
March/April 2022

Datascience on
FreeBSD/ARM 64
FreeBSD on
the Pinebook Pro
ACPI Support for
Embedded Controllers

ARM 64 is Tier 1

An ambitious company
for ambitious people.
Juniper is changing what’s possible in networking. We’re going beyond
building the networks customers expect—we’re building the networks
customers deserve. And the world is taking note. But to continue to
excel, we have work to do. Change in our industry is accelerating. To
power connections and empower change, we need radical thinkers,
eternal optimists, and energized personalities. We need people like you.

The Junos Core Kernel team is looking for an ambitious Software
Engineer with experience and passion for Kernel/Operating
System technologies Successful candidates will support and
enhance the FreeBSD operating system. The team is responsible
for designing networking/driver domains of our products.

https://juni.pr/FreeBSDEngineering

LETTER
from the Foundation

Justin Gibbs • Founder of the FreeBSD Foundation,
President of the FreeBSD Foundation,
and a Software Engineer at Facebook.

Daichi Goto • Director at BSD Consulting Inc.
(Tokyo).

Dru Lavigne • Author of BSD Hacks and
The Best of FreeBSD Basics.

Michael W Lucas Author of more than 40 books including
Absolute FreeBSD, the FreeBSD
Mastery series, and git commit murder.

•

Kirk McKusick • Treasurer of the FreeBSD Foundation
Board, and lead author of The Design
and Implementation book series.

Hiroki Sato • Director of the FreeBSD
Foundation Board, Chair of Asia
BSDCon, Member of the FreeBSD
Core Team, and Assistant
Professor at Tokyo Institute of
Technology.

Robert N. M. Watson • Director of the FreeBSD Foundation
Board, Founder of the TrustedBSD
Project, and University Senior Lecturer
at the University of Cambridge.

Advisory Board
Anne Dickison • Marketing Director, FreeBSD Foundation

John Baldwin • FreeBSD Developer and Chair of
FreeBSD Journal Editorial Board

Tom Jones • FreeBSD Developer, Internet Engineer
and Researcher at the University of
Aberdeen

Allan Jude • CTO at Klara Inc., the global FreeBSD
Professional Services and Support
company.

George Neville-Neil • Past President of the FreeBSD Foundation,
member of the FreeBSD Core Team,
and co-author of The Design and
Implementation of the FreeBSD
Operating System.

Ed Maste • Senior Director of Technology,
FreeBSD Foundation and Member
of the FreeBSD Core Team

Benedict Reuschling • Vice President of the FreeBSD Foundation
Board and a FreeBSD Documentation
Committer

Mariusz Zaborski • FreeBSD Developer

FreeBSD Journal (ISBN: 978-0-615-88479-0) is published 6 times
a year (January/February, March/April, May/June, July/August,

September/October, November/December).
Published by the FreeBSD Foundation,

3980 Broadway St. STE #103-107, Boulder, CO 80304
ph: 720/207-5142 • fax: 720/222-2350
email: info@freebsdfoundation.org

Copyright © 2021 by FreeBSD Foundation. All rights reserved. This magazine may not be
reproduced in whole or in part without written permission from the publisher.

Publisher •
Editor-at-Large •

Design & Production •
Advertising Sales •

Walter Andrzejewski
walter@freebsdjournal.com

James Maurer
jmaurer@freebsdjournal.com

Reuter & Associates

Walter Andrzejewski
walter@freebsdjournal.com
Call 888/290-9469

J O U R N A L
®

S&W PUBLISHING LLC

Editorial Board

PO BOX 3757 CHAPEL HILL, NC 27515-3757

3FreeBSD Journal • March/April 2022

FreeBSD/arm64 is Now Tier 1
Arm’s 64-bit architecture, AArch64, is now Tier 1 status in
FreeBSD 13. Following from the 32-bit FreeBSD/arm we
use the name “arm64.”

Tier 1 means that the FreeBSD release engineering
team will build and publish official releases for this archi-
tecture, in addition to the existing amd64 and i386. The
security team supports the architecture with binary and
source updates for vulnerabilities and errata updates. A full
set of binary packages is available from the package team.

Arm publicly disclosed the details of the AArch64 ar-
chitecture in October 2011, and Andrew Turner soon took
an interest in a FreeBSD port. The FreeBSD Foundation
began supporting the arm64 porting effort in 2014, with
funding from Arm and Cavium. Collaborating with An-
drew and Semihalf, Cavium’s ThunderX processor was
brought up as the first reference platform for FreeBSD/
arm64. The Foundation contributed work on release engi-
neering, tool chain support, and other areas.

Support continued improving over the years, but it
took a confluence of factors to allow for the promotion
to Tier 1.

Early on Hardware availability was limited, especial-
ly for server class machines. Today Ampere Computing
eMAG and Altra CPUs, Arm’s Neoverse N1 core, and
AWS Graviton instances are well-supported. The Foun-
dation purchased eMAG servers to build official package
sets. Ampere Computing then donated additional servers.
This allowed the project to support multiple simultaneous
FreeBSD src and ports tree branches.

The tool chain was an early limiting factor. FreeBSD
still used an older version of the GNU linker which did not
support arm64, requiring awkward workarounds to use
an out-of-tree linker. With Foundation sponsorship, the
project migrated to using LLVM’s LLD linker for all sup-
ported architectures in FreeBSD 13.

Thanks to tireless contributions from FreeBSD ports
volunteers we were able to iterate on arm64 build fail-
ures; over 30,000 packages are now available.

In April 2021 on behalf of the core team I announced
that FreeBSD/arm64 would be Tier 1 in FreeBSD 13.

I hope you enjoy the arm64 articles in this issue, and
give FreeBSD/arm64 a try!

Ed Maste
Senior Director of Technology
FreeBSD Journal Editorial Board

March/April 2022

 3 Foundation Letter
FreeBSD/arm64 is Now Tier 1
By Ed Maste

 21 WIP/CFT: Lumina Desktop Calls
 for Developers

By Tom Jones and JT Pennington

 23 Practical Ports
How to Set Up an Apple Time Machine
By Benedict Reuschling

 31 We Get Letters
ARM 64
by Michael W Lucas

 34 Events Calendar
By Anne Dickison

 5 Datascience on FreeBSD/ARM 64
 By Maciej Czekaj

 9 FreeBSD on the Pinebook Pro
 By Jesper Schmitz Mouridsen

 14 ACPI Support for Embedded
Controllers
 By Marcin Wojtas

4FreeBSD Journal • March/April 2022

5FreeBSD Journal • March/April 2022

R
ecently, ARM64 became a Tier I platform for FreeBSD. Since Semihalf has a long histo-
ry of supporting FreeBSD on anything ARM, it was a logical step to use it in production.
The test bed was unusual, however, since it was not yet another Web server or NFS stor-
age array (which we have plenty of already), but a full-fledged Data Science lab.

The task at hand was to run a large-scale simulation experiment on the Marvell ThunderX2
ARM server. The simulation experiment resulted in the scientific publication and a chapter in
the PhD thesis. The workload spans hundreds of CPU-hours for custom simulation software
alongside the standard Open Source scientific toolkit, such as SciPy, Pandas, and Jupyter. The
main bottleneck of the simulation system was RAM, while putting equal pressure on the disk
I/O and data integrity. The software suite was originally developed for Linux and had to be
ported to FreeBSD (by complying with POSIX).

ThunderX2 used in the experiment is a dual-socket 56-core ARM64 platform. The single
CPU die has 28 cores in eight core complexes joined by the ring interconnect with shared L3
cache with cross-section bandwidth of more than 6TB/s. Each core may have up to 4 SMT
threads totalling to 224 threads in the system. The 8-channel DDR4 interface for each die pro-
vides over 200GB/s of memory bandwidth for the whole system. The CPU dies are connected
through CCPIv2 interconnect providing 600 Gb/s bandwidth. Looking at the specs, it seems to
be the perfect target for memory-bound workloads.

Fig1. The architecture of ThunderX2 system.

BY MACIEJ CZEKAJ

1 of 4

Data Science on
FreeBSD/ARM64

6FreeBSD Journal • March/April 2022

Originally used in the GNU Linux/x86 desktop environment, the simulation system had to be
adapted to a parallel environment, possibly without too much programming effort. The cen-
tral part of the system is a custom simulator software written in C++. The simulator accepts a
recorded packet trace (PCAP stream) and produces a network flow database. The stream may
come from a file or from another program (the mixer) which combines many packet streams
together. The flow database is a custom binary format, which resembles the memory organiza-
tion of a C table of structures. This format is both easy to serialize in C/C++ (by frwrite()) as
well as easy to parse by Numpy (by fromfile()).

Fig2. The custom Data-Scientific pipeline executed on FreeBSD.

The next phase is controlled by statistical software in Jupyter Notebook. Each experiment
produces millions of records occupying gigabytes of RAM, which mandates the use of an
in-memory database for analytics in the form of Pandas DataFrame objects. The whole pipeline
is described as a set of GNU Make job definitions.

The porting process from GNU/Linux to FreeBSD-12.2 was relatively simple. The C++ code
base used mostly I/O system calls, which are part of the POSIX standard. Porting from GCC to
Clang revealed a few issues about the code base itself, lending credibility to the common wis-
dom that using more than one compiler improves the code quality. The only functional issue
was the usage of a hash function from the stan-
dard C++ library. The exact algorithm is implemen-
tation-dependent, so in order to keep the results re-
producible, the hashing function source code must
be provided. There were few performance issues
with the C++ iostream library on FreeBSD. Granted,
using text-based I/O was a design mistake in the first
place, so the porting effort only amplified that inher-
ent weakness. In summary, the porting of the C++
code proved to be the least concern and making it a
multi-platform software improved the overall quality of the simulator.

Surprisingly, using the popular Python frameworks posed a bigger challenge than porting
the C++ code. Popular scientific packages have many dependencies and usually are kept out-
side of a standard OS-specific Python stack. The essential challenge is to match the right ver-
sion of Python, Numpy, SciPy, Pandas, Scikit-learn, and dozens of dependencies. In GNU/Linux
the most popular way to resolve this conundrum is to use the binary Anaconda distribution.
To my disappointment, the Anaconda dev team does not express any interest in supporting
FreeBSD. The only alternative (apart from compiling everything from scratch) was to use Python
Virtualenv. The fun started right away, when some of the packages were expecting GCC and

2 of 4

The porting process from

GNU/Linux to FreeBSD-12.2

was relatively simple.

7FreeBSD Journal • March/April 2022

others assumed Linux-specific include paths. After the painful process, all the essential packages
were compiled. This should not be a surprise that Python packages heavily rely on third-party
C or C++ libraries. Many Python packages are only language bindings to libraries written in C.
Each time the package is installed, the third-party dependencies must be recompiled. It is worth
keeping in mind that the whole Python stack is not totally independent of the base system.
Thus, upgrading the FreeBSD poses a risk of repeating the whole process.

If the deployment of the Python stack was so cumbersome, was it worth it? Ultimately —
yes — due to parallel computing. By default, the computation on DataFrame objects is sin-
gle-threaded. However, the Pandarallel package provides a seamless parallelization through
multiprocessing. Though not perfect, as it mandates copying the data, the speedup is still sig-
nificant for CPU-intensive computations.

Fig 3.The parallelization scheme supervsed by Make.

The simulation system was designed to be single-threaded. The packet processing job must
maintain an order of packets, so the central algorithm must remain sequential. The only viable
means to scale the workload to many CPU cores was to exploit the coarse-grained parallelism
in the workflow itself. The workflow definition contains more than 500 independent jobs. Each
job lasts from several minutes to an hour, with the memory consumption from 10 to 30 GB
(just for the data structures, so that was essentially an un-swappable resident set).

Luckily, the Make utility is capable of supervis-
ing a fixed number parallel jobs though the ubiqui-
tous “-j” option. The challenging part was to match
the varying memory requirements of the jobs with
the number of processes. To my knowledge, there
are no build systems that try to limit the number of
jobs based on the memory pressure. They all consid-
er only CPU load. Thanks to the infamous FeeBSD
OOM killer and the decades-old UNIX wisdom ac-
cumulated in the Make utility, that turned out to
be easier than expected. Each time when the number of jobs exceeded the RAM capacity, the
OOM killer would pick the most memory-hungry process. This resulted in wasted CPU time,
but kept the whole system stable and responsive. Also, the artifacts produced by the killed pro-
cess were removed by Make, so data integrity was not compromised. This behavior is contin-
gent on the correct job definition, since only explicitly defined Make targets are deleted.

The final version of the system was running continuously for over a week with intermittent
supervision from the operator. The high demand for disk I/O bandwidth was met by the use
of SSD drives backed by the ZFS filesystem. The overall stability of the platform was proven be-
yond any doubts.

If the deployment of

the Python stack was

so cumbersome,

was it worth it?

3 of 4

8FreeBSD Journal • March/April 2022

The final conclusions for role of the FreeBSD/ARM64 as a scientific platform can be drawn in
few points:

1. The platform provides excellent stability. The low overhead of the system and minimalist
distribution leaves plenty of room for CPU-intensive or memory-intensive tasks.

2. The I/O subsystem can keep up with the most demanding workloads as long as the back-
ing storage is solid state.

3. Porting the software from x86_64 to ARM64 architecture is mostly as easy as recom-
piling, provided that the developer follows the best practices of creating portable code.
In case of porting from Linux from the same architecture, Linuxulator provides Linux ABI
for native binaries.

4. Complex software stacks which are not supported by the system package manager can
pose some challenges, if there are no alternative package managers. It is best to use
shortcuts, with pre-built environments based on jails. As usual with the Open Source com-
munity, the software needs a critical mass of users to draw the attention of developers.

This yet another FreeBSD success story is a testimony to the effort of many developers
which solidified the ARM64 port to the point where using the system is as ubiquitous as any
x86 machine.

MACIEJ CZEKAJ is a lead s/w engineer at Semihalf, specializing in high-speed networking ap-
plications and drivers. He is a contributor to the DPDK project where he claims the authorship
of one of the first ARM64 Ethernet device drivers (VNIC on ThunderX ARM64 server). He re-
ceived his Comp. Sci. PhD program at AGH University (Kraków, Poland) on high-speed network
acceleration.

4 of 4

all the storage; we use ZFS to replicate the data between cluster nodes; we use
compression and snapshots. And we heavily use Capsicum to make it all secure.

We want to be sure that even if someone breaks into a single session, he can-
not access other sessions. He cannot actually access anything, because if he
breaks in before authentication, he won't be granted access to connect to the
server. Only after successful authentication will we provide a connection to the
destination server.

And Capsicum makes it really clean and very efficient actually.
Al lan: You don't have to enumerate all the things you can't do. You're saying
you're only allowed to do these things?

• Pawel: Yes. This is capability ideology. You only grant the exact rights or access
to resources that the process requires. Which is not UNIX ideology because, of
course, if you are running a UNIX program, it has access to everything.
Al lan: Was there anything else you wanted to talk about?

• Pawel: Not really. •

Sept/Oct 2019 23

FreeBSD is internationally recognized as an innovative
leader in providing a high-performance, secure, and stable
operating system.
Not only is FreeBSD easy to install, but it runs a huge number

full source code.

The FreeBSD Community is proudly supported by

T

Help Create the Future.
Join the FreeBSD Project!

The FreeBSD Project is looking for

Find out more by

Checking out our website

Downloading the Software

for people like you to help continue
developing this robust operating system.
Join us!

Already involved?

Don�t forget to check out the latest
grant opportunities at
freebsdfoundation.org

9FreeBSD Journal • March/April 2022

T
 he Pinebook Pro is a Rockchip rk3399-based arm64 laptop. It is not currently for sale
(according to Pine64) due to global components shortage. You might already own one
though, and have missed running FreeBSD on it. In this article, I will describe how to get
FreeBSD running on it as a useful desktop. If you do not happen to have a PineBook

Pro, the test image that I provide and the build steps also apply to the RockPRO64 board. (Ex-
cept for U-Boot, do use the stock FreeBSD one for RockPRO64).

As I said, it is rk3399 based, but it is not RockPRO64 in a casing — it does have its own spe-
cific mainboard. So the official rockpro64 builds are not the way to go. There are some patches
in review that do make the Pinebook Pro useful as a desktop, most notably, the drm-sub-tree
of Emmanuel Vadot and the work of Ruslan Bukin who wrote about panfrost in an earlier is-
sue. Also patches for working sound have been written by Alexander Tymoshenko. A lot of
work has been done by the posters on the Pinebook Pro thread on forums.freebsd.org started
by SleepWalker. It’s worth a read if you want a closer look at the development history of get-
ting FreeBSD to run on Pinebook Pro.

Supported Hardware
• The graphics stack with accelerated graphics by the panfrost driver work of Ruslan Bukin
and related work by Emmanuel Vadot in the drm-subtree.

• Sound recording and playback by Alexander Tymoshenko.
• emmc and sd-card are also fully supported.
• The SPI flash is detected, but is probably still hit by bug 244146.
• The PCI bridge is supported with an SSD, although ufs shows some weirdness in my tests.
• All CPUs are supported, but FreeBSD cannot make full use of big.LITTLE. i.e., the faster
cores have to follow the frequency of the slower ones.

• USB-2 ports.
• Touchpad and keyboard — the touchpad is only working as a simple mouse though.
• Webcam works with webcamd.

Unsupported Hardware
• Wi-Fi and Bluetooth, and DP over USB-C.
• USB-c works as USB-c, if you turn it on with gpioctl. Do not try this if you are not totally
sure on where to look in the device tree for the right pin setting and how to set it.

BY JESPER SCHMITZ MOURIDSEN

FreeBSD on
the Pinebook Pro

1 of 4

10FreeBSD Journal • March/April 2022

What Software Runs?
I have tested both sway and hikari / wayland and X11 with a couple of DEs. In the process, I

found that openbox has an issue with the graphics stack. It does not really render anything cor-
rectly within the windows’ frames. Luckily xfwm4 does not have any issues. Thus LXQt required a
change from the default openbox to xfwm4. LibreOffice runs nicely. Electron stuff is amd64 only
on FreeBSD, so you might miss some electron based applications e.g., vscode-oss. Sway needs to
be reverted to version 14.1 otherwise you hit “Cannot use DRM dumb buffers with non-primary
DRM FD.” I suspect it is due to the setup where there are two card entries namely /dev/dri/card0
/dev/dri/card1 where only card1 has a render device, but I have not looked into it more closely. I
choose instead to revert sway and wlroots to the last known good version on the Pinebook Pro.

Firefox on arm64 and perhaps other applications crashes often unless started with ASLR (ad-
dress space layout randomization) disabled with proccontrol -m aslr -s disable firefox.
Also to test webgl in Firefox, you might have to set webgl.force-enabled to true in about:config.
Since webcamd runs well and supports the built-in camera, I tested a webrtc call in Nextcloud talk
with Firefox and it worked well. Screen sharing in the call worked as well, but only one window
at a time. Vlc also does not like the screen:/// capturing,
so something with full-screen capturing is an issue at
the moment. I also watched YouTube full-screen video
without glitches. Note that since this work is based on
14-CURRENT, the default package repository does not
build quarterly — so some packages might fail to build
once in a while, and thus be missing.

The Booting Process
U-boot versions without video support i.e., without

showing anything on the display right at boot time are
too old be useful. Also, I skipped a panel driver in the
test image, so the panel must be turned on by u-boot.
Backlight working also apparently relies on a recent
u-boot. The one I have used most successfully is 2021.7
which is the one in the FreeBSD ports tree at the time of
writing.

NetBSD noted that the panel breaks on warm re-
boot. They have a patch that I highly recommend since the panel seems to start in an awfully
wrong — and probably very bad for it — state on a warm reboot. The NetBSD patch is adapted
to the FreeBSD ports tree here and is in the test image.

If you start from emmc with a FreeBSD u-boot, you should know that it does not default to
booting the SD-card. To boot from the SD card in that case, you should press any key to stop au-
toboot and type run bootcmd_mmc1. Note that the keyboard under u-boot is not too well sup-
ported. It does type, but you better type slowly. One can also disable the emmc totally and just
test the test image from an sd-card directly. You then avoid u-boot version issues, but it is a little
inconvenient to use the internal laptop emmc (fragile) kill switch. It is easy to open the laptop —
the switch is just badly placed in my opinion. So if you have a stock manjaro or debian installation,
you might have to upgrade in a way that also updates u-boot or to install FreeBSD to the emmc
or use its kill switch as mentioned.

Also remember that the u-boot that boots should be the patched one.

2 of 4

There are some patches

in review that do make

the Pinebook Pro useful

as a desktop

11FreeBSD Journal • March/April 2022

The Quick Start
I will later describe how to install from source, but you can easily fetch the test image from

github along with modified packages described later.
If you have disabled your emmc or installed the patched u-boot for pinebook pro to it--you

can find it here. You are ready to go. Note that RELEASE(7) has per default created two unsafe
users with password root, and the user freebsd with password freebsd. ssh is enabled as well.
All defaults for arm boards but not so appropriate for the laptop setup. Also do not forget to
add your own user to the video group, otherwise the graphics stack would not be permitted to
access the graphics device nodes.

Getting Online
Network connectivity is, of course, a must, but built in Wi-Fi is unsupported as of now. I

choose to use a wifi dongle with a chipset from man rtwn_usb. You might also install a wi-fi
card to m.2 slot if you have the pci-bridge expansion.

I did not try the later myself though. Your cell phone in usb tethering mode can also bring
your Pinebook Pro online. For a Wi-Fi dongle, you will have to know how to connect via com-
mand-line interface. I recommend you edit /etc/rc.conf right away. See the handbook for more
information about that. Using your phone a dhclient ue0 should be enough.

How to Cross Build From Source on amd64
The test image is based on 14-current at commit c9e023541aef. To build it, you can use my

PINEBOOKPRO.conf and release.sh at people.freebsd.org/~jsm/pbp

./release.sh -c arm64/PINEBOOKPRO.conf

But it takes a while to build. (About 1.5 to 2 hours on a GEN10 10 core Intel CPU.
Panfrost is still work in progress at the time of this writing, so I modified Ruslan Bukin’s latest

PR against the drm-subtree to not use continuous memory since the Pinebook Pro apparently
runs low on free continuous memory under relatively heavy loads such as the webglsamples.
org aquarium in firefox. I am building panfrost as a module since it crashes at boot if compiled
as a device. To build the module you can chroot to the scratchdir of release.sh and in /usr/src
with the following environment variables set

setenv TARGET arm64
setenv WORKSPACE /usr
setenv MAKEOBJDIRPREFIX $WORKSPACE/obj/
setenv ROOTFS $WORKSPACE/rootfs
setenv SRC /usr/src
setenv MAKESYSPATH $SRC/share/mk

use

make buildenv TARGET_ARCH=aarch64 BUILDENV_SHELL=/bin/sh

I did a Makefile and some compile time error fixing consisting only of adding prototypes and
printf format string fixes. You change dir to /usr/src/sys/dev/drm/panfrost when in the
buildenv. Then you can execute

3 of 4

12FreeBSD Journal • March/April 2022

make
make DESTDIR=$ROOTFS install

You can then easily experiment with continuous memory by changing

- if (1 == 1)
+ if (1 == 0)
 panfrost_alloc_pages_iommu(bo);
 else
 panfrost_alloc_pages_contig(bo);

in panfrost_gem.c. It does not have a sysctl knob, it is a code change. See the discussion on
drm-subtree, pull #13.

Ports and Modified Packages
As stated before, I reverted sway wlroots and hikari to earlier versions. libdrm is modified in

order to detect the panfrost with this patch. Hikari also needs a small patch to fix its argument
parsing issue mesa-dri and mesa-libs are also modified to compile the panfrost driver and en-
able gles1 and gles2, i.e., to compile in the way Ruslan Bukin described in his article.

The packages are prebuilt for download as is a patch for the ports tree if you prefer to build
from source. You can take advantage of the pkg lock feature to not get the modified packages
reinstalled by pkg commands. Simply run pkg lock <pkgname>. On my system I have the fol-
lowing packages locked:

hikari-2.3.2
libdrm-2.4.109,1
mesa-dri-21.3.6
mesa-libs-21.3.6
sway-1.6.1_2
wlroots-0.14.1_2

Note for RockPRO64 owners, do not forget to reinstall the RockPRO64 u-boot from ports to
the test image, and note that sound is not patched in.

JESPER SCHMITZ MOURIDSEN is a self-taught system administrator and developer currently
employed as system administrator working with OpenStack. He is a FreeBSD ports committer,
with LXQt as his main focus and co-author of rtsx(4). AFK he likes a ride on his bicycle and is
fan of cycling.

4 of 4

Nov/Dec 2019 57

November/December 2021

Open Channel SSD

Building FreeBSD Communities

27 Years with the Perfect OS

WIP/CFT:OccamBSD

2022 Editorial Calendar
• Software and System Management

(January-February)

• ARM64 is Tier 1 (March-April)

• Disaster Recovery (May-June)

• Science, Systems, and FreeBSD (July-August)

• Performance (September-October)

• Topic to be decided (November-December)

14FreeBSD Journal • March/April 2022

ARM64 is a single architecture that is used in an extremely wide range of products — it can be
found in the smallest embedded devices, but also in mobile devices, enterprise units and even
server-grade solutions. The support for the latter imposes certain standards, e.g., the way of
booting, interactions with firmware or a platform description. It turnes out this model also fits
non-server devices. Let’s see how they are supported in FreeBSD, with a focus on handling the
embedded controllers in the ACPI world.

Dealing With the Problematic Legacy
When introduced almost a decade ago, the 64-bit variant of ARM directly inherited the eco-

system from its 32-bit predecessor, which had been reigning in the embedded market. Howev-
er, the usual need of maintaining a fully customized board support package for each platform
was a real burden for development of the new archi-
tecture. To some extent, the device tree (DT) adoption
allowed for better portability and using a single kernel
image for various devices, but it did not suffice to solve
the problem entirely. This kind of description is very
flexible, which was, unfortunately, often abused by ven-
dors and resulted in inconsistent bindings over the time.
Even today, it is not uncommon that the device tree
blob for U-Boot differs from the one used for booting
the OS (they describe the same hardware!), and of-
ten also lacks backward compatibility. With such con-
straints, reaching a long-term goal of a wide software
ecosystem and multi-OS support would be problematic.

However, the solution was out there and existed for
years. The interfaces used in the x86 world were adopted and extended for ARM64, namely
the boot process, EFI, SMBIOS and ACPI. With the server-grade devices that comply with the
standards and use proper firmware, it is now possible to install FreeBSD and other OSs or hy-
pervisors out of the box, simply by using installer images. What about smaller, embedded plat-
forms? Fortunately they can also leverage the rich ecosystem the same way. There are condi-
tions though — the hardware must not deviate from the standards (at least not too much) and

BY MARCIN WOJTAS

1 of 7

ACPI Support for
Embedded Controllers

When introduced almost a

decade ago, the 64-bit variant

of ARM directly inherited

the ecosystem from its

32-bit predecessor.

15FreeBSD Journal • March/April 2022

there are also strict requirements related to firmware. The guidelines are gathered into specifi-
cations, consecutively: the BSA (ARM Base System Architecture) and the BBR (ARM Base Boot
Requirements). Result — there are ARM64 platforms that can successfully boot the FreeBSD,
Windows and multiple Linux distributions, using a single firmware image and ACPI description.

What is special about those devices? Compared to the servers, which traditionally have a sig-
nificant amount of CPUs, DRAM and PCIE root complexes, in the embedded segment the SoCs
also support a wide variety of controllers attached to their internal buses. Therefore, they are
not discovered during PCIE enumeration, but require a different treatment. A hardware descrip-
tion must comprise an explicit reference to these interfaces, including the platform data that
can be parsed and interpreted by the OS. Recently, the FreeBSD kernel’s ability to obtain such
information from ACPI tables was extended with some new features.

What is ACPI?
Before jumping to details, it may be worth briefly explaining what the ACPI is — it is an in-

terface between the firmware and OS, used for describing and configuring the hardware. The
standard has been developed for almost 3 decades and lists a number of main concepts, i.e.,
various aspects of power management, thermal/battery handling, hardware configuration and
embedded controllers’ description. It also defines an ACPI Source Language (ASL), which among
others allows for creating low-level hardware configuration routines. It is compiled to a bytecode
— ACPI Machine Language (AML), that can be interpreted and executed by the kernel.

The information about a platform is gathered in so-called ‘tables,’ which are, in fact, a hi-
erarchy of structures in the system’s memory address space. The starting point of ACPI is Root
System Description Pointer (RSDP) structure — it is configured by firmware and points to Ex-
tended System Description Table (XSDT), which further branches out to secondary tables. The
first one is always Fixed ACPI Description Table (FADT) — it comprises various fixed-length en-
tries that describe the fixed ACPI features of the hardware.

Fig1. Root System Description Pointer and Table.
Source: https://uefi.org/specs/ACPI/6.4/05_ACPI_Software_Programming_Model/ACPI_Software_Program-
ming_Model.html#overview-of-the-system-description-table-architecture

The ACPI specification defines a number of dedicated tables, however a couple of them can
be considered as being more significant in the embedded devices context, e.g.,

2 of 7

16FreeBSD Journal • March/April 2022

• Generic Timer Description Table (GTDT)
• Multiple APIC Description Table (MADT)
• Processor Properties Topology Table (PPTT)
• Serial Port Console Redirection Table (SPCR)
• PCI Express Memory-mapped Configuration Space base address description table (MCFG)
• Differentiated System Description Table (DSDT)
The last of the mentioned tables is particularly important. The DSDT is always referenced by

FADT and comprises the list of CPUs, power management features, PCIE root complex and all
other embedded controllers description. It often comes with SSDT (Secondary System Descrip-
tion Table) — in single or multiple instances, this structure allows the programmer to logically
split various functionalities in the platform description code.

The definitions of the above tables were extended to cover ARM64-specific values and
types (e.g., interrupt controllers) — all gathered in ACPICA (ACPI Component Architecture). It
is an open source reference code, used and supplemented by OSs. The FreeBSD is maintained
to always be on par with the latest version of it. Let’s check how the tables are handled in the
ARM64 port.

ACPI for ARM64 — the Base Part
The ARM64 SoCs are described by the ACPI tables according to the standards, i.e., the tim-

ers and watchdogs are listed in GTDT, the interrupt controller can be found in MADT — cur-
rently only GICv2 and GICv3 are supported. Going further to the embedded controllers, the
console is described by SPCR (and optionally by the additional DBG2 table) — using ARM SBSA
UART (PL011) or the one compatible with 16550 is rec-
ommended, although in recent years more types from
the ARM world have been added to the list.

Description of the PCIE controller is more complex
and must be enclosed in the MCFG and DSDT/SSDT ta-
bles. For ARM64 the only allowed type is the one fully
compatible with the standardized ECAM generic, sup-
ported by pci_host_generic_acpi driver. It is recom-
mended that the new designs comprise an unmodified
version of it in the silicon, but for existing products, it
is often not possible. Because of that, handling a devi-
ation from the standards is now allowed in the men-
tioned FreeBSD driver, using the configuration space ac-
cess quirks. Another solution would be to support a mechanism of executing low-level routines
from the firmware via the Secure Monitor Call Calling Convention (SMCCC) interface — cur-
rently it is available for Raspberry Pi 4, but this option remains unimplemented in FreeBSD.

Handling of the Embedded Controllers
Embedded controllers that are connected to the SoCs internal bus can be handled twofold

ways in the ACPI tables. One option is using ‘methods’ (instructions) compiled to AML, so the
OS can interpret and execute them directly, which is the case of e.g., thermal management,
SMBUS or GPIO. Other devices or subsystems that are not explicitly defined in the ACPI spec-
ification need to be described by the standard objects that are available for parsing by the OS
and obtaining all necessary hardware resources required by the kernel drivers. The latter solu-

3 of 7

It is recommended that

the new designs comprise

an umodified, generic version

of PCIE controllers

in the silicon.

17FreeBSD Journal • March/April 2022

tion is a key to support non-server ARM64 SoCs in ACPI and is already present in the FreeBSD
kernel.

Fig 2. High level comparison of example FreeBSD bus hierarchies in ACPI and
Device Tree worlds.

In high level, the FreeBSD bus hierarchies of embedded controllers are similar for both ACPI
and DT worlds (ref. Fig. 2). It is helpful for designing the device drivers, as the platform data
structures can be filled likewise in each case during the kernel initialization phase. The probed
drivers can be later matched by the ACPI _HID field value, which can be treated as an equiva-
lent to the compatible string known from the Device Tree. The other standard types of resourc-
es are also handled in an analogous way.

The first two types of ARM64 embedded controllers supported by ACPI in FreeBSD are USB
and SATA. The latter is interesting, because it is matched with a driver in a bit of a different
way, i.e., by a device class value (ACPI _CLS object; ref. Listing 1).

 Device (AHC0)
 {
 Name (_HID, “LNRO001E”) // _HID: Hardware ID
 Name (_UID, 0x00) // _UID: Unique ID
 Name (_CCA, 0x01) // _CCA: Cache Coherency Attribute
 Method (_STA) // _STA: Device status
 {
 Return (0xF)
 }
 Name (_CLS, Package (0x03) // _CLS: Class Code
 {
 0x01,
 0x06,
 0x01
 })

4 of 7

 Name (_CRS, ResourceTemplate () // _CRS: Current Resource Settings
 {
 Memory32Fixed (ReadWrite,
 0xF2540000, // Address Base (MMIO)
 0x00030000, // Address Length
)
 Interrupt (ResourceConsumer, Level, ActiveHigh, Exclusive, ,,)
 {
 CP_GIC_SPI_CP0_SATA_H0
 }
 })
 }

Listing 1. Example AHCI controller description in ACPI table

The FreeBSD XHCI and AHCI drivers expect fully generic descriptions in DSDT/SSDT. An ex-
ample of the former is presented in Listing 1. It contains objects referring to a unique ID, in-
formation about cache coherency and memory/interrupt resources. All deviations, such as a
non-standard register configuration, clocks or power management handling have to be im-
plemented and pre-configured by firmware.

Customizing the ACPI Description
What if the controller requires a custom binding handled by its own, dedicated driver? Until

recently it was possible in FreeBSD only in the DT world, using the nodes’ properties. However,
the ACPI specification defines an optional object called _DSD (Device Specific Data), that can
contain the same information. Leveraging the FreeBSD
bus hierarchy (ref. Fig 2.), a new generic solution was
designed and implemented, to support obtaining con-
troller specific data in a description-agnostic way. Addi-
tional helper functions were introduced:

• device_get_property
• device_has_property
They allow access to device specific data provided by

the parent bus in a way that the consumer driver can
execute exactly the same code path, regardless of the
system booting with ACPI or DT. This solution was later
extended to cover various types of properties available
in both cases.

An example of the above was implemented in the
SD/MMC subsystem, both in a generic code and a driver for Marvell Xenon controller. The lat-
ter was divided into three files: common part and small pieces responsible for attaching either
via ACPI or as a child of simplebus. Apart from different DRIVER_MODULE/DEFINE_CLASS_1
macro usage, the latter comprises additional parsing of the regulators and card detect GPIO
pins, whereas in ACPI these are set up by firmware.

The FreeBSD XHCI and

AHCI drivers expect fully

generic descriptions in

DSDT/SSDT.

18FreeBSD Journal • March/April 2022

5 of 7

 &ap_sdhci0 {
 compatible = “marvell,armada-cp110-sdhci”;
 reg = <0x780000 0x300>;
 interrupts = <27 IRQ_TYPE_LEVEL_HIGH>;
 clock-names = “core”, “axi”;
 clocks = <&CP11X_LABEL(clk) 1 4>, <&CP11X_LABEL(clk) 1 18>;
 dma-coherent;
 bus-width = <8>;
 /*
 * Not stable in HS modes - phy needs “more calibration”, so add
 * the “slow-mode” and disable SDR104, SDR50 and DDR50 modes.
 */
 marvell,xenon-phy-slow-mode;
 no-1-8-v;
 no-sd;
 no-sdio;
 non-removable;
 status = “okay”;
 vqmmc-supply = <&v_vddo_h>;
 };

Listing 2. Marvell Xenon SD/MMC controller in Device Tree

 Device (MMC0)
 {
 Name (_HID, “MRVL0002”) // _HID: Hardware ID
 Name (_UID, 0x00) // _UID: Unique ID
 Name (_CCA, 0x01) // _CCA: Cache Coherency Attribute
 Method (_STA) // _STA: Device status
 {
 Return (0xF)
 }
 Name (_CRS, ResourceTemplate () // _CRS: Current Resource Settings
 {
 Memory32Fixed (ReadWrite,
 0xF06E0000, // Address Base (MMIO)
 0x00000300, // Address Length
)
 Interrupt (ResourceConsumer, Level, ActiveHigh, Exclusive, ,,)
 {
 48
 }
 })
 Name (_DSD, Package () {
 ToUUID(“daffd814-6eba-4d8c-8a91-bc9bbf4aa301”),
 Package () {

19FreeBSD Journal • March/April 2022

6 of 7

 Package () { “clock-frequency”, 400000000 },
 Package () { “bus-width”, 8 },
 Package () { “marvell,xenon-phy-slow-mode”, 0x1 },
 Package () { “no-1-8-v”, 0x1 },
 Package () { “no-sd”, 0x1 },
 Package () { “no-sdio”, 0x1 },
 Package () { “non-removable”, 0x1 },
 }
 })
 }

Listing 3. Marvell Xenon SD/MMC controller in ACPI

Listings 2. and 3. show example DT and ACPI nodes of the same controller instance, in order
to demonstrate the similarities of both descriptions. Thanks to the new FreeBSD kernel meth-
ods, the controller can successfully operate in all firmware configurations.

Conclusion
With the recent additions to the FreeBSD kernel, the contemporary ARM64 SoCs used in

the embedded products can be supported with a similar set of features both with ACPI and
the Device Tree. The hierarchical representation of custom controllers turned out to be flexi-
ble enough for most kinds of devices and subsystems also in the ACPI case. There are exam-
ples that confirm it is possible even with more sophisticated network controllers and the ge-
neric MDIO layer. Now there are no limits for FreeBSD to follow this path, especially that the
bus architecture allows doing it in a clean and elegant way, as demonstrated in the SD/MMC
example.

MARCIN WOJTAS is Head of Engineering at Semihalf and also a FreeBSD src commiter
(mw@). He is passionate about embedded software and hardware, and contributor to a num-
ber of open source projects, including Linux kernel, Tianocore EDK2 and TF-A.

Write
For Us!
Write

For Us!
Contact Jim Maurer

with your article ideas.
(jmaurer@freebsdjournal.com)

20FreeBSD Journal • March/April 2022

7 of 7

21FreeBSD Journal • March/April 2021

The free desktop space has a no shortage of options when it comes to desktop environments.
They range from small minimal environments with a window manager and some utilities for
decoration all the way up to competitors for Mac OS or Windows in the form of Mate, KDE
and Gnome.

In the free desktop space there is a shortage of projects that are freely licensed and devel-
oped with BSD as an explicit target. The Lumina desktop fills this space. Lumina was originally
started by Ken Moore to be a BSD-licensed desktop environment for TrueOS. It can be run on
any OS and with the right support it targets a FreeBSD-based platform.

This allows Lumina to support FreeBSD specific features and to couple well to FreeBSD inter-
faces for the desktop environment.

Lumina development is now headed by JT Pennington who you might know as the magic
behind the excellent BSDNow podcast (as a host, I am allowed to sing our praises). JT was in-
volved in the PC-BSD and TrueOS projects and it was there he met Ken Moore. JT picked up
the project when Ken’s work commitments made it hard for him to contribute as much time as
he wanted.

JT, speaking for Lumina has asked for help to
carry the project forward. He has ideas for projects
which are a little beyond the time he can contrib-
ute — these are big steps forward for the desktop
environment.

Open Project Requests
In a blog post on the Lumina Website [https://lu-
mina-desktop.org/post/2022-02-08/], JT wrote re-
quests for help with three areas:

• Port build system from Qmake to Cmake
• Lumina File Manager rewrite
• Lumina 2.0 Window Manager

Port Build System from Qmake to Cmake
Qmake is QTs build system for projects, but it is starting to act as a barrier for porting to Linux
distributions (and is probably a headache in FreeBSD, too). Help here would increase the user
and testing base for Lumina and a larger testing base means a better desktop environment.

Lumina File Manager Rewrite
The Lumina File Manager is unique because it is able to integrate with the OS quickly. It offers
zfs-specific features giving you access to snapshots in a simple and convenient view, something
no other file manager offers.

Lumina-FM is ready for a rewrite, it is time to learn from the good features it has now and to
add more customization. JT’s blog post details some ideas he has for a better file manager, these

BY TOM JONES AND JT PENNINGTON

Lumina Desktop Calls
for Developers

1 of 2

Lumina was originally

started by Ken Moore

to be a BSD-licensed

desktop environment

for TrueOS.

22FreeBSD Journal • March/April 2021

include showing break downs of disk usage for file hierarchies and better thumbnail caching
that understands network drives.

Lumina 2.0 Window Manager
The 2.0 version of the Lumina Window Manager doesn’t need grand new features, instead it
needs to be updated and enhanced to the state where it can replace the current Fluxbox Win-
dow Manager which is the basis of Lumina.

First the Lumina Window Manager needs to
be developed to feature parity with Fluxbox, then
the next step is to add in some features obviously
missing from Fluxbox such as the ability to resize a
window from any corner and modern features like
snapping to screen corners.

Advanced features like Wayland compatibility
can come later, but first the Lumina project needs
a usable window manager.

How to Contribute
Lumina is uses QT as its basis for its windowing
toolkit. To be able to help you will need to know
(or want to learn), C++ and the QT interfaces. The
improvements to the file manager and the build
system will also require knowledge or a willingness to learn a lot of intricate details about zfs
and cmake respectively.

Both Lumina and its web site are on github [github.com/lumina-desktop/lumina], the project
welcomes contributions there in the form of pull requests for bug fixes and new features and
issues to report bugs or to make feature requests.

Lumina is an important part of the BSD eco system, if you have time to contribute in any
form, then the Lumina project will be happy to hear from you.

TOM JONES wants FreeBSD-based projects to get the attention they deserve. He lives in the
North East of Scotland and offers FreeBSD consulting.

2 of 2

Lumina Desktop Calls for Developers

The Lumina File

Manager is unique

because it is able to

integrate with the OS

quickly.

Luckily, setting up a
FreeBSD system to act
as a time capsule
on the local network
is still supported

23FreeBSD Journal • March/April 2022

A
pple’s time machine has been around for a number of years to back up Macs over
the network. It is a simple solution to set up and runs in the background without
bothering the user too much. Users can retrieve their files from previous versions
of their file system or even restore their whole computer to a new one to continue

where they left off.
Apple initially offered separate hardware called time

capsules for this task, but in recent years focused more
on backing up to their paid iCloud solution.

Some users may not want to trust their file system
contents to some other computer out there beyond their
reach and control. Luckily, setting up a FreeBSD system
to act as a time capsule on the local network is still sup-
ported. In this article, we’ll walk you through such a
solution.

A time capsule is basically a service listening on in-
coming connections from the time machine protocol and
then stores the data submitted (the latest backup del-
ta) on the local file system. Fans of OpenZFS trust that
the built-in data integrity features keep their data intact, which is why we’re combining time
machine with OpenZFS here. As we are trusting our most valuable files from the Mac to our
FreeBSD system, we want to ensure that we can retrieve it again one fateful day when we des-
perately need it back.

Another consideration is noise and power use. Since this local time capsule system is sup-
posed to be running 24/7 for backing up and retrieving the files, we don’t want a noisy solu-
tion that also draws a lot of power. Surely, one could limit the service to only run during the
hours when we are actually awake and use our Macs. Some people keep a separate time
machine at work for redundancy reasons, so that could be limited to the typical 9 to 5 work
hours. Nevertheless, we don’t want to increase our energy bill too much. By the same token,
running a time machine at home or in the office under our desks with noisy fans will disturb
colleagues and family members alike. The solution to both problems is to use an ARM embed-
ded board for the task. Not only are they cheap (cost-wise), but also come in a small form fac-

BY BENEDICT REUSCHLING

PRACTICAL

1 of 7

How to Set Up
an Apple Time Machine

PRACTICAL

24FreeBSD Journal • March/April 2022

tor which does not take up much space like a big server would. Pretty much all of them come
without fans and are practically noiseless when running. Since ARM focused their chip develop-
ment on energy efficiency, you’d be surprised how few Watts are needed to juice these boards.
Finally, you don’t need much computing horsepower to run a time machine server, as it most-
ly does I/O. I should also mention the cost factor: buying a small ARM board plus some exter-
nal storage should still be cheaper than buying a time capsule from Apple. Maybe you’d like to
donate some of the money saved this way to a BSD Foundation of your choice to support the
continued development of the operating system?

I have run a time machine backup on a Raspberry Pi 3 with external storage connected to
it for a while without any issues. You can build this solution on any recent ARM board that
FreeBSD supports (i.e., boots and can install packages), it does not necessarily have to be a
Raspberry Pi. The required configuration is not too complicated and once it is running, you can
forget about it as it does not need constant attention. As long as you have some external stor-
age, you can start making backups to it from your Mac. The reason why you want to use an
external storage is that the flash on the boards is typically limited in capacity and may wear out
when constantly written to. You can start with a single external disk and later create a ZFS mir-
ror out of it when the next paycheck arrives. When the disk space gets low in your FreeBSD
time capsule, the time machine protocol automatically removes older backups to make space.
No intervention is necessary, it all runs on its own.

In this article, we assume that you have the board running with FreeBSD, connected to the
network and external storage. It should be powerful enough to run ZFS on it, as this is my pre-
ferred solution. It will run just fine with UFS, so use that if your board’s hardware is not strong
enough for ZFS. Create a ZFS pool as outlined in the FreeBSD handbook to get started. We’ll
later create the necessary datasets on it as part of the setup.

First, we need to install two primary packages with dependencies that provide the time ma-
chine service:

pkg install netatalk3 avahi-app
Avahi allows the discovery of the time machine service on the local network in an easy way.

The Apple file server protocol, Apple Talk in version three, is what time machine is built on. To-
gether, they will make the configured time capsule available on the network so that Macs can
find and automatically back up their data to it. The installation should not take too long, de-
pending on how powerful your ARM server is (or any kind of server you run this on). You can
also decide to run the service in a jail, dedicating a jailed dataset to it for the backups. I’ll leave
that as an exercise for you to keep this article simple enough.

The backup files from the Mac should be stored for each individual user in their own direc-
tory. This way, we keep them separate from each other and allow other people to make back-
ups as well. Let’s assume our ZFS pool is called backup (what’s in a name?). The following com-
mand creates a new dataset to hold all users’ backups in their own directories:

zfs create backup/timemachine
We also set some zfs options in case they are not set on the pool level already.

zfs set atime=off backup/timemachine
zfs set refquota=1T backup/timemachine
zfs set refreservation=1T backup/timemachine
zfs set compression=zstd backup/timemachine

2 of 7

PRACTICAL

25FreeBSD Journal • March/April 2022

The first option disables the file system access time, which we don’t need to run time ma-
chine successfully. The refquota and reservation options ensure that only 1 TB of pool storage
will be allocated for the backups, but that they are guaranteed to be available no matter how
much space non-timemachine files on the pool take up. Adjust this to fit your pool size and
needs. Don’t set this too low, though, or you won’t be able to backup much from your Macs
and older backups get deleted more often. The final option activates compression on the data-
set. Be mindful of the compression algorithm set in the last option. Your ARM board may not
be able to provide that much CPU power for the compression, so change this to a different al-
gorithm or disable compression altogether. On my time machine, the compression ratio is low
(1.01x currently), but it may depend on the type of files you back up from the Mac and how
well they can be compressed.

Next, let’s create a group called timemachinists that are allowed to use the time machine
service. You don’t want your noisy neighbor using your time machine for his backups, but may-
be allow a new colleague in your office to back up her Mac, too.

pw grouadd timemachinists
pw groumod timemachinists -m bcr

Check the result of this operation using pw groupshow timemachinists. I’m the only user
in that group at the moment. You can also pick a different group name as long as you refer-
ence it from the config file we’ll show below. Each user should have their own dataset, so let’s
create one for myself and set proper permissions:

zfs create backup/timemachine/bcr
chown bcr:timemachinists /backup/timemachine/bcr
chmod 0700 /backup/timemachine/bcr
chmod 0777 /backup/timemachine

I allow only myself access to the bcr dataset, only the other timemachinists group mem-
bers should be allowed to peak into my precious backups. Although the files are stored in a
database format and not as they are on my Mac, I’m not taking any chances. On the /back-
up/timemachine dataset, the permissions are wider open for the service to properly access it.
Now let’s see how we reference this group and the mount point from the time machine con-
figuration file. It is located in /usr/local/etc/afp.conf and contains the main time machine
settings. To get started, the following configuration changes should be made:

[Global]
afp listen = 10.20.30.40
uam list = uams_dhx.so,uams_dhx2.so
mimic model = TimeCapsule6,116
disconnect time = 1
unix charset = UTF8
cnid scheme = dbd
file perm = 0640
directory perm = 0750
hostname = “Time Machine”
hosts allow = “10.20.30.0/24”
zeroconf = yes
log file = /var/log/afp.log

3 of 7

PRACTICAL

4 of 7

log level = default:info
vol preset = TimeMachine
vol dbpath = /var/netatalk/CNID/$u/$v/

[TimeMachine]
path = /backup/timemachine/$u
time machine = yes
valid users = @timemachinists

Here is what the options do, line by line, starting in the Global section. The”afp listen” line
defines the host name or IP address of the machine that the service runs on and listens for in-
coming connections. This is the address that users will configure in the time machine settings
on their Macs later. We chose 10.20.30.40 as an example here, adjust it to fit your own local
network.

The “uam list” refers to the user access methods al-
lowed. The ones we use here are the default ones that
allow Diffie-Hellman eXchange protocol (versions 1 and
2) encoded passwords. Other possible options allow
guest access (undesirable for most people) and Kerberos
V, which may be interesting in a corporate setting.

If you care about what icon is displayed on your con-
necting Macs, the “mimic model” option is for you. If
you’re feeling nostalgic, you can display a PowerBook
(which predated time machine by some years) here.
However, the Time Capsule option makes the most
sense to use here.

A more useful option is the “disconnect time”. It may
happen that connections get interrupted, and the time
machine service keeps the session open, preventing further connection attempts with a “vol-
ume in use” error message. This option cleans up disconnected sessions after 1 hour. Adjust
this if you get this error often, but you should not encounter it much when using the setting
used here.

Specifying the server character set to the default UTF8 is done by the “unix charset” op-
tion. This should only be changed when you’re certain that you need it, otherwise leave this
option alone.

A “cnid scheme” is what is being used for the backend of the volume. This is the database
that keeps track of what files have been backed up, if and when they changed, and other ad-
ministrative information. You don’t have to know much about this to run the time machine ser-
vice, keeping the default dbd is fine for most people.

Both the “file perm” and “directory perm” define with what kind of permissions the files
and directories from the connecting clients are stored, respectively. This could be more restric-
tive than the original permissions or less, but both cause more headaches than you have pain-
killers for, so leave the ones we suggested here.

The “hostname” parameter is the description of your time machine that the Mac users will
see when clicking on the time machine icon in their status bar when correctly configured. Pick-

26FreeBSD Journal • March/April 2022

Although the files are
stored in a database
format and not as they
are on my Mac, I’m not
taking any chances.

PRACTICAL

5 of 7

ing a funny description here results in status messages between backups like “Last backup on
black hole.” You’re easily amused, aren’t you?

Remember your noisy neighbor that should not be allowed to use your precious time ma-
chine storage for his Mac? The “hosts allow” option limits the service to certain hosts or net-
works, restricting everyone else. As much as your colleagues in the surrounding offices may
complain, only the people sharing the same four walls around you can back up if you set it
properly.

We want to use “zeroconf” to ease our burden to manually help computers find the service,
so we set this option to yes.

Logging activity of the time capsule is a good idea to
debug problems users may encounter when trying to
use the service. The “log file” specifies the location of
the log file and the “log level” the detail and number of
messages being logged. The ones we use here are fine
for day-to-day operations, while also not wearing out
your board’s storage with too many writes. When de-
bugging an issue, temporarily set it to warn or error for
more details and restart the service.

With “vol preset” we define a section in the same
configuration file for settings concerning the volume.
Multiple volumes can be configured this way in the same
configuration file, but for our purposes, a single one is
enough.

The last option in the General section is “vol dbpath”. Remember our different users we may
have tapping this service in the future? With this setting, each user gets their own independent
settings in a subdirectory. My own volume may be called “bcrvol” and the settings for it get
stored under /var/netatalk/CNID/bcr/bcrvol/ (replacing the variables for my username
and volume, respectively). The benefit of separating these by user and volume and not having
one directory for all users is that if things get corrupted, this is limited to only one user. This will
not happen often, but better safe than sorry (especially when it comes to backups).

We’re still not done yet with this file, but the last options are straightforward enough. The
section we reference here from the [Global] section deals with who is able to access and where
they should be allowed.

A volume “path” is where a backup from a certain user is stored. Since we don’t know who
this will be down the road and adjust this file each time a new user comes along, we use the
$u variable here. This way, my own files end up in /backup/timemachine/bcr and corre-
spond to the datasets we created earlier. Don’t get confused here: the path is the file system
path where the backed up files from the Mac will later reside. The “vol dbpath” option that
used a similar variable is where the administrative database with meta information about the
backup is stored. Even better, you don’t have to visit both directories at all and can forget about
them once the service runs.

The “valid users” line specifies users or, in our case, the timemachinists group (distinguished
from users by a leading @) that are allowed access. See how flexible this is? In the future, when
we want to allow Susan Sunshine to also backup her Mac, we just need to create a user for

27FreeBSD Journal • March/April 2022

Logging activity of
the time capsule is a
good idea to debug
problems users may
encounter when trying
to use the service.

PRACTICAL

6 of 7

her, add it into the timemachinists group, and create a dataset under /backup/timemachine
with proper permissions for her.

pw groumod timemachinists -m susan
zfs create backup/timemachine/susan
chown susan:timemachinists /backup/timemachine/susan
chmod 0700 /backup/timemachine/susan

No need to revisit this configuration file again, because variables and the group definitions
will pick up the new user automatically. In case you still need to, each configuration line is de-
scribed in more detail in afp.conf(5). Let’s save and close this file.

Just as Darth Vader felt a tremor in the Force in the presence of his old master, we want to
automatically notify the Mac clients of the presence of your time machine service using Avahi.
To that end, we create a new file in

/usr/local/etc/avahi/services/afp.service
and add the following contents:

<?xml version=”1.0” standalone=no ?><!--*-nxml-*-->
<!DOCTYPE service-group SYSTEM “avahi-service.dtd”>
<service-group>
 <name replace-wildcards=”yes”>%h</name>
 <service>
 <type>_afpovertcp._tcp</type>
 <port>548</port>
 </service>
</service-group>

This basically defines where the AFP protocol will listen on (the “afp listen” line from
afp.conf plus the port 548 defined here). With this file in place, we only need to enable and
start the services to finish the server side of the setup.

service dbus enable
service avahi_daemon enable
service netatalk enable

In case you’re wondering, dbus came in as a dependency during the package installation. It
needs to run alongside the other services: avahi for network discovery and netatalk since time
machine works only with the Apple Filing Protocol (AFP).

Let’s start these services right away to move on to the client side.
service dbus start
service avahi_daemon start
service netatalk start

Check the output of
sockstat -l

for the daemons listening on their respective ports and look into /var/log/afp.log for any errors.
On the Mac that should be backed up by the newly created time machine, we need to

make sure that Time Machine recognizes this (non-Apple official) network volume. To do that,
run the following in Terminal.app:

$ sudo defaults write com.apple.systempreferences TMShowUnsupportedNet-
workVolumes 1

28FreeBSD Journal • March/April 2022

Next, go to the Finder, hit CMD-K (or select “Go to” from the menu and then “Connect to
server...”) and enter the following:

afp://10.20.30.40
Substitute my example with the address or hostname that you configured in
afp.conf and hit the connect button. Enter your username and password that you have on

the time machine server (bcr in my case). If all goes well, the share will be mounted over the
network and will appear in your left finder sidebar as an empty drive. When the mapping does
not work, check the server’s log file again and make sure you have the proper IP address and
user credentials.

Open the system preferences for time machine and
click on “Add or remove backup volume”. In there, you
should see your mounted share from the server. Select
it and for extra protection, check the “encrypt backup”
option. This is the only time where you can do this, not
afterwards! Yes, you could also use ZFS encryption for
the dataset, but I’m fine with this setting for my backup
needs.

Time machine will now start creating the initial back-
up, which will take a long time depending on the num-
ber of files on your Mac and their size. Read through the
other articles in this Journal to pass the time. Once the
initial backup is finished, the service will disconnect automatically and reconnect in regular inter-
vals to copy files that have changed. Test your backup by creating a small text file, wait for it to
be backed up, then delete it. Act like you just accidentally deleted an important file and restore
it using the Time Machine dialog, letting out a dramatic sigh of relief. That’s all, congratulations
on your cheap, silent, and energy-efficient new backup service.

BENEDICT REUSCHLING is a documentation committer in the FreeBSD project and member
of the documentation engineering team. He serves on the board of directors of the FreeBSD
Foundation as vice president. In the past, he served on the FreeBSD core team for two terms.
He administers a big data cluster at the University of Applied Sciences, Darmstadt, Germany.
He’s also teaching a course “Unix for Developers” for undergraduates. Benedict is one of the
hosts of the weekly bsdnow.tv podcast.

PRACTICAL

7 of 7

29FreeBSD Journal • March/April 2022

Congratulations on
your cheap, silent,
and energy-efficient
new backup service.

Donate to the Foundation!

Support
 FreeBSD

You already know that FreeBSD is an internationally
recognized leader in providing a high-performance,
secure, and stable operating system. It�s because of
you. Your donations have a direct impact on the Project.

Please consider making a gift to support FreeBSD for the
coming year. It�s only with your help that we can continue
and increase our support to make FreeBSD the high-
performance, secure, and reliable OS you know and love!

Your investment will help:

Funding Projects to Advance FreeBSD

Increasing Our FreeBSD Advocacy and

Providing Additional Conference
Resources and Travel Grants

Continued Development of the FreeBSD
Journal

Protecting FreeBSD IP and Providing
Legal Support to the Project

Purchasing Hardware to Build and
Improve FreeBSD Project Infrastructure

Making a donation is quick and easy.
freebsdfoundation.org/donate

®

®

Dear FreeBSD Journal Letters Column Answerer,

There’s a bunch of excitement over how ARM64
is now Tier 1. How should I use it? Should I
immediately switch my desktop, my servers, and
my media server over to ARM64? Just from reading
this very issue, I’ve gotten really excited about it.
How fast should I move?

 —Searching Out Amazing Machines

“My day is my own,” I thought when I woke up this morning. “I can lounge around and
think about the glorious success that will inevitably descend upon me if only I can keep the bit
about the wombats, the school bus, and the algae bollard under wraps, which should be sim-
plicity incarnate because nobody knows what a bollard is except for a handful of literati who
know nothing of wombats. I should probably write down a sentence or two, something about
how the information reported by hard drives is not merely deceitful but actively treacherous, just
so I can claim that I’m doing real work instead of wandering about the house listening to wire
recording mix tapes from the 1930s and wondering how I can keep the squirrels from nesting in
my emergency pants. It’s not that I need pants all that often. They make bad days wholly terri-
ble, like when I need to leave the house to find a gelato service that understands the difference
between promising and boasting. The current one isn’t it. Maybe the next.”

And then your letter arrives, SOAM, ruining an otherwise perfect day.
On the plus side, I get to crush your hope. That’s always nice.
All operating systems have an idea of tier 1 architectures. This means that the operating sys-

tem can be installed on that architecture, that it runs, and that updates will be available to fix the
inevitable bugs. Crash dumps will receive the same mixed attention as those of any other major
platform. That sounds fine, right?

The problem is that sysadmins don’t run hardware. We don’t even run operating systems. We
run applications. FreeBSD might be tier 1 on ARM64, but that doesn’t mean your application is.
Sure, there’s lots of packages available. Many ports build. Perhaps even most. But just because
the code compiles doesn’t mean that it works let alone interoperates with whatever malware
you’re passing off as an application stack. People are using ARM64 for real work out in the real
world, but that doesn’t mean that you can. You thought Linux-isms were bad? Wait until you
get a look at Intel-isms. Sure, people are working on their applications to make them work on
ARM64, but the change in architecture has opened vast new realms of bugs. The obvious bugs
have been found. What remains are the highly specific ones. Your environment is highly specific.
Logically, these bugs all belong to you.

1 of 3

31FreeBSD Journal • March/April 2022

by Michael W Lucas

freebsdjournal.org

Many technologists claim that ARM64 is inevitable. The only inevitabilities are core dumps
and that orange—and—green rash on my neck. People who should know better tout the ad-
vantages of ARM64 as if anything in computing could ever be improved when we all know that
the pain never goes away, only changes. Install an ARM64 web server, and you’ll discover tiny
changes in behavior will put your application at risk. The people pushing ARM64 keep babbling
about “reduced power consumption” and “open platforms,” and they’re extremely stubborn, so
I suspect that they’ll eventually get their way. A change of pains is as good as a rest.

So, what do you do?
You could start by not writing letters to this journal. That would have been an improvement.
Failing that, you should prepare for failure.
Your vital application runs on ARM64? Great… for some value of “great.”
You can’t start using it yet. Even if you set up an ARM64 system purely for testing and turn

on all the debugging you can find so you can catch application errors and submit bug reports,
you almost certainly have no idea what normal looks like. Your idea of normal is a quiet help-
desk phone. When your brand-new ARM64 system starts spewing cryptic messages about locks
and updates and whatever sort of flimflam the developers yammered that made your organi-
zation decide that this particular group of lies would solve their problems, you’ll have no idea if
these are normal or not.

You’re starting in the wrong place.
Application developers rarely design useful logs. A

few intend to. Many design logs that they find useful,
which is not the same as useful to you. You need to
know what normal logs look like, so you can recognize
abnormal ones.

Start playing with ARM64 by going to your legacy
environment, full of AMD64 or MIPS or even (ugh) i386
hardware. Make a list of your vital applications. For each
one, figure out how to gather debugging data. Whole-
some systems send everything to syslog, where you
could distribute it into individual log files as needed, but
many modern developers have abandoned this healthy

practice in favor of randomly selected logging systems that happen to conform to their prejudic-
es so you’ll have to (ugh, ugh) read the documentation. Some sysadmins have centralized log-
ging servers where they can perform analysis of messages from every system they manage, but
they are overachievers, and we will discuss them no further. Worst case, find a convenient log4j
instance on the public Internet and dump all your debugging there. They won’t mind.

While you are digging up logging configuration information on your every critical application,
make a list of how to file bug reports on each and every one. It’s much easier to do this before
a notably vexing bug raises your blood pressure and triggers your brain’s wired-in “kill one devel-
oper or massacre them all?” decision-making circuits.

Now that you have a baseline for comparison, you can install your ARM64 system and see
what happens. Don’t get me wrong, it’s going to fail. As always, the question is how it will fail.
Your ARM64 systems will have logs stuffed with cryptic meaningless messages. Fortunately, you
already have functioning servers that have their own cryptic, meaningless log messages. You can
compare the two and, with luck and perhaps a simple conjuration at an abandoned crossroads
during the new moon, sort out messages that indicate your actual error.

2 of 3

Application
developers rarely
design useful logs.
A few intend to.

32FreeBSD Journal • March/April 2022

Prepare a bug report.
Send it to the application developers.
If they answer, they will almost certainly wonder why you’re using their application in a way

that was never intended, but that’s exactly what UNIX is for, so ignore the sniveling. Work the
problems, one after the other, until your application truly runs on ARM64. That’s how open
source software works. It’s people like you, doing the grunt work of polishing and problem-solv-
ing, so that future decades of lazy bastards like myself can reap the rewards.

If that’s not enough of an answer for you, too bad. I hear a squirrel gagging in the garage, so
I know where my emergency pants are. I should probably wash them one year.

Have a question for Michael?
Send it to letters@freebsdjournal.org

MICHAEL W LUCAS has spent too many decades debugging hardware platform migrations. His
latest books include DNSSEC Mastery and $git sync murder. He’s also released Letters to Ed (1),
a collection of the first three years of this very column. Why he thinks you’ll pay good money for
something you get for free right here, we have no idea.

3 of 3

Pluggable Authentication Modules:
 Threat or Menace?

PAM is one of the most misunderstood parts of systems
administration. Many sysadmins live with authentication
problems rather than risk making them worse. PAM’s very
nature makes it unlike any other Unix access control system.

If you have PAM misery or PAM mysteries, you need PAM
Mastery!

“Once again Michael W Lucas nailed it.” — nixCraft

PAM Mastery by Michael W Lucas
https://mwl.io

33FreeBSD Journal • March/April 2022

freebsdjournal.org

BSD Events taking place through July 2022
BY ANNE DICKISON

Please send details of any FreeBSD related events or events that are of interest for
FreeBSD users which are not listed here to freebsd-doc@FreeBSD.org.

FreeBSD Fridays
https://freebsdfoundation.org/freebsd-fridays/
Stay tuned for new episodes.
Past FreeBSD Fridays sessions are available at: https://freebsdfoundation.org/freebsd-fridays/

FreeBSD Office Hours
https://wiki.freebsd.org/OfficeHours
Join members of the FreeBSD community for FreeBSD Office Hours. From general Q&A to
topic-based demos and tutorials, Office Hours is a great way to get answers to your FreeBSD-
related questions.

Past episodes can be found at the FreeBSD YouTube Channel.
https://www.youtube.com/c/FreeBSDProject.

34FreeBSD Journal • March/April 2022

BSDCan 2022
June 1-4, 2022
VIRTUAL
https://www.bsdcan.org/2022/

BSDCan is a technical conference for people working on and with BSD operating systems and
related projects. It is a developers conference with a strong focus on emerging technologies,
research projects, and works in progress. It also features Userland infrastructure projects and
invites contributions from both free software developers and those from commercial vendors.

2022 FreeBSD Developer Summit
June 16-17, 2022
VIRTUAL
https://wiki.freebsd.org/DevSummit/202206

Join us for the online June 2022 FreeBSD Developer Summit. The event will consist of virtual,
half day sessions, taking place June 16-17, 2022. It’s free to attend, but we ask that you register
with the conference system to gain access to the meeting room. In addition to developer
discussion sessions, we will also have vendor talks.

SCALE 19x
July 28-31, 2022
Los Angeles, CA
https://www.socallinuxexpo.org/scale/19x

SCaLE is the largest community-run open-source and free software conference in North America. It
is held annually in the greater Los Angeles area. Roller Angel will also be hosting a FreeBSD work-
shop during the conference.

