
20FreeBSD Journal • November/December 2021

I
have run our CS department’s PostgreSQL server on FreeBSD in a virtual machine for a num-
ber of years now with great success. The server is mainly used in the database classes and for
projects requiring a database backend. I gave a talk at vBSDcon 2019 about the server which
you can find on youtube.
Recently, the department that hosts the virtualization server for this machine changed their

underlying storage to Ceph. This added more capacity and redundancy for them by synchroniz-
ing the I/O between three different buildings on
campus. Around the same time, the database pro-
fessors devised new lab exercises to let students
become familiar with large sets of data. One of
the exercises was to create mass data and insert
it into a database table, measuring execution time
with and without a table index. All well and good,
but soon after that particular lab began, profes-
sors and students started complaining about poor
performance. In some instances, a local postgres
installation on students’ laptops ran faster than on
our server with more CPU and memory. For ex-
ample, running a “SELECT COUNT(*) from big-
table;” with roughly 10 million rows took 2 min-
utes and five seconds on average. A local laptop took about a second. Running the same query
a second time took 1 second on the server, proving that it was served from the much faster
main memory cache.

BY BENEDICT REUSCHLING

Importing a ZFS ZIL via iSCSI
Don’t do this at work — like I did

PRACTICAL

This column covers ports and packages for FreeBSD that are useful
in some way, peculiar, or otherwise good to know about. Ports
extend the base OS functionality and make sure you get something
done or, simply, put a smile on your face. Come along for the ride,
maybe you’ll find something new.

Soon after that particular
lab began, professors
and students started
complaining about poor
performance.

1 of 7

PRACTICAL

21FreeBSD Journal • November/December 2021

I started my investigation on postgres, tuning some parameters in postgresql.conf and
restarting the server. This had only marginal success and people still complained about long in-
sert and query times. Since there was proof that PostgreSQL’s default settings had better per-
formance, the problem must have been storage—or I/O-related. When the VM was created,
its underlying portion of the Ceph storage was transformed into a ZFS pool, which in turn pro-
vided most of it as a dataset for the postgresql database. Since a lot of students were inserting
the same data and queried it afterwards, the ZFS ARC was serving those directly from memory.
Not all data could fit in the ARC or was evicted from it by other queries. As soon as we hit the
disk with writes, the slowdown was noticeable with large data generated by the users.

To confirm our suspicion that the underlying storage was the problem, I picked a server from
our big data cluster with 64 CPUs, 384 GB RAM, 4x 512 GB NVMe and installed FreeBSD on
it. Then I used “zfs send” to copy the dataset
hosting the postgresql server over to this new
server. After starting the postgres service, I had a
complete copy of the server to play with on beef-
ier hardware. Running the same COUNT(*)-que-
ries on the new server proved that they were as
fast (if not faster) than a student’s laptop, even
if they had an SSD. Clearly, performance on our
virtual server was to blame. Solving this problem
was not that easy though as our IT-department
couldn’t simply attach an SSD or NVMe to this VM
to speed it up. Purchasing and installing it in the
server (which meant downtime) would take longer
than the remaining time in the semester.

My idea was to export one of the NVMe disks
from the server we just tested on to the VM via
iSCSI to create a tablespace. Tablespaces allow the
database administrator to define where database
objects should be stored on the file system. With
iSCSI, storage from a server (called target) can be
sent over the network to another machine (called
initiator) that imports it. Instead of a network share, the iSCSI protocol lets the storage appear
on the importing machine as local block storage—an important difference. This new storage is
handled like any other and can be partitioned and formatted with a new filesystem just like a
device attached locally.

FreeBSD has iSCSI built-in by default and only requires a few changes in configuration files to
set it up. Here is the configuration on the server exporting the NVMe:

First, I created a volume of 200 GB on one of the NVMe drives called iscsi_export:

zfs create -V 200g nvme/iscsi_export

Next, I edited /etc/ctl.conf to contain these sections:

2 of 7

Solving this problem
was not that easy though
as our IT-department
couldn’t simply attach
an SSD or NVMe to
this VM to speed it up.

PRACTICAL

22FreeBSD Journal • November/December 2021

portal-group pg0 {
	 discovery-auth-group no-authentication
	 listen ip.address.of.initiator
}

target iqn.dns-name-of-initiator:nvme {
	 portal-group pg0
	 chap postgres verysecurepasswordgoeshere

	 lun 0 {
		 path /dev/nvme/iscsi_export
		 size 200G
	 }
}

I changed the ownership and permissions on this file to root since it contains a cleartext
password.

Upon reboot of the server, the iSCSI initiator should be started again, so I put
ctld_enable=”YES” into /etc/rc.conf:

	 # sysrc ctld_enable=yes

To activate the initiator, I started the service:

	 # service ctld start

This mostly follows the descriptions of the iSCSI section in the FreeBSD handbook.
Over on the VM importing the storage disk, I put the following into /etc/iscsi.conf:

	 TargetAddress	 = ip.address.of.initiator
	 TargetName		 = iqn.dns-name-of-initiator:nvme
	 AuthMethod		 = CHAP
	 chapIName		 = postgres
	 chapSecret		 = verysecurepasswordgoeshere
 }

Since the postgres users log into this server via SSH to run postgresql’s commandline utility
psql, keeping the password in this file secure from prying eyes is important. A chmod of 0700
followed by a chown with owner and group set to root and wheel solves this. An entry to /
etc/rc.conf is necessary to initiate the storage import upon reboot (more on that later):

	 # sysctl iscsid_enable=yes

3 of 7

PRACTICAL

23FreeBSD Journal • November/December 2021

Next, we can import the disk by starting the service:

	 # service iscsid start

Upon successful import, a new device (probably da0 or similar) appears in /dev. A separate
ZFS pool was created on it:

	 # zpool create nvme_ts /dev/da0

Yes, this is not redundant, but for our benchmarking purposes, it was sufficient enough. On
the postgres side, logged in as the database superuser in psql, the tablespace is defined by this
statement (see https://www.postgresql.org/docs/current/manage-ag-tablespaces.html for de-
tails):

	 psql#>CREATE TABLESPACE nvme LOCATION /nvme;

Checking the access permissions again, but after the command is complete, the postgres da-
tabase users can use the tablespace and put database objects (like tables) on it. Either by explic-
itly defining where the data should be stored:

	 psql#>CREATE TABLE nvme_powered_table(i int) TABLESPACE nvme_ts;

or setting the tablespace as default:

	 psql#>SET default_tablespace = nvme_ts;

With this new configuration (clearing the cache first) and reload of a fresh batch of 10 GB
data into the nvme_powered_table, the database insert performance on the VM improved to
7 seconds (from its original more than 2 minutes). Having an NVMe tablespace is certainly nice,
but we went further. This is also when trouble started...

Not Thinking Things Through
We decided to use the exported storage as a ZIL to speed up the slower writes on the

Ceph-backed pool. The ZIL would acknowledge to the application (the database) that the
writes have reached stable storage and would later write to the slower disk while the database
continued its work. A ZIL usually does not have to be big, as the data in it gets quickly evicted.
We reduced the amount of exported disk space in the iSCSI-initiator and re-imported the
disk in the database VM. Then we configured the iSCSI disk as a ZIL with the following com-
mand:

	 # zpool add pgpool log da0

The device showed up and worked immediately. I/O on the pool was now quickly acknowl-
edged as “written” and the database could continue without waiting. The ZIL trickled the write

4 of 7

PRACTICAL

24FreeBSD Journal • November/December 2021

requests to the slower Ceph storage. This boosted the database performance a good degree
and we went into production.

Don’t Try This At Work
What I did not realize at the time is how badly this integrates into the boot process. When

FreeBSD with a ZFS-only filesystem boots, it tries to detect all the storage devices contained in
the pool. At this point during the boot, the network is not yet completely configured and thus
no iSCSI services are available to import the external device. When it comes to the ZIL device,
it turned out that ZFS requires this to boot properly and complains about a missing disk in the
pool. The boot process is halted at this early stage, even though the main vdev of the pool was
available (but ZIL wasn’t). You can imagine that this does not go well on a production server
and only the management console of the server itself revealed what was going on.

Note that this can happen in two ways: either the iSCSI target (the server exporting the stor-
age) goes down or loses connectivity, or the initiator (the client importing the device). Seasoned
sysadmins know that during a typical day, interruptions of this kind can happen, often unan-
nounced and unexpected. It is only a matter of time when this would have happened and now
that it did, we needed a way to fix it--quickly.

Rebooting the server with a FreeBSD ISO image and selecting the Live-CD option in the in-
staller was next. From the Live-CD’s shell environment, we could mount the pool with the miss-
ing ZIL device on /mnt like this:

	 # zpool import -R /mnt -m pgpool

After the import was finished, we could inspect the remaining devices in the pool:

	 # zpool status

The output showed the missing cache device with its long unique numeric identifier. The
next action was to remove the ZIL device from the pool:

	 # zpool remove pgpool <verylongnumericidentifier>

Typing in the long identifier instead of the much shorter device name serves as a good re-
minder to avoid this situation in the future. Once this had been done and the output of zpool
status confirmed the removal, the pool was exported again. This is usually done upon reboot,
but we did not want to take any chances.

	 # zpool export pgpool

After the machine rebooted, we were happy to see it complete the boot this time and gave
us our familiar login prompt back. Disaster averted, but the underlying performance problem
was still present.

5 of 7

PRACTICAL

25FreeBSD Journal • November/December 2021

Happy Ending
Clearly, the iSCSI export is too risky and could fail again. Although we did run like this for a

whole semester, Murphy’s law will let that happen at the worst time of night when sysadmins
are supposed to be sleeping. Certainly, a script could safely remove the ZIL from the pool upon
every shutdown. But power losses or crashes on both machines involved in the iSCSI export are
not covered by this. Luckily, our IT department was finally able to provide us an SSD-backed
Ceph storage as an alternative for this machine. The import is similar to iSCSI but is more stable
and less prone to crashes.

Ceph on FreeBSD works, but importing this device proved to be...interesting. Ceph supports
this kind of import on FreeBSD only via geom_gate, which is similar to iSCSI. After installing the
net/ceph14 package, the rbd-ggate command was available (rbd is the Rados Block Device of
Ceph). The man page rbd-ggate(8) is rather short, listing only a few commands and switches.
I was a bit worried at first as it dates back to 2014. With no recent updates, chances are that
support could have been broken by a change on newer FreeBSD versions. This was unfound-
ed, however. We only had to deal with some of the differences in how Linux and FreeBSD deal
with commandline arguments. On Linux, a --option is used, whereas on FreeBSD a single
-option is more common. The command initially looked like this:

	 # rbd map -t ggate volumes/ssdvolume
	
The volumes/ssdvolume is the path to the SSD ceph storage given to us by the IT depart-

ment and maps a geom gate device upon successful import. The command failed because the
--id of the user doing the import was not provided (username and password protects this
storage from unauthorized imports by others). Here’s where the mixing of single and double
dashes became problematic, as the Linux-based rbd command refused to mix the --id with
the single -t parameter. We found a solution by providing the ID as an environment variable
like this:

	 CEPH_ARGS=’--id postgresdb’ rbd map -t ggate volumes/postgresdb

With this combination, the command ran successfully and told us

	 ggate0 created
	
This was confirmed by looking at /dev/ggate0. This is the imported device from Ceph, on

which we could now create a new ZFS pool:

	 # zpool create ssdpool /dev/ggate0

Remembering what we learned from last time, we tried rebooting the machine to see how
it coped with this device during boot. We were happy to see that the system did reboot with-
out issues, and we could then re-import this new pool using:

6 of 7

PRACTICAL

26FreeBSD Journal • November/December 2021

	 # zpool import ssdpool
	
We could then create a little startup script that was executed once the system finished boot-

ing to automatically re-import this pool and activate the postgres database on it. The postgres
database was cloned by snapshotting and zfs sending from the old, slower pool and receiving
it on the faster ssdpool. This works quite well, and the performance difference is definitely no-
ticeable. As I write this, the first student groups are already working on it (without their knowl-
edge) and I have not received any complaints yet.

Lessons Learned
Measure where performance is lost and isolate the bottlenecks. Use different test cases to

confirm any hypotheses about where the problem might be located. Test things before putting
them into production. Ensure solutions survive a reboot of both the exporting and importing
machine when dealing with storage coming over the network. Keep a FreeBSD Live-CD ISO
image handy to fix things in case of disaster. Document every step and command for yourself
and your peers to have them available when people are breathing down your neck while your
phone is ringing by users demanding the functionality back (when already in production). Be
ready to experiment and try out new things. Lastly, rely on FreeBSD to be a solid foundation in
the storage space with its flexibility and options it provides for combining different solutions.

BENEDICT REUSCHLING is a documentation committer in the FreeBSD project and member
of the documentation engineering team. He serves on the board of directors of the FreeBSD
Foundation as vice president. In the past, he served on the FreeBSD core team for two terms.
He administers a big data cluster at the University of Applied Sciences, Darmstadt, Germany.
He’s also teaching a course “Unix for Developers” for undergraduates. Benedict is one of the
hosts of the weekly bsdnow.tv podcast.

Write
For Us!
Write

For Us!
Contact Jim Maurer

with your article ideas.
(jmaurer@freebsdjournal.com)

7 of 7

