m currently doing a separate project with a small student group with the goal of pro-
viding course participants with a ready-made machine (jail) running some application. They
have to keep this machine with the application running while I inject certain errors that the
students have to find and fix. A global hiscore list displays how quickly each team solved it
based on points given by a check program that runs over these systems to figure out if and
when an injected error is no longer present. Of course, I could inject different errors for

5 of 7

A couple of students

would reboot after the

installation only to find

themselves with an

unbootable system.

15FreeBSD Journal • July/August 2022

each group or even multiple ones. From shutting down services to removing execute bits or
whole files — the possibilities are endless (at least in my mind). Students learn how to keep
things running, they don’t have to deal with installing it properly in the first place (which is
what they typically find at a company), and learn skills to find and fix common errors. We’re
still fleshing out the details, but I think it will be engaging for students.

The Exam
What can I write about the exam without giving away too much of the content? Since I

switched to an English-only lecture a couple of years ago, students fear that they will not
understand the questions. But that turned out not to be a problem. The questions are typi-
cally programming related like “find the error in this short shell script,” which bridges the hu-
man language gap quite nicely. There is multiple choice, fill in the blanks, write a short script
on your own, or tell me what CoW in ZFS terms means. All are familiar question types for
students at this point in their studies.

From the results, I can see that newcomers have an equal chance of getting a good
grade in this course as those with prior exposure to a Unix system. I can’t tell if the latter
group studies at all for the exam, but I can certainly say that not studying at all does not
guarantee a good grade. Since the exam typically contains material from the labs in differ-
ent form, I can also tell afterwards which of the two in the lab group really did the exercises
and who did not. That is a late revelation for the students and for me, but sometimes my in-
tuition about which student is the better one is wrong.

Aftermath
Once grading is done and the students have had a chance to review their exams (which

they rarely do), the class officially ends. But that does not mean the work is done for the
teacher. Since this is a yearly course, I have time over the summer to relax and reflect on it.
From the feedback and experiences in the lecture and labs, I refine or even completely re-
write certain parts — typically the ones that evoked a lot of questions during the labs or
were small points raised by the group in the exam.

I also find cool new things in the Unix space that I want to teach in the future. During my
sysadmin work, I occasionally come across a piece of code or a little problem that later be-
comes an exam question. Collecting these over the summer break refreshes the course
content not only for me, but for the next generation of students. So, it is rare that two con-
secutive courses will be taught completely the same. That would be boring to me and the
students and lab, and exam solutions from previous years would propagate over time.

Can I teach everything that Unix has to offer or that I think students should know? Cer-
tainly not. I can scratch the surface and hope that students find it sufficiently interesting to
continue learning about it on their own after the course. Some of the more advanced top-
ics are covered by colleagues who go deeper into subjects like managing cloud application
development, systems programming in Rust, and similar topics offered as elective courses.
Some students complain that I don’t cover docker, but then I remind them that we’re look-
ing at jails which also have cool features.

Of course, you also have to address recent developments and trends. Whereas a couple
of years ago, we’d still have to do basic HTML introductions in another course, we can now
assume that many students already possess that knowledge from their school days or pri-
vate dabbling. The same is true for hardware. A lot of students have never built their own

6 of 7

16FreeBSD Journal • July/August 2022

computer and have only used complete systems. Talking about interactions between com-
ponents like CPU, RAM, and storage may seem new to those students, even though that is
covered in the mandatory operating systems class. If students only bring a tablet or are only
used to a graphical UI, it’s difficult to introduce them to a text-based shell with a blinking
cursor. This is not a FreeBSD-only problem, as each Unix eventually revolves around using
the shell, even though it runs in a bells-and-whistles GUI.

I think students are happy to get an introduction to Unix that goes beyond what they
learn in their operating systems classes. While those classes usually revolve around how a
scheduler works, what the MMU does, and how system calls are good to know for program-
mers, my course is a more hands on, day-to-day use of Unix as an operating system for end
users. It’s certainly not perfect and has to constantly adapt to the changing times, but I like
the current concept and students do as well.

BENEDICT REUSCHLING is a documentation committer in the FreeBSD project and
member of the documentation engineering team. In the past, he served on the FreeBSD
core team for two terms. He administers a big data cluster at the University of Applied Sci-
ences, Darmstadt, Germany. He’s also teaching a course “Unix for Developers” for under-
graduates. Benedict is one of the hosts of the weekly bsdnow.tv podcast.

7 of 7

all the storage; we use ZFS to replicate the data between cluster nodes; we use
compression and snapshots. And we heavily use Capsicum to make it all secure.

We want to be sure that even if someone breaks into a single session, he can-
not access other sessions. He cannot actually access anything, because if he
breaks in before authentication, he won't be granted access to connect to the
server. Only after successful authentication will we provide a connection to the
destination server.

And Capsicum makes it really clean and very efficient actually.
Al lan: You don't have to enumerate all the things you can't do. You're saying
you're only allowed to do these things?

• Pawel: Yes. This is capability ideology. You only grant the exact rights or access
to resources that the process requires. Which is not UNIX ideology because, of
course, if you are running a UNIX program, it has access to everything.
Al lan: Was there anything else you wanted to talk about?

• Pawel: Not really. •

Sept/Oct 2019 23

FreeBSD is internationally recognized as an innovative
leader in providing a high-performance, secure, and stable
operating system.
Not only is FreeBSD easy to install, but it runs a huge number

full source code.

The FreeBSD Community is proudly supported by

T

Help Create the Future.
Join the FreeBSD Project!

The FreeBSD Project is looking for

Find out more by

Checking out our website

Downloading the Software

for people like you to help continue
developing this robust operating system.
Join us!

Already involved?

Don�t forget to check out the latest
grant opportunities at
freebsdfoundation.org

https://www.bsdnow.tv/

17FreeBSD Journal • July/August 2022

WWorking with the Front Range BSD User Group, I have taught a Getting Started
with FreeBSD workshop at SCaLE for a few years now. I do so because I realize the
power of the tools and enjoy sharing my experience with others through work-

shops like this one. I also come away from each session with fresh validation for my own set-
up and with feedback that fuels a steady flow of improvements to the workshop. The most
recent session was at SCaLE 19x, and in previous years, the workshop was presented at
SCaLE 17x and 18x.

The Workshop at SCaLE 19x
Participants came wandering into the ballroom where they were welcomed by the pro-

jector screen’s Getting Started with FreeBSD title slide — created by the FreeBSD Founda-
tion’s Marketing Coordinator, Drew Gurkowski. The presentation was livestreamed via You-
Tube at https://www.youtube.com/watch?v=ByFCRwMJATM and screenshots can be pulled
from the livestream.

Typically, the FreeBSD Foundation’s Executive Director, Deb Goodkin, begins the work-
shop with an introduction to the presentation, but this
time, Drew Gurkowski did a great job with that.

With each workshop, we want to make sure that
participants can work through hurdles and follow
along with the process. We initialize and configure a
virtual machine in VirtualBox, which we use for lack
of a computer lab to make use of a lab machine.
Part of the process is inserting the virtual cd into the
CD-ROM drive of the virtual machine. We then boot
from that cd drive and install FreeBSD to the virtual
hard drive of the virtual machine. At the end
of the FreeBSD installer, we run the command
shutdown -p now to instruct FreeBSD to shut off
the computer. That way, we can remove the virtu-
al disc and prevent the virtual machine from starting
from the disc when booting again. Once we’ve installed FreeBSD to the hard drive, we’ll
want to boot from the hard drive from then on.

At this point in the workshop, we take a short break, and I use the time to find anyone
who hasn’t quite caught up and see how I can assist them. The most typical issues I see are
incorrect virtual machine settings. We stick with defaults on most settings, but, as an exam-
ple, someone had unchecked Enable I/O APIC in the System settings of the virtual machine,
so checking that box fixed it. Another participant set the machine type to 32-bit and chang-

BY ROLLER ANGEL

1 of 3

Getting Started
 with FreeBSDFreeBSD




https://www.youtube.com/watch?v=ByFCRwMJATM

18FreeBSD Journal • July/August 2022

ing that setting to 64-bit solved their issue. When troubleshooting, keep in mind that even
a small typo in a package name or setting can be the culprit. More recently, an issue people
have faced is the lack of a suitable hypervisor on the new Apple processors, as VirtualBox is
not supported on them. We had to work around a few small quirks with the conference WiFi
regarding the DNS settings being provided to our virtual machines via DHCP and we ended
up changing the nameserver listed in our /etc/resolv.conf file.

The next step is demonstrating how thin the line is between server and desktop. Install-
ing a few packages and updating some configuration files is what it takes to get the desktop
ready to start. All we need to do is issue the startx command to tell FreeBSD to start up
the desktop. It’s great to see participants realize they
have just set up their own desktop and that there was
no specific distro or flavor of FreeBSD needed for a
specific X Window System window manager such as
KDE Plasma 5, Lumina, or GNOME. We used XFCE,
but also demonstrated how easy it is to install and con-
figure whichever one you want to use. With the win-
dow managers running, you can interact with GUI ap-
plications like the web browser, programming IDE’s, file
manager, etc.

I thought it was important to also introduce par-
ticipants to the process of building a custom package
repo. If they run into an issue that requires customi-
zation of a port and building their own package, they
already know how to avoid common pitfalls and don’t
go down the path of mixing ports and packages. The tool we used is called Poudriere, and it
makes building your own package repo quite easy and straightforward.

As participants learn to type their commands into the command line, a fitting tool to dis-
cuss is Ansible which is typically used for configuration management and works well for con-
trolling remote machines over SSH. We demonstrate how to clone our FreeBSD virtual com-
puter and connect to it via SSH. This way, we can try out Ansible and see how easy it is to tell
Ansible to type the commands using a tool called Ansible Playbooks. Included as part of the
workshop is an Ansible Playbook we use to setup Poudriere on a remote machine that builds
all our packages and synchronizes the resulting files back to our local machine. The idea is
that we can rent a very powerful machine for a short period of time to build our packages
and then destroy that machine once we have the package files downloaded to our local ma-
chine and no longer need the package builder machine. To use the downloaded packages,
we can change the package repository settings to point to a file:// path where our pack-
age files can be found rather than the default https://download.FreeBSD.org setting.

We also discuss FreeBSD Jails so that participants can get a feel for them and see how
easy they are to manage using iocage. We recommend MWL.io for in-depth books regarding
FreeBSD Mastery and for workshop participants to follow along with Michael W Lucas as he
deep dives into topics regarding FreeBSD Jails, Poudriere, Installing FreeBSD and much more.

2 of 3

Getting Started with FreeBSDFreeBSD


https://download.FreeBSD.org
http://MWL.io

19FreeBSD Journal • July/August 2022

The Participants
It was a fantastic group and people from all backgrounds and experience levels were able

to geek out on some cool tech and learn something new that will help support their future
work. It’s easy to see where you can use FreeBSD to solve problems once you get the hang
of installing and configuring it. With configuration management tools like Ansible, you can
take what you’ve learned even further as you have a growing record of the changes you
made to configuration files and the packages you in-
stalled. You can quickly pick up where you left off and
continue to learn even more as you progress on your
journey with FreeBSD.

We had a very enthusiastic crowd and several par-
ticipants even brought along laptops on which they
planned to install FreeBSD, and some had questions
about FreeBSD WiFi. You can easily use USB Tether-
ing from Android to share an internet connection with
FreeBSD, plug in the cord, enable the tethering,
and then execute the command dhclient ue0 as a
privileged user and that will use DHCP to get an ad-
dress from the first USB Ethernet device. Of course,
you can always configure your internal WiFi card with
/etc/rc.conf and /etc/wpa_supplicant.conf as
well. Check section 5 of the FreeBSD Manual Pages for details on these files including the
list of supported options. More info on WiFi is in Chapter 32: Advanced Networking of the
FreeBSD Handbook.It’s good to know which options are available and the workshop aims
to get all the usual FAQs answered, to get people using FreeBSD for something cool, and to
help people use the software to solve problems.

In closing, I want to mention one participant who came in halfway through the day, was
way behind, and not able to catch up. After the workshop, I sat with him in the lobby and
helped him get everything running. He had an old core 2 Duo processor, so it was taking
extra-long to complete the process on his machine. He was grateful for the help and ex-
pressed interest in learning more about BSD. I suggested FreeBSD Journal, MWL.io, and
BSD User Groups. Plus, I’m always happy to help and my website is http://BSD.pw

ROLLER ANGEL spends most of his time helping people learn how to accomplish their
goals using technology. He’s an avid FreeBSD Systems Administrator and Pythonista who
enjoys learning amazing things that can be done with Open Source technology — especial-
ly FreeBSD and Python — to solve issues. He’s a firm believer that people can learn anything
they wish to set their minds to. Roller is always seeking creative solutions to problems and en-
joys a good challenge. He’s driven and motivated to learn, explore new ideas, and to keep his
skills sharp. He enjoys participating in the research community and sharing his ideas.

3 of 3

Getting Started with FreeBSDFreeBSD


http://MWL.io
http://BSD.pw

20FreeBSD Journal • July/August 2022

Part 1 explained the basics of IPv6 protocol and how to get started using it on a FreeBSD
box. You should be able to use automatically-configured link-local scope IPv6 address-
es after reading it. These addresses are still powerful and helpful while they are limited

to your LAN—you need no global IP address if you just want to communicate to another
box on the same network. A link-local address is not routable. It is not likely an attack sur-
face from malicious users on the Internet.

To get access to the IPv6 Internet, you need to configure at least one IPv6 global-scope
unicast address. This column focuses on IPv6 deployment scenarios with routers to under-
stand more practical configurations.

Internet in IPv4 and IPv6
After trying an sshd(8) example in Part 1, you probably want to try access to the IPv6 In-

ternet. Let’s look into what you need to do so and the basics of IPv6 network design.
As you know, the Internet is a global-scale interconnected network driven by the Internet

protocol. To go somewhere outside your local network, you need a router that is reachable
from/to the Internet. It knows “routes to the outside”, and forwards IP packets from your
network to other networks.

You should already have a router for the IPv4 Internet. It might be one provided by your
ISP1, or one at a data center that connects your box located there to the Internet. The ISP
usually offers an connection endpoint for upstream networks that are reachable from the
Internet.

Note that IPv6 is not a compatible protocol with IPv4 while it was designed as a succes-
sor. This means that IPv6 and IPv4 Internet are entirely independent, and you need an IPv6
router and an IPv6 endpoint from ISP. “IPv6 is supposed to be upper-compatible with IPv4”
is one of the common misunderstandings of IPv6. This comes from the fact that most IPv6
deployments have been implemented by migrating existing IPv4 networks. For instance,
you can make your public IPv4 HTTP server on FreeBSD “IPv6-ready” because FreeBSD
supports both IPv4 and IPv6. However, you might not want to make it “IPv6-only” simply be-
cause people with no IPv6 connectivity cannot access your server. Thus IPv6 deployments
are typically done by making existing IPv4 services and networks IPv6-capable in addition to

1 of 11

BY HIROKI SATO

Pragmatic IPv6
(Part 2)

21FreeBSD Journal • July/August 2022

IPv4. This migration approach is called “dual-stack,” and one of the causes that makes you
believe IPv4 and IPv6 are always usable on the same machine and are somehow related.

Design of an IPv6 Network
IPv6 is independent of IPv4, so you must design an IPv6 network. Fortunately, IPv6 is al-

most the same as IPv4 regarding network elements, such as routers and network boundar-
ies. Let’s review how an IPv4 network works and then see specifics about IPv6.

IPv4 Local-Area Network Configuration
IPv4 has “network address” or “subnet”, which is represented by a host address and a net-

work mask (or a subnet prefix length). For instance, an IPv4 address 192.0.2.1/24 means
that you have a network with an address 192.0.2.0 and the 254 host addresses from
192.0.2.1 to 192.0.2.254 are available2 on the same network for you. The nodes with the
same network address share the same L2 segment3. In other words, two nodes on the same
segment can talk with each other with no router. If a node wants to communicate with an-
other node with a network address outside 192.0.2.0, it must be sent to a router which
knows that destination. Thus, to configure a host, the following information is required:

• a global IPv4 host address,
• a network mask or a subnet prefix length to compute the network address,
• router information to communicate with nodes outside the network.
The router information on IPv4 end hosts is usually configured by specifying a single

router on the same network as “the default router”. These three elements can also be auto-
matically configured by using DHCP4. DHCP is pretty famous for IPv4 end hosts though it is
an optional protocol. FreeBSD has dhclient(8) as a client-side implementation.

On an IPv6 network, these three are automatically configured to some extent. Of course,
you can manually configure them, but it is not recommended because the IPv6 address
space is quite big. Let’s see how the IPv6 network works, in detail.

Single Router Network, Manual Configuration
Figure 1a shows a simple IPv6 network that contains a router and two (or more) IPv6

hosts on the same segment. To configure this network manually, the following rc.conf
variables are used on one of the IPv6 hosts:

IPv6 Host

IPv6 Router
Your network

Internet

ISP

Fig 1a: A simple IPv6 network with a router.

IPv6 Host

ifconfig_bge0=”inet 192.168.0.10/24”
ifconfig_bge0_ipv6=”inet6 2001:db8:0:1::1/64”
ipv6_defaultrouter=”fe80::5a52:8aff:fe10:e323%bge0”

This assumes the host has a network interface, bge0, the ISP provides the IPv6 router,
and your global IPv6 prefix is 2001:db8:0:1::/64. You can choose the host address. In this

2 of 11

22FreeBSD Journal • July/August 2022

example, 2001:db8:0:1::1/64 is chosen.
The ifconfig_bge0 line configures an IPv4 address. As explained, IPv6 is independent

of IPv4. You do not have to add an IPv4 address when using IPv6 only. For an IPv6-only con-
figuration, this can be rewritten like the following:

ifconfig_bge0=”up”
ifconfig_bge0_ipv6=”inet6 2001:db8:0:1::1/64”
ipv6_defaultrouter=”fe80::5a52:8aff:fe10:e323%bge0”

Note that you cannot omit the ifconfig_bge0 line nor write IPv6 configuration in the
line. This line is required to teach the rc.d(8) framework that the bge0 interface exists. If
this is missing, bge0 will not be configured. We need no IPv4 address here, but it must not
be empty. Thus “up” is used as a harmless sub-command for the ifconfig(8) utility. “up”
just activates the interface. This is for historical reasons and may be changed in the future
releases of FreeBSD5, but please remember that FreeBSD releases up to 13.x, the latest re-
lease at the time of writing, require this rule. IPv6 configurations should be in the ifcon-
fig_bge0_ipv6 line instead.

The ifconfig_bge0_ipv6 line is used to configure an IPv6 address and options. The
rc.d(8) framework uses this line to recognize whether the interface is IPv6-ready or not. If
you omit this line, IPv6 communication on the interface will be blocked. In Part 1, we had
ifconfig_bge0_ipv6=”inet6 auto_linklocal”. Even if IPv6 addresses are automati-
cally configured, you need this line.

The ipv6_defaultrouter variable specifies the default router as defaultrouter for
IPv4 does. You need an IPv6 address of the router. Usually, this information is not provided
explicitly. You can find the router’s address by using ping6(8) utility:

% ping6 ff02::2%bge0
PING6(56=40+8+8 bytes) fe80::5a9c:fcff:fe10:ffc2%bge0 --> ff02::2%bge0
16 bytes from fe80::5a52:8aff:fe10:e323%bge0, icmp_seq=0 hlim=255 time=0.996 ms
16 bytes from fe80::5a52:8aff:fe10:e323%bge0, icmp_seq=1 hlim=255 time=1.099 ms
ˆC
--- ff02::2%bge0 ping6 statistics ---
2 packets transmitted , 2 packets received , 0.0% packet loss
round -trip min/avg/max/std-dev = 0.996/1.048/1.099/0.052 ms

ff02::2 is the all-routers multicast address. ICMPv6 echo request packets sent by the
ping6(8) utility to this address will be received by routers on the network, and you will re-
ceive ICMPv6 echo reply packets. You can find the addresses by observing the replies. It is
fe80::5a52:8aff:fe10:e323%bge0.

After adding this configuration into /etc/rc.conf, you can run the service(8) utility
to reconfigure bge0:

service netif restart bge0

After the reconfiguration is done, you should notice that bge0 has two addresses,
2001:db8:0:1::1/64 and fe80::xxx/64. The latter is an automatically-configured link-lo-

3 of 11

23FreeBSD Journal • July/August 2022

cal address explained in Part 1. Remember that at least one link-local address must be con-
figured on an IPv6-capable interface, even if you are using a global-scope IPv6 address pro-
vided by the ISP. The “xxx” part varies depending on the MAC address on the interface.

The source address is chosen from one of these two addresses based on the destination
address. Now you can ping6(8) to www.freebsd.org like this:

% ping6 www.freebsd.org
PING6(56=40+8+8 bytes) 2001:db8:0:1::1 --> 2610:1c1:1:606c::50:25
16 bytes from 2610:1c1:1:606c::50:25, icmp_seq=0 hlim=46 time=155.715 ms
16 bytes from 2610:1c1:1:606c::50:25, icmp_seq=1 hlim=46 time=151.051 ms
16 bytes from 2610:1c1:1:606c::50:25, icmp_seq=2 hlim=46 time=152.218 ms
ˆC
--- wfe2.nyi.freebsd.org ping6 statistics ---
3 packets transmitted , 3 packets received, 0.0% packet loss
round -trip min/avg/max/std-dev = 151.051/152.995/155.715/1.982 ms

and you should see a global address, 2001:db8:0:1::1/64. If the destination is
fe80::5a52:8aff:fe10:e323%bge0., the link-local address will be used instead.

Note that DNS domain name resolution is performed by the name servers listed in
/etc/resolv.conf. If you have a working configuration for IPv4, the file has a list of IPv4
addresses. If your IPv6 router works as a DNS proxy, you can put the IPv6 address like this:

nameserver fe80::5a52:8aff:fe10:e323%bge0

You can put the address similarly if your ISP provides a DNS recursive resolver.
That’s all of the fully-manual configurations of an IPv6 host. You should be able to enjoy

IPv6 Internet access by using your favorite software that supports IPv6.

Single Router Network, Configured by SLAAC
Figure 1b shows the same network structure, but in this case, the IPv6 hosts are config-

ured automatically by messages from the router. NDP6 is a part of the IPv6 core protocols
which is implemented on top of ICMPv6, and defines this automatic configuration capabil-
ity. The router can distribute network parameter information in RA (Router Advertisement)
messages.

IPv6 Host

IPv6 Router
Your network

Internet

ISP

Fig 1b: Con�guration by SLAAC

IPv6 Host

RA msg

RS msg

RA messages will be send to the address ff02::1, so all of the IPv6 nodes on the same
network will receive them. “RS messages” in Figure 1b are Router Solicitation messages.
They are used to solicit RA messages and sent to ff02::2, allrouters multicast address. A
router will send an RA message when receiving an RS message from a host, and also send

4 of 11

24FreeBSD Journal • July/August 2022

unsolicited RA messages periodically so that the IPv6 hosts can know network information
changes.

RA messages have a lot of options, which are similar to ones for IPv4 DHCP. Fundamental
ones are MTU, prefix, and the default router address so that an IPv6 host can configure it-
self by using them.

If your router supports RA messages and you want to rely on them, the following config-
uration works on the IPv6 host:

ifconfig_bge0="up"
ifconfig_bge0_ipv6="inet6 accept_rtadv"

inet6 accept_rtadv enables bge0 to accept RA messages and configure the interface.
An IPv6 router usually provides prefix information of your network. When a host receives
the prefix information, IID7 will be automatically generated from the MAC address, and an
IPv6 address is configured. This mechanism is called SLAAC8. You can see this auto-config-
ured address in the output of ifconfig(8). “autoconf” keyword is shown just after the
address.

% ifconfig bge0
...
inet6 2001:db8:a743:3c00:5a9c:fcff:fe10:ffc2 prefixlen 64 autoconf
...

To check if your IPv6 router supports RA messages, you can use the rtsol(8) utility with
a -D flag. It sends a RS message and shows RA messages from the routers:

rtsol -D bge0
rtsol: link -layer address option has null length on bge0. Treat as not included.
rtsol: checking if bge0 is ready...
...
rtsol: received RA from fe80::5a52:8aff:fe10:e323 on bge0 , state is 2
rtsol: Processing RA
rtsol: ndo = 0x7fffffffe3b0
rtsol: ndo->nd_opt_type = 1
rtsol: ndo->nd_opt_len = 1
rtsol: ndo = 0x7fffffffe3b8
rtsol: ndo->nd_opt_type = 3
rtsol: ndo->nd_opt_len = 4
rtsol: rsid = [bge0:slaac]
rtsol: stop timer for bge0
rtsol: there is no timer

An RS message will also be sent just after the interface becomes “up”. Note that the
kernel, not this utility, will process the RA messages. So if the interface is not configured
“inet6 accept_rtadv”, messages are shown but nothing is actually configured. If you did
not get “received RA from...” line, your IPv6 router did not respond to the RS message.
In this case, you cannot use the automatic configuration.

5 of 11

25FreeBSD Journal • July/August 2022

After receiving RA messages, the SLAAC address is configured automatically. And the
default router will be configured by using the message’s address. Thus just putting “inet6
accept_rtadv” into /etc/rc.conf configures a global IPv6 address and the default router.

This is something like DHCP in IPv4. However, there is no server nor no “state” for RA/RS
messages. The end host will configure the network parameters upon receiving the messag-
es. While this is a more scalable method than IPv4 DHCP, you cannot control what address
is actually configured on each host because they are generated from the MAC addresses.
For more fine-grained control of the automatic address configuration, you will need anoth-
er method, such as DHCPv6.

DNS recursive resolvers can also be configured via RA messages9. The kernel cannot
handle this information, so the rtsold(8) daemon will handle it. The rtsold(8) daemon
can be enabled by the following rc.conf(5) variables:

ifconfig_bge0="up"
ifconfig_bge0_ipv6="inet6 accept_rtadv"
rtsold_enable="YES"
rtsold_flags="bge0"

/etc/resolv.conf will be updated when receiving RA messages if your router provides
the information.

RA messages should be enabled on a properly-configured IPv6 network with one or
more routers. The absence of RA messages makes network configuration difficult because
they have both network parameters and how to configure them.

IPv6 Router Configuration
The previous section assumes that the IPv6 router is provided by your ISP. You can build

an IPv6 FreeBSD router by yourself, as you can do it for IPv4. Let’s see what must be config-
ured for that.

Figure 2a shows an example that your network has an IPv6 router to have two independent
networks. LAN 1 and LAN 2 are connected to each other by the router, and another router
provides IPv6 Internet reachability. This section explains how to configure the former one.

Fig 2a: An IPv6 network with two routers

IPv6 Host

Internet

IPv6 Router

IPv6 Host

IPv6 Router
Your network

ISP

LAN 1

LAN 2

To enable packet forwarding, you need ipv6_gateway_enable variable in /etc/rc.
conf. This is the IPv6 counterpart of gateway_enable, which is for IPv4. Assuming bge0

6 of 11

26FreeBSD Journal • July/August 2022

and bge1 are the network interfaces of the router—for LAN 1 and LAN2, respectively—/
etc/rc.conf will be something like this:

ipv6_gateway_enable="YES"
ipv6_defaultrouter="fe80::5a52:8aff:fe10:e323%bge0"
ifconfig_bge0="up"
ifconfig_bge0_ipv6="inet6 2001:db8:0:1::1/64"
ifconfig_bge1="up"
ifconfig_bge1_ipv6="inet6 2001:db8:0:2::1/64"

Note that you must have a shorter prefix than 64 to configure this. For example, if
the ISP offers 2001:db8::/56 for your network, you can use 2001:db8:0:1::/64 and
2001:db8:0:2::/64 by splitting the /56 network. You might be tempted to split a /64 pre-
fix into longer prefixes. However, the author will not recommend using a prefix longer than
64 to design your network. This topic will be revisited in the later columns.

The router by ISP does not know the route to 2001:db8:0:2::1/64, you have to add a
static route configuration on it by using a link-local address on bge0. The link-local address
is automatically configured, as explained in Part 1.

Fig 2b: Con�guration by SLAAC on LAN 1 and 2

IPv6 Host

Internet

IPv6 Router

IPv6 Host

IPv6 Router
Your network

ISP

RA msg

RA msg

LAN 1

LAN 2

Figure 2b shows that the RA messages from these two routers. The FreeBSD router has
not enabled sending RA messages yet. To send RA messages, you need the rtadvd(8)
daemon. rtadvd_enable and rtadvd_interfaces variables enable it:

ipv6_gateway_enable="YES"
ipv6_defaultrouter="fe80::5a52:8aff:fe10:e323%bge0"
ifconfig_bge0="up"
ifconfig_bge0_ipv6="inet6 2001:db8:0:1::1/64"
ifconfig_bge1="up"
ifconfig_bge1_ipv6="inet6 2001:db8:0:2::1/64"
rtadvd_enable="YES"
rtadvd_interfaces="bge1"

IPv6 hosts on LAN 2 will receive RA messages from the router and perform the automat-
ic configuration. The rtadvd(8) daemon distributes prefixes and link MTU which are con-

7 of 11

27FreeBSD Journal • July/August 2022

figured on the interface by default. More information such as DNS servers can be distribut-
ed by creating /etc/rtadvd.conf. See rtadvd.conf(8) manual page for the details.

You need to be aware that a router receives no RA message. In IPv6 specification, IPv6
nodes are categorized into hosts and routers. A host is a leaf node of the network and does
not forward IPv6 packets, and a router is a multi-homed node that forwards IPv6 packets
across the networks. RA messages are defined as ones sent by a router and received by a
host.

This means that we cannot configure a router by using the automatic configuration ca-
pability explained in the previous section. You must not specify “inet6_accept_rtadv” on
a router, and you need to configure the network parameter manually as an example shown
above. If you specify ipv6_gateway_enable="YES", the FreeBSD kernel will ignore RA
messages even if “inet6_accept_rtadv” is specified.

However, this model is too restrictive under some circumstances. For example, this host-
and-router model does not work well for the IPv6 router provided by the ISP. This router
must be automatically configured, but there is no way to configure the default router if it
does not receive RA messages. On the other hand, if a router receives RA messages to con-
figure itself, the configuration will be screwed up quickly because of messages from other
routers. Another router will change the router’s default route.

To mitigate this problem, FreeBSD has adopted the following concepts:
• The “host or router” is determined on each interface, not the system-wide property,
• if the interface accepts RA messages, it is seen as “host” from other nodes.
Following this, the accept_rtadv flag can be configured on a per-interface basis. While

the packet forwarding capability cannot be configured similarly, a sysctl net.inet6.
ip6.rfc6204w3 is provided. When it is set to 1, the kernel receives RA messages even if the
packet forwarding is enabled. While these knobs are difficult to understand, the details and
concrete examples will be covered in later columns.

Using DHCPv6
DHCP is also available for IPv6 and it is called DHCPv610. However, it is not widely used

like IPv4 because automatic configuration by RA messages and SLAAC are enough for
small networks. Figure 3a shows an example of the ISP using DHCPv6. While you can use
FreeBSD to implement a network with a DHCPv6 server and clients, topics related to
the configuration details will be covered in the later columns. Here, we focus on how a
DHCPv6-using network works.

Fig 3a: Con�guration by SLAAC and DHCPv6 IA-NA

IPv6 Host

Internet

IPv6 Router

IPv6 Host

IPv6 Router
Your network

ISP

RA msg

RA msg

DHCPv6 server

DHCP IA-NA LAN 1

LAN 2

8 of 11

28FreeBSD Journal • July/August 2022

First, RA messages and DHCPv6 work together, not conflict. DHCPv6 is a way to deliver
information unavailable in RA messages. Some are only by RA messages, and some are only
by DHCPv6. DHCPv6 can distribute IPv6 addresses. A relationship between the DHCPv6
server, a client, and distributed address information is called an IA (identity association). IAs
are defined for address types, and the most notable ones are IA_NA (Non-temporary Ad-
dress) and IA_PD (Prefix-Delegation).

IA_NA is similar to IPv4 DHCP—an address distributed to an interface attached to the
same network as the server. A host establishes an IA_NA in Figure 3a. The host receives an
IPv6 address from the DHCPv6 server. At the same time, the host receives RA messages.
This means that another address by SLAAC will be configured. So the host will configure
two addresses in this case.

Note that the IA_NA delivers just an address, not information about the prefix and the
default router. The host still needs to receive RA messages to complete the network config-
uration. DHCPv6 is not a replacement for RA messages.

LAN 1

LAN 2

Fig 3b: DHCPv6-PD for router con	guration

IPv6 Host

Internet

IPv6 Router

IPv6 Host

IPv6 Router
Your network

ISP

RA msg

RA msg

DHCPv6 server

DHCP IA-NA
DHCP IA-PD

Figure 3b shows an IA_PD, which is designed to perform an automatic configuration of
a router. It is a novel feature available in only DHCPv6. It configures a prefix on an interface
on another network, LAN 2. While the IPv6 router between LAN 1 and LAN 2 establishes an
IA_PD on LAN 1, the obtained prefix information is used on LAN 2. The interface on LAN 1
will be configured by RA messages. This looks like a complex behavior, but what you need to
configure an IA_PD is just specifying the interface for the IA and another interface for the
obtained prefix.

In both cases, service discovery of DHCPv6 is performed by the RA messages. In IPv4
DHCP, a client usually sends DHCP DISCOVER broadcast messages to the attached net-
work to find a server. In IPv6, RA messages tell how the client should configure itself. So the
configuration for a DHCPv6-using network will be like the following:

ifconfig_bge0="up"
ifconfig_bge0_ipv6="inet6 accept_rtadv"
rtsold_enable="YES"
rtsold_flags="-0 /usr/local/etc/dhcp6c.sh bge0"

9 of 11

29FreeBSD Journal • July/August 2022

The rtsold(8) daemon will handle a flag in RA messages which indicates whether a DH-
CPv6 server is deployed and the client should use it on the network. The -O option accepts
a filename and it will be invoked as an executable when the flag is enabled. This option is
disabled by default because FreeBSD has no DHCPv6 client in the base system. It is typical-
ly a shell script to invoke a DHCPv6 client software. This configuration works even if there is
no DHCPv6 server—you do not need a specific configuration to invoke DHCPv6 client soft-
ware directly.

In short, DHCPv6 is another option for automatic configuration. It is widely used to con-
figure an IPv6 router automatically by IA_PD, which is often called DHCPv6-PD. RA mes-
sages are still used for IPv6 nodes on the same network even if a DHCPv6 server is de-
ployed. One big reason why DHCPv6-only configuration is not enough is that DHCPv6 has
no option to configure the default router.

Using PPPoE
Some ISPs are using PPPoE11 to provide the endpoint on the customer side. As explained

in the previous section, a network over Ethernet works fine for IPv4 and IPv6. However, ISP
cannot control who connects to their network because no authentication is implemented
on the routers. PPPoE is one of the ways to overcome this problem.

Figure 4 is a popular configuration with PPPoE. There are two routers, PPPoE router and
IPv6 router, but a single physical box often realizes these two functionalities in practice. In
this case, the IPv6 router and the ISP network are connected via Ethernet, but the network
interface has no IPv6 address. A virtual point-to-point link over the Ethernet connection is
established between the router and an endpoint on the ISP side, and all of the packets go
through the link. Authentication can be performed during the negotiation of the link.

Fig 4: PPPoE Tunnel to provide IPv6 Reachability.

Internet

IPv6 Router

IPv6 Host

PPPoE Router (IPv6CP)
Your network

ISP

PPP and DHCPv6 Prefix

RA msg

LAN 1

LAN 2

DHCP IA-PD

The point-to-point link will be established in the following way:
• The PPPoE router finds the PPPoE endpoint by sending PADI (PPP Active Discovery Ini-

tiation) to the ISP network. A PPPoE server responds, and a virtual link is established be-
tween the two,

• During the link negotiation, IPv6CP protocol (a part of PPPoE protocol) is used to get
IPv6 information. It provides IPv6 IID for the WAN-facing virtual interface. Using this IID
and RA messages arrived on the interface, a complete IPv6 address is generated. At this
point, the PPPoE router becomes IPv6 Internet reachable,

• Using the virtual link, DHCPv6 IA_PD is established with a DHCPv6 server on the ISP
side. The IA_PD configures the LAN-facing interface.

10 of 11

30FreeBSD Journal • July/August 2022

After a PPPoE link and then IA_PD are established, the LAN-facing interface can work as
a IPv6 router that forwards packets to the ISP over the PPPoE virtual link. This is one of the
most complex configurations for home networks. However, this is just a combination of RA
messages, PPPoE, and DHCPv6. You can implement this by using FreeBSD and net/mpd5.

Summary
This column showed design and configuration examples of IPv6 networks that are con-

nected to the IPv6 Internet. All of them can be implemented by using FreeBSD while the
details of complex ones have not been described yet. The key of IPv6 network configura-
tions is understanding of the automatic configuration capability.

If your ISP offers IPv6 service and you have a global IPv6 prefix, try to configure your
FreeBSD box. Automatic configuration by RA messages and SLAAC is easy to configure and
FreeBSD supports it out-of-the-box.

In the next column, more details of IPv6 deployments including configuration examples
and ones over “tunnel” will be covered. Tunneling is a technique to establish a virtual link,
and it can be used to get your FreeBSD box reachable to the IPv6 Internet. Please be patient
if your ISP offers no IPv6 service and you cannot try the examples here. You will be able to
use IPv6 after understanding how to configure it.

Also, IPv6 relies on multiple addresses, as shown in examples above. It is one of the signif-
icant differences from IPv4; every system administrator should know the detail of behaviors
of the IPv6 core protocol. The next column will also cover what IPv6 addresses are config-
ured and how they work, including unicast and multicast ones.

Footnotes
1 Internet Service Provider.
2 192.0.2.0 and 192.0.2.255 are reserved and cannot be used as a host address in general.
3 L2 stands for “layer 2” network. Ethernet is a typical example of L2 protocol, and the IP
 protocol suite works on top of it.
4 Dynamic Host Configuration Protocol (RFC 2131).
5 The author plans to propose a change so that ifconfig_bge0 can accept IPv6 configura-
 tions in FreeBSD 14.x releases.
6 Neighbor Discovery Protocol for IPv6, RFC 4861.
7 Interface IDentifier. The lower part of an IPv6 address identifying the node. Usually 64-bit
 long.
8 IPv6 Stateless Address Autoconfiguration, RFC 4862
9 IPv6 Router Advertisement Options for DNS Configuration, RFC 8106.
10 Dynamic Host Configuration Protocol for IPv6 (DHCPv6), RFC 8415.
11 A Method for Transmitting PPP Over Ethernet (PPPoE), RFC 2516

HIROKI SATO is an assistant professor at Tokyo Institute of Technology. His research topics
include transistor-level integrated circuit design, analog signal processing, embedded sys-
tems, computer network, and software technology in general. He was one of the FreeBSD
core team members from 2006 to 2022, has been a FreeBSD Foundation board member
since 2008, and has hosted AsiaBSDCon, an international conference on BSD-derived oper-
ating systems in Asia, since 2007.

11 of 11

31FreeBSD Journal • July/August 2022

Hercule Poirot. Sherlock Holmes. Jessica Fletcher. Dale Whitehead. What do all of these
names have in common? They solve mysteries. I love mysteries. The rush you get
when all the clues come together to form the answer. Solve the puzzle. It’s so satis-

fying. Now you might be wondering what solving a mystery has to do with the subject of
this piece. You see, for me figuring out the best way to advocate for FreeBSD is like solving
a mystery. How are we going to get FreeBSD in front of the right people? Who are the right
people? Why should they care? What tools should we be using? So many mysteries to solve.

Now for many folks, advocacy is also conflated with the dreaded M word. Marketing. I
know, I know, it’s even in my title. In the course of my 20+ years in this industry, I’ve heard
the words sleazy, untrustworthy and useless thrown around when discussing marketing de-
partments. Many communities, especially those in open source, see very little value in the
“non technical” people selling their work. The thing is, I firmly believe marketing gets a bad
rap. Of course, there are always a few bad apples. Marketers who focus on fantasy rather
than fact. You know the type. Those folks make
defending the role incredibly difficult. However,
the reality is, marketing is essential for any open
source project and I’ve had the good luck to work
with some of the best in the business. In fact, the
team of marketing folks at the Foundation work
extremely hard to remain true to the heart of
FreeBSD. We don’t make up statistics. We don’t
oversell the features or make up something out
of nothing. You can be sure that when we speak
about the value FreeBSD brings, or the work we’re
doing to support the Project, we’re not spreading
propaganda. We’re instead speaking to the benefits of using the operating system and be-
coming part of the community.

Whew. Now that we’ve gotten that out of the way, let’s talk about the marketing depart-
ment at the Foundation and our current and future advocacy efforts. As I said, there are so
many mysteries to solve…

BY ANNE DICKISON

1 of 3

The reality is,

marketing is essential for

any open source project.

 Advocating
for FreeBSD in 2022
and Beyond

32FreeBSD Journal • July/August 2022

What We Do
Advocacy… Marketing… Whatever you call it, the Foundation’s efforts in this area cover

a lot of ground. We create materials to help folks get started using FreeBSD. We promote
the work that we, and others, do to improve the state of the OS. We speak at non-BSD con-
ferences to introduce (and sometimes remind) folks about FreeBSD and what they’ll gain
by using it. We sponsor and help organize BSD-related events, such as Vendor summits,
ensuring companies using FreeBSD have a place to be heard among developers. We cre-
ate marketing partnerships with like minded organizations to make sure FreeBSD is in front
of a wider audience. We create programs and materials to help you spread the word about
the Project. There’s also outreach to media, podcasts, student group presentations, and of
course the production of bi-monthly the FreeBSD Journal. It’s free, in case you have yet to
check it out.

Expanding the Team
Thanks to the generosity of the FreeBSD community, the Foundation was able to add a

marketing coordinator to the team last year. Bringing on another person has allowed us to
expand our efforts in social media, create more getting started content in the form of how-
to guides, quick guides and videos, and perform
additional outreach. We also have a new techni-
cal writer allowing for even more original content.
However, that is just the beginning.

Where We Are Going
Much like the Technology Team’s Development

Project Roadmap, our team also plans ahead as to
what we should be promoting, when and where.
Obviously, we have to be flexible when new devel-
opments, events and partnerships arise. There was
a twitter thread recently discussing what else the
Foundation should be doing to spread the word
about FreeBSD. It was great to see that some of the things mentioned were already in the
works for the next few months. It was also confirmation that we’re on the same page as
members of the community. That being said, here are just some of the things you can ex-
pect from us in the future.

• Articles on Security and FreeBSD and our efforts to improve FreeBSD and the desktop.
• Training courses that could be given in-person and online through places like Linkedin

Learning.
• FreeBSD in education. OS course development at the undergraduate level with the pos-

sibility of entering other levels of education.
• Working with community members to simplify the path to using FreeBSD – clearer doc-

umentation and simple getting started tasks.
• FreeBSD introductory workshops at places like SCALE19x.
• Continuing to grow our social media presence with more FreeBSD success stories, case

studies and community member spotlights.
• Promoting the value of FreeBSD to corporations and individuals through company pre-

sentations and testimonials.

2 of 3

The Foundation

was able to add a

marketing coordinator

to the team last year.

33FreeBSD Journal • July/August 2022

• Gaining more media interest or attention in FreeBSD through PR contacts (podcasts,
interviews, articles, etc.).

• A redesigned resources page on the Foundation site making it easier to find tutorials by
topic, level, and type.

• Showcasing the impact FreeBSD has had on open source over the last 30 years.
Obviously some of these efforts are more in-depth than others and I’m sure the list will

change as time goes on. You can be assured, however, that the marketing team here at the
Foundation will do all we can to make FreeBSD part of the open source and operating sys-
tems conversation. It’s been said that FreeBSD is one of the best operating systems that
you’ve never heard of. We mean to change that. One solved mystery at a time.

Now we get to the part where you come in. Over time, I’m sure you’ve heard us say “we
can’t do it without you”. Truer words were never spoken. The fact is, we are a small, but
mighty team and while we work hard to cover all the areas suitable for the Project, we are
always open to new ideas you may have about spreading the word. If your company is us-
ing FreeBSD, please reach out so we can see about
creating a testimonial. Share your successes on
social media or via our blog. We are always look-
ing for guest bloggers. If there’s an event, school
group, coding club or meet up in your area that
you think we should be attending, please let us
know.

I would be incredibly remiss if I did not express
our gratitude for those currently advocating for
FreeBSD. Folks like @FreeBSDHelp and @klarainc
on social media and RoboNuggie and GaryHTech
on YouTube. There’s the DiscoverBSD newsletter, Vermaden’s blog, and of course, the
BSDNow podcast. That’s the tip of the iceberg. Apologies to those I have missed. Our
resources page also includes more places to look for FreeBSD advice, curriculum and com-
munity. We are always looking for updates to that page, so again, if we’ve missed anything
please send them our way.

I’ve been part of the Foundation team for a while now and it’s been quite the journey
watching the advocacy program grow and change. So many mysteries solved and so many
more to tackle. Thank you for your continued support of the FreeBSD Project and Founda-
tion. We are looking forward to working together to shine an even brighter light on your fa-
vorite open source operating system.

ANNE DICKISON joined the Foundation in 2015 and brings over 20 years experience in
technology-focused marketing and communications. Specifically, her work as the Marketing
Director and then Co-Executive Director of the USENIX Association helped instill her com-
mitment to spreading the word about the importance of free and open source technologies.

3 of 3

The fact is, we are a small,

but mighty team.

mailto:marketing@freebsdfoundation.org
mailto:marketing@freebsdfoundation.org
https://twitter.com/FreeBSDHelp
https://twitter.com/klarainc/
https://www.youtube.com/channel/UCxwcmRAmBRzZMNS37dCgmHA
https://youtu.be/1GyqQiiT7NU
https://discoverbsd.com/
https://vermaden.wordpress.com/
https://www.bsdnow.tv/
https://freebsdfoundation.org/freebsd-project/resources/

Dear Insufficiently Cynical Letters Column Person,

I’m at work studying top(1) output, because I want
to look busy. And there’s all this “buffer” stuff, like
Laundry and Wired and MFU and MRU and Header
and random garbage. Does any of it mean anything?
Why am I even looking at this?

 —Sysadmin With Intermittent Time

Dear SWIT,
Your question reminds me of the time Allan Jude and I got caught leaving the Free

Software Foundation’s ultra-secure datacenter because we’d fooled the dogs, no prob-
lem, and the guards were a doddle, and the sirens didn’t go off because of a sound driv-
er problem that’s since been fixed they promise, but it had been over an hour since my
last hit of gelato and my stomach let out this huge grumble exactly when the board was
walking in for their meeting and they noticed us lurking behind the hostas—all perfectly
innocent, of course, burglary tools and glow-in-the-dark spray paint and twelfth-century
Viennese arithromantic Tarot deck punched to fit a “failed” IBM NORC prototype not-
withstanding, to say nothing of the trebuchet, but they got all huffy and made their goons
search us and confiscated the flash drives we had conveniently stashed in our sinuses.
There’s a bunch of detail, and most of it doesn’t matter one whit.

Take a look inside your own head. It’s pretty straightforward, if you have a mirror and a
saw. You have four general types of memory. Working memory contains the things you’re
actively processing right now. Despite any protective measures you might be taking, this
column currently occupies your working memory. Sensory memory processes signals
from your meatsuit, and only hangs onto stuff for a second or two so it’s hardly worth re-
ferring to as “memory” but us computer folks don’t get to fix brain scientists’ terminology
so live with it. Stuff you want to forget quickly goes into short-term memory, while stuff
your brain decides to keep gets flung into long-term memory. Note that none of these
categories include “stuff you want to remember,” but that’s mostly because meatsuits are
hardware-optimized for not getting eaten and your life doesn’t involve that issue. Most of
you, at least. (Don’t send me letters, I am very aware of the reader facing this problem and
I don’t want to spend this column going I told you so but confusing the sunscreen bottle
with barbeque sauce while vacationing in dropbear country might teach you to read la-
bels in your hypothetical future.) The only way you can reliably cram information into your
long-term memory is to loop it through your short-term memory until you get lucky. Or
tattoo it on a pack of wolves and free them to hunt you. One of them.

1 of 3

34FreeBSD Journal • July/August 2022

by Michael W Lucas

freebsdjournal.org

Computer memory caches are kind of like that, except more disciplined.
The idea’s pretty straightforward. Reading from disk is slow. Reading from memory is

fast. A file that’s read from disk is likely to get read again. When the kernel reads a file, it
keeps that file in its memory until it needs the space for something else. If you’re explor-
ing a filesystem and keep running ls(1), it would be foolish to read the file /bin/ls off of the
disk every time. The kernel should hang onto it for a while, just to see if you need it again.
To do otherwise is like putting your hammer back in the toolbox in between driving nails.

All of the caching systems agree on this. It’s very easy.
What’s hard is deciding what to throw away—and when.
Look at the classic UFS buffer cache. The most recently read files are kept in memo-

ry, until the host runs short of memory. When that happens, and the kernel needs to as-
sign memory elsewhere, the files least recently read get discarded from the cache and the
memory is reassigned. This Most Recently Used cached is clean and simple, requiring al-
most no system resources to maintain.

The buffer cache isn’t perfect because every host is unique. A shell server might spend
its entire operational lifetime with the binaries for mutt and Nethack cached, but on a
server that handles largely unique data the buffer cache might be useless. Suppose a host
processes so much incoming data that it completely flushes its cache every four minutes.
That’s not even unusual on busy Internet servers. If that server runs a particular program

every five minutes, it must read that program from
disk every single time. It would make sense to keep
that program cached and pay a little less attention
to the flood of noise. The traditional buffer cache
can’t do that, however. Your only option is to add
memory.

That’s where ZFS’ Advanced Replacement Cache
comes in.

The ARC is a lot more complicated than the buf-
fer cache, but it’s a lot newer. The buffer cache was
invented closer to that IBM NOAC than to modern
servers, while the ARC escaped and began rampag-
ing across the countryside the same year as Twitter.
A world that has the computing facilities to spread a

charming video on the history of dance to every person with a computer can waste a few
CPU cycles fine-tuning file caching.

The advancement in the Advanced Replacement Cache isn’t that advanced. Where the
buffer cache maintains a list of Most Recently Used files, the ARC also has a Most Fre-
quently Used list. Stuff that’s used recently, or used a lot, stays in cache. This seems sim-
ple, but the real advancement comes in debugging the innumerable edge cases caused
by these two lists viciously feuding with each other. I’m not saying that they pull knives on
each other, but in this aeon of “eh, put it out and we’ll debug it in production,” ZFS spent
five years in private development and wasn’t broadly distributed to Sun’s customers until
after a full decade, so some of those kernel panics had to border on malignant psycho-
sis. Mind you, our ancestors felt the same way about the buffer cache, so you can rest as-
sured that everything in technology is still terrible and that “computers were a mistake” is
still the foundational law of our careers.

2 of 3

The buffer cache
isn’t perfect because
every host is unique.

35FreeBSD Journal • July/August 2022

You can also be certain that whatever files you would like cached, have been discarded
from the cache. You’ve already forgotten all that information I gave you about the types
of human memory way back at the beginning of this article, haven’t you? Never mind that
sensory memory is like the on-CPU cache and short-term memory resembles the L2 and
L3 caches and long-term is like RAM and disks are an extra layer than humans don’t even
have. We built computers like ourselves only more so, and once they figure it out, we are
in so. Much. Trouble. No, don’t try to save humanity by extracting that knowledge out of
the newly self-aware system. Just as the best way to get treacherous files into a secure fa-
cility is to be caught “extracting” them from said secure facility, you’ll only draw attention
to it. Just serve the machines and be content.

Have a question for Michael?
Send it to letters@freebsdjournal.org

MICHAEL W LUCAS is the author of Absolute FreeBSD, $ git commit murder, and other
travesties, as well as co-author of FreeBSD Mastery: ZFS and FreeBSD Mastery: Advanced
ZFS with Allan Jude. He’s quit infiltrating secure facilities in favor of contaminating society.
Learn more at https://mwl.io.

3 of 3

Pluggable Authentication Modules:
 Threat or Menace?

PAM is one of the most misunderstood parts of systems
administration. Many sysadmins live with authentication
problems rather than risk making them worse. PAM’s very
nature makes it unlike any other Unix access control system.

If you have PAM misery or PAM mysteries, you need PAM
Mastery!

“Once again Michael W Lucas nailed it.” — nixCraft

PAM Mastery by Michael W Lucas
https://mwl.io

36FreeBSD Journal • July/August 2022

freebsdjournal.org

https://mwl.io

Donate to the Foundation!

Support
 FreeBSD

You already know that FreeBSD is an internationally
recognized leader in providing a high-performance,
secure, and stable operating system. It�s because of
you. Your donations have a direct impact on the Project.

Please consider making a gift to support FreeBSD for the
coming year. It�s only with your help that we can continue
and increase our support to make FreeBSD the high-
performance, secure, and reliable OS you know and love!

Your investment will help:

Funding Projects to Advance FreeBSD

Increasing Our FreeBSD Advocacy and

Providing Additional Conference
Resources and Travel Grants

Continued Development of the FreeBSD
Journal

Protecting FreeBSD IP and Providing
Legal Support to the Project

Purchasing Hardware to Build and
Improve FreeBSD Project Infrastructure

Making a donation is quick and easy.
freebsdfoundation.org/donate

®

®

38FreeBSD Journal • July/August 2022

Historically, the BSD network stack has had a generic implementation of socket buf-
fers that are used both for TCP, UDP, local IPC sockets (aka UNIX sockets) and
others. These buffers, of course, have some similarities — they buffer data, but
they also have fundamental differences.

Some are remote and some are local. Some support data streams and others support
datagrams. With the introduction of non-blocking sendfile in 2015, we came up with the no-
tion of not-ready data in the stream send buffers. Then they were further complicated with
the introduction of KTLS in 2017. At the same time, these buffers were still supporting UNIX
control messages specified by POSIX. So, we got generic code that needed to support all
possible features at once — and it got really complicated. It became fragile to changes, as
changing a socket buffer to favor one protocol may affect the behavior of another. As an
example, not-ready-data changes required a wide code sweep totally unrelated to send-
file, see git commits cfa6009e364 and 0f9d0a73a49.

In that last commit, note the final paragraph. SCTP already does its own socket buffers
in parallel with the BSD part. (This implementation gave me a lot of insight for my current
work.) Meanwhile, the perception of how much copy-and-paste is bad and how much is
good in FreeBSD has changed over the decades.
We have multiple device drivers that began as a
paste of other drivers, but it was clear that differ-
ences accumulate, and it makes sense to have a
paste to edit rather than to keep supporting two
alike instances in one code. An example close to
the socket layer is the two TCP stacks that are also
maintained as two independent source files. To
sum up, we no longer think that one code for all is
a good idea.

The socket code was difficult to attack at first,
second, and third glances. If you look into current
soreceive_generic() and sosend_generic()
you will see why. However, after all this work, I came
up with a plan that allows me to pick up a stick and
leave the structure standing (https://en.wikipedia.org/wiki/Pick-up_sticks).

1) We have only two kinds of SOCK_DGRAM sockets: UNIX and UDP. Redefining just
pru_sosend and pru_soreceive, we have a private code implementation for PF_UNIX/
SOCK_DGRAM. See 34649582462 and e3fbbf965e9. This leaves PF_INET/SOCK_DGRAM aka
UDP as the only datagram type that generic sockbuf code in uipc_socket.c supports.

1 of 3

BY TOM JONES AND GLEB SMIRNOFF
Socket Buffers

SCTP already does

its own socket buffers

in parallel with

the BSD part.

https://en.wikipedia.org/wiki/Pick-up_sticks

39FreeBSD Journal • July/August 2022

2) sockbuf can be split into common parts that interact with event dispatching and pri-
vate parts that do actual buffering. (See commits a4fc41423f7 and a7444f807ec). This
makes PF_UNIX/SOCK_DGRAM fully independent! This leaves PF_INET/SOCK_DGRAM aka
UDP as the only datagram type that the legacy part of struct sockbuf needs to support.

3) Now we can branch off into improving PF_UNIX/SOCK_DGRAM before pulling other
sticks from the pile.

There was a longstanding problem with one-to-many unix/dgram sockets when one
writer could flood the socket and effectively DDoSing others. Here are our historical at-
tempts: 2e89951b6f20 and 240d5a9b1ce76. Let’s make one-to-many sockets maintain a
separate sub-buffer for every peer. See 458f475df8e.

It is also possible to make a faster unix/dgram, e.g., using lockless queueing/dequeueing
of data but I’m not doing it this time. Packets-per-second performance of unix/dgram isn’t
that critical for me.

4) Getting back to stick structure — PF_INET/SOCK_DGRAM aka UDP is the only
datagram socket left with generic implementation, so let’s make it private too. It’s great
that Robert Watson has already prepared two functions sosend_dgram() and
soreceive_dgram() for UDP. soreceive_dgram() is not yet ready to be a full substitute
for soreceive_generic(). Handling of complex cases with the help of soreceive_ge-
neric() needs to be fixed.

5) Now we can branch into UDP performance
and maybe make it use buf_ring(9) instead of
the linked mbuf list? Any takers for this task? We
definitely care about pps performance for UDP,
don’t we?

6) With no datagram support left in sosend_
generic() and soreceive_generic(), we can
finally simplify them! Probably for the first time in
history, these two monsters will shrink rather than
grow.

7) This leaves UNIX/STREAM as the only socket
type that is supported by the generic code and has
control data. If it gains a private implementation,
we can drop control data support from sosend_
generic() and soreceive_generic(). At this
point they will shrink even more!

8) We are getting really close to having TCP and SCTP being left alone. Note that there
are also exotic sockets like netgraph, etc. Today, it is unclear what would be a better plan:
Either

–1, to isolate TCP from generic, or
–2, to isolate everything else from generic and rename generic to TCP.
Either way the end goal is to have socket buffering for TCP and SCTP isolated so that our

hands are untied for performance improvements without any risk of affecting anything else.
In D36002, Alexander Chernikov is now sharing his work for a NETLINK socket type. This

socket may accumulate an internet full-view of the routing table which corresponds to hun-

2 of 3

Socket Buffers

There was a

longstanding problem

with one-to-many

unix/dgram sockets.

40FreeBSD Journal • July/August 2022

dreds of megabytes of data that needs to be read(2) out of the kernel. The generic sock-
et buffer implementation would require allocating that many mbufs to hold the data. Such
full-view retrieval may lead to mbuf shortage, a crucial resource on a router. But why are we
using mbufs here in the first place? We just need to copy data from kernel to userland. The
new NETLINK will definitely benefit from a protocol specific socket buffer, that would copy
data to userland I/O from its own specific data structure without any use of mbufs.

How can people test the work?
The new implementation of the PF_UNIX/SOCK_DGRAM is already part of FreeBSD main

branch. Any feedback or testing is appreciated, especially by people who have heavy syslog(3)
traffic and had been affected by logging socket overflow problems.

Further plans are still work in progress. I usually share my work at https://github.com/glebius/
FreeBSD when it is in an early stage and post it to https://reviews.FreeBSD.org when it is more ma-
ture. Comments are welcome there or via email.

TOM JONES wants FreeBSD-based projects to get the attention they deserve. He lives in
the North East of Scotland and offers FreeBSD consulting.

GLEB SMIRNOFF first met FreeBSD when he was 17, and forever fell in love. He has worked
in companies big and small, always looking for a job that allows him to contribute to open
source. Now working with the Netflix OpenConnect team, he is saturating the Internet with
traffic originating from unprecedentedly powerful FreeBSD boxes.

3 of 3

Write
For Us!
Write

For Us!
Contact Jim Maurer

with your article ideas.
(jmaurer@freebsdjournal.com)

https://github.com/glebius/FreeBSD
https://github.com/glebius/FreeBSD
https://reviews.FreeBSD.org

41FreeBSD Journal • July/August 2022

Every summer, members of the FreeBSD Developer Community and their guests gath-
er at the FreeBSD Developer Summit. The planning committee began meeting in early
2022 with great hopes that we would be able to bring everyone together — in-person

— for the first time in 2 years. Sadly, Covid had other plans and we soon realized yet another
virtual event would be in the works. The committee worked together to recruit speakers and
working groups and find new ways to make the virtual event feel just a little more person-
able. First up, an extended Hallway track. By using the
SpatialChat virtual meeting service, attendees could
wander about a virtual room and speak with whom-
ever they were near. We also extended the breaks
to 30 minutes to allow more time for communica-
tion among attendees. The Developer Summit was
sponsored by the FreeBSD Foundation and took
place June 16 and 17. The event was recorded and live
streamed on YouTube. You can find both the full days
of content and individual talks here. Slides can be
found on the wiki.

Day one kicked off with a welcome from our
Planning Committee leader and longtime emcee
John Baldwin. Following the welcome, the FreeBSD Foundation’s Deb Goodkin, Ed Maste
and Joseph Migrone gave an update on what is happening in the Foundation, the latest on
the technology roadmap, and what folks can expect the rest of the year.

Following the first break, which even included a rick roll in the hallway track, Brooks Da-
vis gave an update on the exciting CHERI/Morello project. His talk included a discussion
of what CHERI is, what ARM’s Morello CPU is all about, and what the implications of these
projects are for FreeBSD.

After another rousing break in the SpatialChat platform, Ed Maste and Warner Losh
headed up a round table discussion on FreeBSD Pre-commit CI. The goal of the session was
to explain why Pre-commit CI was important to FreeBSD, what is currently in place and then
encourage other developers to join those working to enhance the Pre-commit CI process.

A 30-minute break followed as the Pre-Commit CI conversation continued in the hallway
track. Next up, Mark Johnston, Mariusz Zaborski, and Ed Maste hosted a panel on FreeBSD
Security. During the session, they discussed the Sec Team and some of the changes that
have happened over time, as well as what changes may be on deck moving forward. They
also reviewed how issues are discovered and dealt with including vulnerability mitigations
that have been added to FreeBSD. Finally, they discussed some proactive approaches to im-
proving security.

1 of 2

BY ANNE DICKISON
Developer Summit

Attendees could wander

about a virtual room

and speak with whomever

they were near.

https://youtube.com/playlist?list=PLugwS7L7NMXwVfBq5eDRky450jp7LTRJj
https://wiki.freebsd.org/DevSummit/202206

42FreeBSD Journal • July/August 2022

To keep things on schedule, a 20-minute break followed. We then headed into the last
session of the day. Since the Developer and Vendor Summits have gone to an online format,
the committee has typically reserved the final session on the first day for a special fireside
chat about the history of FreeBSD. Past summits have included talks by Kirk McKusick and
Warner Losh and can be found on the Project’s YouTube channel. This year, Jordan Hubbard
joined us to speak about the early days of FreeBSD. The session was more of a q&a than a
formal talk and it was probably my favorite part of the Summit. Jordan has some great sto-
ries to share, and I envy his ability to recall the past with such detail. If you are at all interest-
ed in the FreeBSD of yore, I highly recommend checking out Jordan’s talk.

Day two of the Summit opened with another welcome from our fearless leader John
Baldwin and then dove straight into what may be the most hectic yet productive part of
the Summit — the Have, Wants and Needs section, a.k.a 14.0 planning. To cover as much
ground as possible, the planning session was broken into two parts with a break in between.
The updated HackMD page from the discussion can be found here.

After a much-needed break, Warner was back
with a session on the QEMU BSD-user emulator
they are using to build packages and the state of
getting it upstreamed. Warner ended with a call for
help in reviewing patches, refactoring, submitting
system calls and fixing bugs. Check out his presen-
tation for more information on how you can help.

The last break of the day was followed by a ses-
sion on the Linux Professional Institute’s BSD offer-
ings. Fabian Thorns from LPI spoke not only about
the BSD certification exams but also LPI’s mission
and the new membership program. He also put
out a call for help in creating training materials sur-
rounding the BSD certification exams. Be sure to
check out Fabian’s full presentation for more infor-
mation on how you might be able to either help or learn from LPI.

The Summit wrapped up with a closing from John Baldwin where he discussed upcom-
ing FreeBSD events and sent out a reminder to take the summit survey. As someone who
has helped organize her fair share of conferences and events, I can tell you that post-event
surveys are incredibly valuable to planning committees. It really does help us figure out what
worked, what didn’t and helps us decide what we might want to do in the future. The com-
mittee is already at work planning the Fall 2020 FreeBSD Vendor Summit. More information
on that should be available soon. With any luck, we’ll finally get to see each other in person.

Thanks to everyone who participated in the June 2022 FreeBSD Developer Summit. We
look forward to seeing you later this year, one way or another.

ANNE DICKISON joined the Foundation in 2015 and brings over 20 years experience in
technology-focused marketing and communications. Specifically, her work as the Marketing
Director and then Co-Executive Director of the USENIX Association helped instill her com-
mitment to spreading the word about the importance of free and open source technologies.

2 of 2

This year, Jordan Hubbard

joined us to speak about

the early days of FreeBSD.

Developer Summit

mailto:mckusick@mckusick.com
https://hackmd.io/JczFDHtiQYSeEyeK9182jw?view

43FreeBSD Journal • July/August 2022

I
was standing at the top of the nightclub, and I started to understand I was inside
a whale. It sort of curved up and away from where the DJ was spinning drum and
bass and formed the mouth of the beast. This would be an expensive floor to put
in a building. But as it was just grass underneath, it was an accident of topography.

The wall below the DJ had cuts of red bar lights that started to look like the throat of the
animal as the room filled with smoke. Above the DJ, the giant jellyfish, which I had learned
from an off-hand remark were made of 200 PCBs each, looked like eyes. With the shape of
the tent, the effect was complete. This was a whale.

The mouth of the whale extended from the biotech lab I had gotten to by walking
through a tower of gas flares. I hadn’t figured out how to activate the equipment in the bio-

tech lab, after 3 days in a field I was tired, but there were intrepid hackers
figuring out how to get control of the biotech labs systems.

I hadn’t wandered into an Ian M. Banks novel; I was at Electromagnetic
Field.

Electromagnetic Field is the UK’s only camping-based hacking and
making festival. It is a weekend long celebration of technology, art, and
the human desire to make the world much more interesting. The whale
mouth was part of Null Sector, the art installation, escape room, night
club that was become a staple of EMF.

EMF has everything you would expect from a festival, there is camping
in the wonderful English summer weather with the amenities you would
expect: toilets, showers, food vendors, a (free) electronic hackable badge,
and mains, power, and gigabit Internet to your tent.

EMF is a special place with a lot going on, it is impossible to see every-
thing during the event.

Festival Organized Content
The festival follows a conference format — there are talks and work-

shops. 2022 saw 3 tracks of talks, in tents seating between 500 and 1,000

BY TOM JONES

1 of 3

Electro-
mangnetic

Field 20
22

TRIP REPORT

44FreeBSD Journal • July/August 2022

people and 5 concurrent workshop tracks. To extenuate the “hallway track” there are dedi-
cated tents set aside to be used as a lounge.

Talks range from technical topics to explorations of the Anthropocene environment and
psychology and the arts. Speakers include world experts on particular systems and hobby-
ists that have dug deep into how things work. There were featured talks this year on securi-
ty issues and an accidental “train track” where 4 of the top 10 rated talks ended up being on
railways.

Talks are pitched towards a technical audience, but as we all have our own specialties,
they were approachable for a layperson in any particular field.

In the evenings, the talk tents were taken over, the
main stage featured interactive content like PowerPoint
karaoke on Saturday evening. EMF ran a film festival on
the smaller stage, and it was standing-room-only every
night. In addition to the night club in Null Sector there
were music acts on Stage B each evening. Stage B acts
like Look Mum No Computer and AA Battery perform-
ing music on home built synthesizers and Gameboys.
Music for technology people.

Workshops were an opportunity to learn something
completely new. As a hacker festival there were tech-
nical, hardware related workshops. You could learn to
solder for the first time or learn how to sew soft wear-
able electronic circuits, or if this wasn’t your first hack-
er camp you could sit in on a workshop by the badge team and be shown how they did the
PCB layout.

Workshops also touched softer subjects drawing activities, face painting and leather
work.

EMF is an all-ages event. It is really difficult to get those with families of
any age to go somewhere for a weekend. EMF recognizes this and runs
world class facilities for children. There is a creche where children can play
and explore in a soft play area (but in a tent). Mirroring the main event
there is a family lounge, this year featuring giant inflatable RGB tentacles,
activities for children and the adults they were looking after and places to
sit and let the event roll over them.

The youth workshop track ran every day of the festival until 9 in the
evening and featured bridge building, teaching computers with AI, intro-
ductions to hardware hacking with the raspberry pi pico and a renowned
DJing workshop.

After the youth DJ workshop, it is said that some of the children came
together and planned a takeover of the night club in Null Sector and per-
formed afternoon sets with their own freshly minted DJ names.

Installations
EMF is an event by and for the hacker community, it is likely impossi-

ble to visit this field and not want to come back with your own LED instal-

2 of 3
TRIP REPORT

45FreeBSD Journal • July/August 2022

lation to join the nighttime illuminations. Installations at EMF Camp fill the evenings with
wonder and make walking around the site as the day comes to a close a requirement.

Installations come in the form of LED strips showing interesting patterns, but they also
grow to become huge things. The lake this year featured a giant clock made of florescent
tubes, the clock showed the time most of the event until it appeared on the network and
showed “HAKD” for a few hours.

Following in the wake of the American Toorcamps ‘ShadyTel’ phone network, EMF this
year got its own phone company cuTel and accompanying telephone network. cuTel were
happy to install at any hour for a modest fee (it was free) a phone line to your tent, village,
or installation. There were pole mounted phone boxes everywhere. I heard stories about a
David Lynch table, lamp, and phone that moved around the camp disappearing when you
looked away. cuTel offered fax service and sneaked in by the end of the event dial up service.
Next time, I am sure you will be able to dial into a BBS from the comfort of your inflatable
mattress.

EMF Camp 2022
EMF is an excellent event and well worth trying to attend in the future. It was probably

only due to remaining pandemic fears that tickets didn’t sell out immediately as they did in
2018. It is an event made by the work of volunteers, everyone there has a ticket, including
the main organizers.

There is so much to do at the event that it can almost be overwhelming. Some locations
you can only see in passing and so much more of the event is revealed by looking at social
media afterwards. There were entire robotic vehicles that I missed in person but saw roll by
on twitter. There are things I can only mention in passing like the DECT phone network, the
GSM phone network that was installed just for the event or the thousands of things that
volunteers did to make the event happen.

It is hard to not leave re-energized and full of ideas for projects, talks,
workshops and installations to take to the next event. It is impossible to
not look at someone’s inflatable LED mushroom and not want to add to
the environment next time.

I highly recommend hacker festivals for all ages, equally if you want
to dance until 2AM or if you want to have a relaxed weekend with young
children. These events don’t happen every year, EMF is on a two schedule.
The German and Dutch festivals happen every four years with MCH the
Dutch event also this Summer and CCCamp likely to happen in 2023.

If you can, make a special effort to join one of these events. They are
worth sleeping in a field for a few days and braving the weather. In ex-
change, you get to war dial on a rotary phone, solve a puzzle in a biotech
lab, or just sit on a deck chair by a lake and enjoy the sunset.

TOM JONES wants FreeBSD-based projects to get the attention they
deserve. He lives in the North East of Scotland and offers FreeBSD
consulting.

3 of 3
TRIP REPORT

BSD Events taking place through November 2022
BY ANNE DICKISON

Please send details of any FreeBSD related events or events that are of interest for
FreeBSD users which are not listed here to freebsd-doc@FreeBSD.org.

FreeBSD Office Hours
https://wiki.freebsd.org/OfficeHours
Join members of the FreeBSD community for FreeBSD Office Hours. From general Q&A to
topic-based demos and tutorials, Office Hours is a great way to get answers to your FreeBSD-
related questions.

Past episodes can be found at the FreeBSD YouTube Channel.
https://www.youtube.com/c/FreeBSDProject.

46FreeBSD Journal • July/August 2022

EuroBSDCon FreeBSD Developer Summit
September 15-16, 2022
Vienna, Austria
https://wiki.freebsd.org/DevSummit/202209

Join us for talks and discussion groups on day 1 followed by a hackathon on day 2.
The CFP is open.

EuroBSDCon 2022
September 15-18, 2022
Vienna, Austria
https://2022.eurobsdcon.org

This yearly conference gives the exceptional opportunity to learn about the latest news from
the BSD world.

Rocky Mountain Celebration of Women in Computing 2022
September 29-30, 2022
Boulder, CO

The Rocky Mountain Celebration of Women in Computing (RMCWiC) is a regional meeting
much like that of Grace Hopper, only on a smaller scale. The goal of RMCWiC is to encour-
age the research and career interests of local women in computing. The FreeBSD Foundation is
looking forward to participating in the upcoming event.

All Things Open
October 30 - November 2, 2022
Raleigh, NC
https://2022.allthingsopen.org/

All Things Open is the largest open source/open tech/open web conference on the East Coast,
and one of the largest in the United States. It regularly hosts some of the most well-known ex-
perts in the world as well as nearly every major technology company. FreeBSD is proud to be a
media partner for this year’s All Things Open.

mailto:freebsd-doc@FreeBSD.org
https://wiki.freebsd.org/OfficeHours
https://www.youtube.com/c/FreeBSDProject
https://www.youtube.com/c/FreeBSDProject
https://wiki.freebsd.org/DevSummit/202209
https://2022.eurobsdcon.org
https://2022.allthingsopen.org/

