
31FreeBSD Journal • May/June 2022

FreeBSD kernel panics are a hopefully rare occurrence, but they do happen from time to time.
You may have been unlucky and hit a kernel bug on a production system, or perhaps you are
developing a kernel patch and uncovered a bug while testing. In such situations, a reboot will
bring the system back online, but the contents of RAM will be lost, making it impossible to find
the root cause of the panic.

FreeBSD supports both live debugging and post-mortem debugging of kernel panics. While
live debugging is often simpler, its nature means that the panicked system cannot be rebooted
until the developer has finished debugging. This
is often impractical, so post-mortem debugging
via core dumps is a common debugging activity.
For a long time, the FreeBSD kernel has had the
ability to save a core dump, often called a “kernel
dump,” following a panic; once a kernel dump has
been saved, the panicked system can be rebooted
and brought back online, and the dump can then
be used to diagnose the problem.

When a userspace program crashes and dumps
core, the operating system saves its state in a reg-
ular file somewhere in the file system. When the
kernel crashes, though, life is not as straightfor-
ward: the kernel itself is responsible for mediating access to its file systems, and following a
panic the kernel is by definition in an inconsistent state, so writing data to a file is a fraught en-
deavor. A kernel panic is bad enough, but it'd be much worse if the kernel went on to corrupt
its own file systems!

FreeBSD's traditional solution to this problem is to write the kernel dump to a raw disk par-
tition, often the same one used for swap space. Doing so is much simpler than modifying a
file system, and since swapped-out data does not persist between reboots, there is little risk of
overwriting important data.

Configuring kernel dumps is easy: in /etc/rc.conf, set the dumpdev variable to the name
of the disk device to which kernel dumps should be saved, or set it to the string "AUTO" if the
swap partition is to be used. Under the hood, this mechanism uses dumpon(8) to tell the kernel
which disk device to use. When booting up following a panic, FreeBSD will automatically run

BY MARK JOHNSTON

1 of 6

Post-Mortem
Kernel Debugging
with netdump(4)

FreeBSD supports

both live debugging

and post-mortem debugging

of kernel panics.

32FreeBSD Journal • May/June 2022

savecore(8), which reads the saved kernel dump and places it in /var/crash for later use.
Disk-based kernel dumps work well so long as the system has a spare partition where they

can be saved. This is not always the case, though: systems might boot disklessly and not have
any persistent storage at all, or, as is common with embedded devices, there might not be any
disk space to spare. In these situations one historically had to resort to live debugging, or a one-
off hack like using a USB thumb drive to store the kernel dump. However, as of FreeBSD 12.0
there's a better way!

Introduction to netdump
netdump(4) is a relatively new feature which lets a panicked FreeBSD transmit a kernel dump

over a network before rebooting. In short, it uses a custom UDP-based protocol to transmit the
contents of RAM to a server, implemented by netdumpd(8) (ftp/netdumpd in the FreeBSD
ports system). This lets one get a dump from a panicked kernel without requiring any local stor-
age on the system.

It should be stated up front that netdump does not perform any encryption or authentication,
so the contents of kernel memory are transmitted directly over the network. Since kernel memo-
ry typically contains secret information, it is important to use netdump only on trusted networks.

netdump has a long history: it started life circa 2000 as FreeBSD 4 patch by Darrell Anderson
at Duke University, and was ported forward over the years by developers at several FreeBSD-us-
ing companies. It was finally committed to the FreeBSD src repository in 2018 and first became
available in FreeBSD 12.0.

Internally, netdump is built on top of debugnet, a standalone IPv4/UDP implementation
which is specialized to be usable in a panicked kernel. In particular, debugnet’s UDP stack runs
in a single thread, does not perform any heap memory allocations, and does not block (e.g., to
wait for an interrupt or a mutex). These constraints come from a need to minimize the complex-
ity of kernel code which executes after a panic: since the kernel has already crashed, netdump
must avoid making the situation worse while it does its job.

Because debugnet transmits and receives packets, it needs to be able to talk to network in-
terface controller (NIC) hardware. Thus, individual NIC drivers require modification in order to be
used by netdump. Typically this modification consists of adding a “polling” mode to the driver’s
packet transmission and receive paths. In practice the required modifications are straightforward
to implement and typically involve adding less than 100 lines of C code to a given driver. Many
widely used drivers implement debugnet support today, including all of the Intel drivers (in fact,
all drivers implemented using the iflib framework), modern Mellanox drivers, the VirtIO net-
work driver, and several drivers for GigE NICs often found in desktop systems or server manage-
ment ports; a full list is given in the netdump(4) manual page.

Finally, debugnet hooks into the kernel's packet buffer allocator. This is because driver code
will continue to use the standard mbuf(9) allocator interface to allocate buffers after a panic, but
netdump needs to avoid relying on the standard allocator. During system initialization, debugnet
pre-allocates and reserves memory for use after the kernel panics, thus ensuring that mbuf allo-
cations will be successful and won't perturb the state of the kernel more than necessary.

The debugnet Protocol
The debugnet protocol, in keeping with the requirements of netdump, is very simple and

specialized to its task. It is implemented on top of UDP and currently uses only IPv4; IPv6 could
be supported as well, but so far this has not been implemented.

netdumps are initiated by the panicking system, which acts as a client, with the server imple-

2 of 6

33FreeBSD Journal • May/June 2022

mented by netdumpd. The debugnet protocol has two packet types: client messages, and ac-
knowledgements:

Message:
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| UDP Header |
| ... |
+-+
| Packet Type |
+-+
| Sequence Number |
+-+
| Offset |
| |
+-+
| Data Length |
+-+
| Reserved |
+-+
| Data |
| ... |
+-+

Acknowledgement:
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| UDP Header |
| ... |
+-+
| Sequence Number |
+-+

When initiating a netdump, the client first has to discover the MAC address of the next-hop
router. To do so, its configuration includes a “gateway” IP, for which debugnet broadcasts ARP
requests.

Once the router address is known, the client first sends a message with type NETDUMP_
HERALD (1) to the server on port 20023. This establishes a session with the server, which binds
to an ephemeral port and sends an acknowledgement to the client at port 20024. All subse-
quent packets sent by the client go to this ephemeral port. All client messages are acknowl-
edged by the server.

Once the session is fully established, the client begins transmitting kernel dump data. Mes-
sages containing this data have type NETDUMP_VMCORE (3). Each message gets a unique se-
quence number and specifies the offset and length of the data relative to the beginning of the
kernel dump file. Upon receipt of a NETDUMP_VMCORE message, the server writes the data at

3 of 6

34FreeBSD Journal • May/June 2022

the corresponding offset in the dump, and then transmits an acknowledgement. The client will
typically transmit a burst of chunks of data and wait for acknowledgements to arrive for all of
them before continuing.

Once all of the kernel dump data has been transmitted and acknowledged, the client pro-
vides some metadata describing the panic in a NETDUMP_KDH (4) message, and then completes
the session with a NETDUMP_FINISHED (2) message. At this point, the kernel dump is available
on the server's file system and can be used for debugging.

Configuring netdump
Armed with some knowledge of how netdump works under the hood, we can explore its

configuration. There are, effectively, four configuration variables that netdump needs to work:
1.	 the client IP address
2.	 the server IP address
3.	 the gateway IP address
4.	 the interface to use (e.g., em0)
Just as with traditional disk-based kernel dumps, netdump can be configured with

dumpon(8). For example, with a client at 10.0.1.157 on vtnet0, the server at 10.0.1.236, and a
gateway at 10.0.1.1, one can configure netdump like so:

dumpon -c 10.0.1.157 -s 10.0.1.236 -g 10.0.1.1 vtnet0

Then, on the server, netdumpd can be run as a foreground program

$ netdumpd -d . -D -P ./netdumpd.pid
netdumpd: default: listening on all interfaces
Waiting for clients.

This will cause kernel dumps to be saved in the current directory, as specified by the -d flag.
To test the setup, we can manually trigger a panic and tell the kernel to dump core:

sysctl debug.kdb.panic=1
debug.kdb.panic: 0panic: kdb_sysctl_panic
cpuid = 1
time = 1655412790
KDB: stack backtrace:
db_trace_self_wrapper() at db_trace_self_wrapper+0x2b/frame 0xfffffe007c573af0
vpanic() at vpanic+0x151/frame 0xfffffe007c573b40
panic() at panic+0x43/frame 0xfffffe007c573ba0
kdb_sysctl_panic() at kdb_sysctl_panic+0x61/frame 0xfffffe007c573bd0
sysctl_root_handler_locked() at sysctl_root_handler_locked+0x9c/frame
0xfffffe007c573c20
sysctl_root() at sysctl_root+0x213/frame 0xfffffe007c573ca0
userland_sysctl() at userland_sysctl+0x187/frame 0xfffffe007c573d50
sys___sysctl() at sys___sysctl+0x5c/frame 0xfffffe007c573e00
amd64_syscall() at amd64_syscall+0x12e/frame 0xfffffe007c573f30
fast_syscall_common() at fast_syscall_common+0xf8/frame 0xfffffe007c573f30
--- syscall (202, FreeBSD ELF64, sys___sysctl), rip = 0x8011a773a, rsp =

4 of 6

35FreeBSD Journal • May/June 2022

0x7fffffffd938, rbp = 0x7fffffffd970 ---
KDB: enter: panic
[thread pid 784 tid 100098]
Stopped at kdb_enter+0x32: movq $0,0x1279963(%rip)
db> dump
debugnet: overwriting mbuf zone pointers
debugnet_connect: searching for gateway MAC...
netdumping to 10.0.1.236 (02:9a:88:79:b5:0a)
Dumping 257 out of 4057 MB:..7%..13%..25%..32%..44%..56%..63%..75%..81%..94%
netdump finished.
debugnet: restoring mbuf zone pointers

Dump complete

On the server, we should see something like the following:

New dump from client devvm [10.0.1.157] (to ./vmcore.devvm.0)
................(KDH from devvm [10.0.1.157])
Completed dump from client devvm [10.0.1.157]

Now we have a kernel dump in the directory specified by the -d flag!
In this example, the client and server are on the same link. The gateway parameter is thus

redundant and can be omitted:

dumpon -c 10.0.1.157 -s 10.0.1.236 vtnet0

Configuring netdump using /etc/rc.conf is a bit trickier. If the relevant IP addresses are
static, then they can be passed using the dumpon_flags rc.conf variable. If not, one may
instead use a hook in the system’s DHCP client to invoke dumpon once the client address is
known. The dumpon.8 manual page provides an example of how to do this with dhclient(8).

Starting in FreeBSD 14.0 and 13.2, debugnet will be able to infer a client address in most sit-
uations, simplifying configuration.

netdump On The Fly
One limitation of netdump was the need to configure it in advance of a panic. Starting in

FreeBSD 13.0, it is possible to configure netdump after a panic, from DDB (the in-kernel debug-
ger). This is done using DDB’s netdump command:

sysctl debug.kdb.panic=1
...
Stopped at kdb_enter+0x32: movq $0,0x1279963(%rip)
db> netdump -s 10.0.1.236
debugnet: overwriting mbuf zone pointers
debugnet_connect: searching for server MAC...
netdumping to 10.0.1.236 (02:9a:88:79:b5:0a)
Dumping 258 out of 4057 MB:..7%..13%..25%..31%..44%..56%..62%..75%..81%..93%
netdump finished.

5 of 6

36FreeBSD Journal • May/June 2022

debugnet: restoring mbuf zone pointers

Dump complete

Next Steps
A kernel dump on its own is not very useful: debuggers require that a core dump be paired

with an exact copy of the kernel and its debug info. When packaging up a core dump to send
to a developer, be sure to include the matching kernel. By default, kernel debug info is split into
separate files under /usr/lib/debug. Thus, it is usually safest to include the following:

1.	 the kernel dump file (usually vmcore.<something>)
2.	 the contents of /boot/kernel/
3.	 the contents of /usr/lib/debug/boot/kernel/
netdumpd sports a -i flag which can be used to specify a script to run after a netdump

completes. This can be used to perform post-processing of kernel dumps. A discussion of ker-
nel debugging itself is outside the scope of this article, but a past article provides lots of infor-
mation.

netdump can be very useful for debugging the kernel in certain environments, but has some
limitations. A few mentioned already include the lack of confidentiality, missing IPv6 support,
and fixed port numbers. If you find yourself running into such limitations (or bugs, for that mat-
ter!), please be sure to report the problem in the FreeBSD project’s bug tracker or on the proj-
ect mailing lists.

MARK JOHNSTON is a software developer and FreeBSD src committer living in Toronto,
Ontario, Canada. He currently works for the FreeBSD Foundation and is interested in most
aspects of operating system development. When not sitting in front of a computer he enjoys
playing in a city dodgeball league with friends.

6 of 6

Write
For Us!
Write

For Us!
Contact Jim Maurer

with your article ideas.
(jmaurer@freebsdjournal.com)

https://freebsdfoundation.org/wp-content/uploads/2019/01/Debugging-the-FreeBSD-Kernel.pdf
https://bugs.freebsd.org/bugzilla/

