PRACTICAL

Setting up an NFov4 Fleserver
on UpenZis

BY BENEDICT REUSCHLING

e recently experienced a small disaster at work that got me re-thinking our cur-
rent file-serving strategy. We deploy distributed applications like MongoDB, Ha-
doop, Spark and others via Ansible. The binaries to install these don't come from
a software repository but are downloaded from the vendors website because of
the up-front registration to get the Enterprise edition with extra features. The archives that con-
tain these binaries are quite large (even compressed) and copying them from the Ansible con-
troller to the target machines over the network usually takes some time.

A while ago, we figured there could be a faster way to do this: put all those binaries into a
network share (coming from Ceph in this case), mount them on the target machine, and then
point Ansible to them. For Ansible, this looks like
the files are “local” to the target machine, so it in-
stalls right from the share. Even in those instanc-
es where we still need to copy the files to a local
directory (in case of Hadoop or Spark, which is
nothing more than an archive to extract), it's much ~ \\Vhen runnmg
faster than transterring them from the Ansible

controller first. the scnpt agam,
One of the last actions in the deployment play- i
book Is to unmount the share. The share gets t InNgs went WIrong...

mounted as read-only so that no accidents can

happen, and we simply don't need write access

during the deployment. Even if the share does not

unmount properly and may still be around when

our students start using the server, they cannot delete any important files because of the miss-
ing w-bits.

All was fine and good until one fateful day when one of our student helpers working on a
new version of the NoSQL databases needed to put a newer version of said software on the
share. It was easy enough to mount the share read-write (they are allowed to do that as part
of their job) and put the new binaries next to the others. When running the script again, things
went wrong: the playbook ran and faithfully did its work. What | get later is an email from the
student telling me that the script mounted the share (still read-write) and did some cleanup

1 of 5

FreeBSD Journal <« May/June 2022 |42

action afterwards. However, what it did not check for is whether the share was cleanly un-
mounted from the system. Which did not happen in this case. So, the cleanup job happily ran
over the still mounted Ceph share and thoroughly cleaned all the files in there. Oops!

The email from the student asked whether | still had an older snapshot from the Ceph share
to restore the files. | did not, as the share was provided by our IT department. When inquiring
there directly, it turned out that they did not backup that share at all. A new backup system
was put in place recently but was not ready yet to do the backups. There were also no other
backups available, even though the Ceph share was replicated among three separate buildings
on campus. No luck there.

| was rather calm about this for several reasons: first, this could have easily happened to me,
second, the files could be restored and nothing on the share was irreplaceable. Third, this pro-
vided me with an opportunity to make things more robust in case this happened again in the
future, which is the best takeaway from events like this.

| updated the playbooks to do an extra check after the unmount task to determine whether
the share was actually unmounted. It not, it would do a forced unmount, and if that also failed,
then the playbook execution would stop at that point. There are usually good reasons for a
network share to not unmount properly (typically when there are some files still accessed), but
not continuing would be better than risking another accidental data erase.

Since | did not have full control over the Ceph share and my network share needs are not
that big, | decided to run my own. Instead of Ceph, | chose FreeBSD's ZFS with its integrated
NFSv4 sharing. That way, | could run regular snapshots which don’t grow too much when there
are no changes on a mostly read fileshare. Also, instead of relying on simply mounting the
share read-only, | could set the ZFS property of the same name to “on.” With readonly=on,
not even the root user would be able to remove files on a dataset with that property. Plus, |
could get the regular data-integrity checks that ZFS does and maybe some space savings from
compressing that dataset.

Implementing the Solution
Here are my notes setting up the NFSv4 server on a FreeBSD system. First, | went to
/etc/rc.conf and added the following lines:

nfs server enable="YES"
nfsvd server enable="YES"
nfsuserd enable="YES"
hostid _enable="YES"
rpcbind_enable="YES"
mountd enable="YES"
rpc_lockd_enable="YES"
rpc_statd_enable="YES"

This enables the NFS server in general, ensures proper permissions using nfsuserd, and
does correct locking for the RPC calls that NFS makes. Next, | checked that /etc/exports con-
tained only the following line:

2 of 5

FreeBSD Journal <+ May/June 2022 |43

This is telling the NFS server on FreeBSD that it should use NFS version 4, but that the actu-
al definition of what paths are shared will be determined by ZFS. I've read on the web that this
file could even be empty now, but it does not hurt to have it in there either.

| created the ZFS dataset that will do the file sharing like any other:

zfs create -o atime=off zroot/fileshare
zfs set mountpoint=/fileshare zroot/fileshare

The nice thing about ZFS is its inheritance. It | decide to create a sub-dataset below fileshare
that should also serve NFS, | don't have to separately configure it, as it already inherits all prop-
erties from the parent (except the mountpoint). If | don't want to share the sub-dataset, then |
can just as easlly disable the sharing by setting the sharenfs property to off (which is the de-
fault).

Let's first copy some files over to the NFS share and then set the readonly property to “on”
(that's what we came here to do In the first place):

cp /some/important/files /fileshare
zfs set readonly=on zroot/fileshare

Clever ZFS users could take this one step further by taking a snapshot of the share, mount-
ing that into the system and then sharing that over the network. This also ensures that the files
can't be changed, as ZFS snapshots are read-only in nature. But I'll leave that as an exercise to
you for another day.

In the sharenfs property, | can define all the parameters that | would normally need to put
into a separate NFS config file. That way, the information about how to share this dataset over
NFS stays with it even when it gets sent to a different pool. This all-in-one-place nature of ZFS
is making configuration much simpler, as there are fewer places to look for errors.

In my case, | only wanted to share the NFS on a certain subnet. You can also list hostnames
or IP-addresses separated by commas instead. That way, you limit who can mount the share to
a number of hosts for some extra security.

zfs set sharenfs="-network 192.168.0.0 -mask 255.255.255.0
-maproot=user,-alldirs" zroot/fileshare

The maproot=user part defines that if a user accesses the share and there are files with the
user’s permissions, then the server maps them to the same local permissions, even though they
may be different on the server. For example, Joe may have a local uid/gid of 2000, while on
the NFS server, the users all begin starting at 3000. The NFS server will have Joe's files set with
uid/gid as 3000, but when Joe accessed the share, he will see his familiar 2000 of the local
system to not get confused. The —alldirs option allows mounting at any directory within
/fileshare. Find out more about these and other options by reading exports(5).

3o0of5

FreeBSD Journal <« May/June 2022 |44

4 of 5

PRACTICAL
PORITS

That's all for the server part. We need to start all the services listed in /etc/rc.conf to start
sharing the mounted dataset:

service nfsd start
service mountd start
service nfsuserd start

Some of these services should be automatically started with the NFS server, but carefully
check the status output from each of these services to see that they are running. The output of

sockstat -4l
as well as
rpcinfo
and

nfsstat

help you determine any problems when the share won't mount for some reason.
Another way to see the currently shared datasets is running

cat /etc/zfs/exports

to see the whole list.

Next, we look at the client. | use FreeBSD and Ubuntu Linux systems to mount the share and

describe what each needs to access it. Starting with the FreeBSD client, it needs only a few lines
IN /etc/rc.conf:

nfsuserd_enable="yes"
hostid enable=YES
nfscbd enable=YES

The NFS user daemon takes care of the mapping of user ids and groups from the server as
described above. The hostid uniquely identifies this system to the NFS server and the NFS call-
back daemon handles callback requests from the server. The man page for it assures me that

mounts will work without it, but it won’t hurt to activate it right away so as not to scratch my
head about it later.

Starting those services right away, we can look at what the NFS server (called
myfiler) is offering to us:

showmount -e myfiler

FreeBSD Journal <« May/June 2022 |45

This should give us a list of exported shares that we can mount. From the command-line,
the mount command is invoked as follows:

mount -t nfs -o nfsv4 myfiler:/fileshare /media

It you like to have this share mounted each time your system starts, add it to /etc/fstab like this:

myfiler:/fileshare /media nfs rw,tcp,noatime,nfsv4 O O

The noatime and rw options are not strictly necessary as we took take care of them from
the ZFS side earlier, but the nfsv4 must be there to let the system know that it is talking to ver-
sion 4 of NFS.

At this point, you should be able to mount the share, see the files in there together with the
correct user and group IDs.

Over on a Ubuntu Linux system, we first need to install the NFS server bits as they are not
part of the base system:

apt install nfs-common

Use the package distribution of your particular distribution, the rest of the setup should be
the same from here on. It turns out that this is all that’s needed. Mounting the share on the
command line is done via:

mount -t nfs -onfsvers=4 myfiler:/fileshare /media

Of course, mounting can happen to any other local directory that exists, not just to /media.
| just use It because it exists and is usually empty. Mounting over an existing directory will hide
its contents until the next time the NFS share is unmounted again. Ensure that you don’t do this
on any vital directories that this system needs to run properly. Whatever directory you picked, in
case you also want to have the share mounted each time the Linux system boots, put this line
INto /etc/fstab:

myfiler:/fileshare /media nfs rw,nfsvers=4 0 O

That's all. The server that | put in place will reqularly copy the contents from the NFS share to
the Ceph to have an extra backup. But | worry less now that ZFS is backing my files: regular snap-
shots and the readonly property should avoid future mistakes like the one described above.

BENEDICT REUSCHLING Iis a documentation committer in the FreeBSD project and member
of the documentation engineering team. In the past, he served on the FreeBSD core team for
two terms. He administers a big data cluster at the University of Applied Sciences, Darmstadt,
Germany. He's also teaching a course “Unix for Developers” for undergraduates. Benedict is
one of the hosts of the weekly bsdnow.tv podcast.

50f5

FreeBSD Journal <+ May/June 2022 |46

https://www.bsdnow.tv/

