
November/December 2021

Open Channel SSD

Building FreeBSD Communities

27 Years with the Perfect OS

WIP/CFT:OccamBSD

LETTER
from the Foundation

Justin Gibbs • Founder of the FreeBSD Foundation,
President of the FreeBSD Foundation,
and a Software Engineer at Facebook.

Daichi Goto • Director at BSD Consulting Inc.
(Tokyo).

Dru Lavigne • Author of BSD Hacks and
The Best of FreeBSD Basics.

Michael W Lucas Author of more than 40 books including
Absolute FreeBSD, the FreeBSD
Mastery series, and git commit murder.

•

Kirk McKusick • Treasurer of the FreeBSD Foundation
Board, and lead author of The Design
and Implementation book series.

Hiroki Sato • Director of the FreeBSD
Foundation Board, Chair of Asia
BSDCon, Member of the FreeBSD
Core Team, and Assistant
Professor at Tokyo Institute of
Technology.

Robert N. M. Watson • Director of the FreeBSD Foundation
Board, Founder of the TrustedBSD
Project, and University Senior Lecturer
at the University of Cambridge.

Advisory Board
Anne Dickison • Marketing Director, FreeBSD Foundation

John Baldwin • FreeBSD Developer and Chair of
FreeBSD Journal Editorial Board.

Tom Jones • FreeBSD Developer, Internet Engineer
and Researcher at the University of
Aberdeen.

Allan Jude • CTO at Klara Inc., the global FreeBSD
Professional Services and Support
company.

George Neville-Neil • Past President of the FreeBSD Foundation,
member of the FreeBSD Core Team,
and co-author of The Design and
Implementation of the FreeBSD
Operating System.

Ed Maste • Senior Director of Technology,
FreeBSD Foundation and Member
of the FreeBSD Core Team.

Benedict Reuschling • Vice President of the FreeBSD Foundation
Board and a FreeBSD Documentation
Committer.

Mariusz Zaborski • FreeBSD Developer, Manager at
Fudo Security.

FreeBSD Journal (ISBN: 978-0-615-88479-0) is published 6 times
a year (January/February, March/April, May/June, July/August,

September/October, November/December).
Published by the FreeBSD Foundation,

3980 Broadway St. STE #103-107, Boulder, CO 80304
ph: 720/207-5142 • fax: 720/222-2350
email: info@freebsdfoundation.org

Copyright © 2021 by FreeBSD Foundation. All rights reserved. This magazine may not be
reproduced in whole or in part without written permission from the publisher.

Publisher •
Editor-at-Large •

Design & Production •
Advertising Sales •

Walter Andrzejewski
walter@freebsdjournal.com

James Maurer
jmaurer@freebsdjournal.com

Reuter & Associates

Walter Andrzejewski
walter@freebsdjournal.com
Call 888/290-9469

J O U R N A L
®

S&W PUBLISHING LLC

Editorial Board

PO BOX 3757 CHAPEL HILL, NC 27515-3757

3FreeBSD Journal • November/December 2021

On behalf of the FreeBSD Foundation,
I’d like to wish everyone a very happy holiday season.

As another year comes to a close, we want to
send a big thank you to the Journal’s authors

and columnists, the editorial board
and publishing team for all of their hard work

during another challenging year.

Of course, we also want to thank you, our readers!
We hope you’ve enjoyed the FreeBSD Journal

over the past year and we look forward to bringing
you more high-quality content in 2022.

Deb Goodkin,
FreeBSD Foundation Executive Director

FreeBSD Foundation

®

November/December 2021

 3 Foundation Letter
By Deb Goodkin

 18 WIP/CFT:OccamBSD
by Tom Jones and Michael Dexter

 20 Practical Ports
Importing a ZFS ZIL via iSCSI
By Benedict Reuschling

 27 We Get Letters
Storage is a Mistake
by Michael W Lucas

 31 Events Calendar
By Anne Dickison

 5 Open Channel SSD
By Arka Sharma, Amit Kumar, Ashutosh Sharma

 10 Building FreeBSD Communities
By Tom Jones

 14 27 Years with the Perfect OS
By Peter Czanik

Storage

Plus

4FreeBSD Journal • November/December 2021

5FreeBSD Journal • November/December 2021

Along with the adoption of SSDs, the need for more predictable IO latency is also grow-
ing. Traditional SSDs that expose a block interface to the host often fail to meet this
requirement. The reason is the way NAND flash works. Typically, within an SSD, flash

is divided into chips that consist of dies. A die can execute flash commands (read/write/erase)
independently. Dies contain planes which can execute the same flash commands in one shot
across multiple planes within the same die. Planes contain blocks which are erase units and
blocks contain pages which are read/write units.

The chips can be organized into multiple channels that can independently transfer data in
and out between NAND and the flash controller. As it is well known that pages in NAND can’t
be overwritten, a block must be erased first before its pages can be filled with new data. Blocks
have a limited number of times they can be erased. This count is also called the PE(Program/
Erase) count, which is different for different types of NAND. As an example, SLC NAND has a PE
count of around 100,000, the MLC PE count is somewhere between 1,000 to 3,000, and the
TLC PE count range is 100 to 300. Typically, SSDs internally run a Flash Translation Layer(FTL) that
implements a log-structured scheme which gives the host an abstraction of in-place updates by
invalidating the previous content. FTL’s also implement a mapping scheme to facilitate this.

As with any log-structured implementation, fragmented writes occur over time which cre-
ates the need for garbage collection (GC) to erase invalidated data and create free blocks. In
the case of SSDs, this will require moving valid pages from one block (GC source) to another
block (GC destination) and then erasing the source block and marking it free. The entire task
is performed transparently to the host which faces the drop in SSD performance as well as the
GC operations also affect the lifetime of flash media by writing valid data to GC destination
blocks. There are several studies and existing solutions to mitigate this like introducing TRIM/
UNMAP which aims to invalidate data from the host in such a way that minimizes the number

BY ARKA SHARMA, AMIT KUMAR, ASHUTOSH SHARMA

1 of 5

 Open
Channel
 SSDNAND flash SSDs are widely used as primary storage

devices due to their low power consumption
and high performance. However, SSD’s suffer
from unpredictable IO latency, log-on-log problems,
and resource underutilization.

6FreeBSD Journal • November/December 2021

of pages GC operation must move. Multi-stream SSD is a technique to attempt to store data in
such a way that data with similar lifetimes is stored in the same erase block, thereby reducing
fragmentation which, in turn, relaxes the GC to some degree. Workload classification is anoth-
er approach of reducing fragmentation. Open channel SSD(OCSSD) is another approach to in-
crease predictability and better resource utilization by shifting some of the FTL’s responsibility to
the host. Typically, the responsibilities of an SSD can be classified into following categories, data
placement, I/O scheduling, media management, logical to physical(L2P) address translation, and
error recovery.

OCSSDs can either transfer all (Fully host-managed Open-Channel SSD (1.2)) or some
(Host-driven Open-Channel SSD (2.0)) of the responsibilities to the host. Our work is inspired
by LightNVM which is Linux’s implementation of open channel SSDs and Linux specifics have
been modified to fit in FreeBSD’s ecosystem. As in LighNVM, it is observed that a shared mod-
el of responsibilities achieves a better balance without stressing the host to a greater extent.
We explore a model of OCSSDs where data placement, L2P management, I/O scheduling, and
some parts of NAND management are done by the host. Some tasks like error detections and
recoveries are still done on the device side. The OCSSD exposes a generic abstracted geometry
of the media (NAND), wear-leveling threshold, Read/Write/Erase timings, and write constraints
(min/optimal write size).

The geometry information typically depicts the parallelism
within the underlying NAND media through the number of
channels, chips, blocks, and pages. The host can query the
state of blocks through commands and get the following in-
formation: LBA start address, current write offset within the
chunk, and state of blocks (Full, Free, Open, Bad). The drive
provides active feedback of chunk health, thus reminding
the host to move data from those chunks when required.

So far, basic read and write use cases have been tested using FIO. Garbage collection, which
is one of the must-have features, hasn’t yet been developed due to bandwidth unavailability. All
the development efforts have been on QEMU, hence the performance benchmark data is also
currently unavailable. Before we received the update about the removal of LightNVM in Linux
in 5.15, we planned to on implementing this solution as a GEOM class and with some specific
solution where we could consider a custom box with some NVRAM/NVDIMM/PCM as cache
and that being coupled with open channel SSDs. But at this point, we have chosen to scrap
these ideas. In the future, we look forward to getting involved with work related to NVMe ZNS
in FreeBSD.

We have split our work into two components. The FTL part which we call pblk, and the driv-
er which we called lighnvm, keeping the nomenclature similar to LightNVM in Linux. We fol-
lowed the model of nvd to write the lightnvm driver. The lightnvm driver creates a DEVFS entry
“lightnvm/control” which can be used by various tools(nvmecli) to manage the OCSSD device.
We have added support for OCSSD devices in nvmecli. The underlying NVMe driver (sys/dev/
nvme) initializes the device and notifies the lightnvm driver. The lightnvm driver registers the de-
vice to the lightnvm subsystem, the lightnvm system initiates the initialization process and pop-
ulates the geometry of the underlying media by querying it from the device via the NVMe Ge-
ometry admin command(http://lightnvm.io/docs/OCSSD-2_0-20180129.pdf). After the device
geometry has been populated, the lightnvm subsystem registers the device along with it’s ge-
ometry and other NAND attributes.

2 of 5

Some tasks like error

detections and recoveries

are still done on the

device side.

http://lightnvm.io/docs/OCSSD-2_0-20180129.pdf

7FreeBSD Journal • November/December 2021

Once a user initiates the creation of an OCSSD target (via nvmecli), the lightnvm driv-
er carves the requested space out of the OCSSD and creates a “disk” instance for the target
which interfaces with geom subsystem. The IOs are intercepted by the strategy routine and for-
warded to the pblk subsystem for further processing. The completion of IOs is notified by nvme
to the lightnvm, which relays it to the pblk and is subsequently passed up to the geom layer.

GEOM

target

nvme_ns_bio_process
make_request

iodone
PBLK NVME

submit_io

end_io nvm_done
NVM core

strategybiodone

L
i
g
h
t
N
V
M

N
V
M

t
a
r
g
e
t

Media AbstractionFTL logic Media Interface

We kept the FTL algorithm in the pblk layer largely similar to that of LightNVM. We defined
the mapping units to be 4K (also called sectors), which implies that each logical page of size
4K to be mapped with a 4K part of a physical page which is typically larger than 4K. We use
nvmecli to carve out the parallel units and create a target. While creating the target, we have
an option to choose the target type, which allows us to select the underlying FTL (in case we
have more than one) with the target.

As mentioned before, the NAND is divided into chips/dies/plane/blocks. In the context of
lightnvm and keeping the terminologies consistent with OCSSD specification, we use the term
group for channels, PU or parallel units for chips, and chunk for blocks. OCSSD spec also de-
fines Physical Page Address or PPA which locates a physical page in NAND in terms of group,
PU, chunk and page number within chunk. OCSSD compliant devices expose the NAND geom-
etry via the ‘geometry’ command which is defined in OCSSD specification, and abstracts some
of the particularities of underlying NAND media. This allows the user to choose the start and
end parallel units which would be part of the target. This also enables the underlying FTL to
define ‘lines’ which is an array of chunks across different parallel units such that the data could
be striped to take advantage of the underlying NAND parallelism. This can be achieved two
ways: if the target consists of PU’s that are connected to different NAND channels, then the
data from the SSD controller can be sent to/received from NAND simultaneously. If the PU’s of
the target are connected to the same channel, the data flow can’t happen in parallel. However,
once the data flow is complete and flash commands are being executed inside PU’s, channels
could be utilized for transfer data to/from other PU’s. In the case where the target contains one
single PU, as expected, we can’t have parallelism.

For writing data, we typically write it to a cache and return the success status to geom. We
have a writer thread that writes data from this cache to NAND. The size of the cache is com-
puted such that it must accommodate the number of pages that have to be written ahead of a
page before data can be read from that page. Suppose the underlying NAND has a restriction
that 16 physical pages must be written ahead of a page, and let us say we want to read data
from page 10. To be able to reliably read from the chunk, pages up to 26 must be written.
Now, if we consider striping, it will take more time to fill those pages, as all the chunks in the
line will have same restriction. Also, we must ensure that the maximum number of sectors in a
chunk that can be written in a single vector write commands to be fit in cache. The reason for

3 of 5

8FreeBSD Journal • November/December 2021

this is that chunks can have program failure and to do a chunk replacement and retry the write
command, we need to hold that much data in the cache. And the cache must be able to hold
that much data multiplied by the number of PU’s in the target. So, to avoid data loss, we need
to ensure these pages fit in the cache. The L2P mapping data is maintained in three places:
in the host memory which maps the entire target, at the end of the line which maps only the
pages written in that line, and in the spare area of the physical page which contains the data of
the logical page. As mentioned before, garbage collection has not yet been implemented due
to bandwidth unavailability.

As mentioned above, we have a writer thread that reads the data from the cache and writes
it to a NAND device. As we defined the mapping unit of the device to be of 4K size, we have
divided the cache and the ring buffer in terms of entries with each entry corresponding to 4K
of user data. We store some counters in a ring buffer which act as pointers to dictate the writ-
er thread to pick the right ring buffer entry for flushing the data to the NAND device, acknowl-
edging that flush is successful, and updating the L2P map so that the logical page maps to a
physical page instead of to the cache entry. These counters store the cache information such as
size of the cache in terms of ring buffer entries (4K), how many writable/free entries are avail-
able in the cache, how many entries are yet to be submitted to the NAND device, entries whose
acknowledgment is yet to be received from the device, entries whose acknowledgment we got
from the device, and entries whose physical mapping needs
to be updated from cache address to the device’s PPA. So,
now with the help of these counters, the writer thread will
calculate the ring buffer entries whose data need to be
flushed to the device. Now it will check if the number of
entries (which need to be flushed to the device) is greater
than the minimum write pages data (a.k.a. Optimal Write
Size). Let’s consider Optimal Write Size as 8 sectors (8 *
4K). So, if the number of entries is less than 8, then the
thread will come out and retry in the next run. But if the
number of entries is greater than or equal to the 8 (Optimal
Write Size), then it will read those entries from the cache.
While forming the vectored write command to write data
to the physical page, we create a meta-area for each page
where we write the LBA of the associated page. This is
done so that we can recover the mapping in case of pow-
er failure. In the current implementation, we have only one
active write end, which means we will write to one single
line until it is full or there is a program failure, in which case
we allocate a new line and write in that. Once we have all
8 (Optimal Write Size) sectors available in the memory pages (data + meta), we will write the
data to the device and update the WP (write pointer) of the device and internally in the NAND
pages the LBA information will be updated in the spare area. In the case where a write request
gets failed by the device, then we will add those failed IOs to a resubmit queue. Here also, the
consumer of the resubmit queue is the writer thread. This time, the writer thread will read only
those failed entries from the ring buffer (cache). So, now if the number of entries is less than 8
(Optimal Write Size), then we will add padding (dummy pages) and resubmit the write request
to the device.

The L2P mapping data is

maintained in three places:

in the host memory which

maps the entire target, at

the end of the line which

maps only the pages written

in that line, and in the spare

area of the physical page

which contains the data

of the logical page.

4 of 5

9FreeBSD Journal • November/December 2021

For the read request we receive the number of sectors requested to be read, along with the
starting sector and the data buffer, encapsulated in a bio structure. Consider a read request for
8 sectors. Now, we read the L2P mapping of the first sector. If the logical address of first re-
quested sector is mapped to cache i.e., the data resides in the cache/ring buffer, then we calcu-
late the number of contiguous sectors whose data reside in the cache. Suppose the logical ad-
dress of all 8 sectors is mapped to cache. Then we just copy the data of all 8 sectors from the
cache to the pages of the read bio structure and call the bio_done to send data back to the
above layer (geom).

In another scenario, where the first requested sector is
mapped with the device, we calculate the number of contig-
uous sectors whose data reside in the device and we create
a child bio for those contiguous sectors and send a read re-
quest to the device with appropiate PPA. Now suppose the
logical address of all 8 sectors is mapped to the NAND de-
vice. Then we will create a child bio of 8 pages and send the
read request for those 8 sectors to the device. Meanwhile,
the parent (read) bio will wait until we receive the acknowl-
edgment from the device for the read completion. After this,
the read bio which was sent from GEOM will, update it’s
buffer with the data read in child bio, and call the bio_done
to send the data back to geom.

Now there is another hybrid case, where partial data re-
sides in the device and the remaining data in the cache. Let’s
consider an example where the first two sectors are residing
on the device, the third and fourth sectors are on the cache,
and the remaining four sectors again reside on the device.
Now, the first step is the same i.e., we find the mapping of
the first sector is on the device, we find the contiguous sector count as 2. We create the child bio
of two pages, we send the read request to the device using the child bio. Now, we’ll find the logi-
cal address mapping of the third sector is on cache and once again we get the contiguous sectors
count as 2. So, we read the two appropriate ring buffer entries and copy their data to the read
(parent) bio’s pages. Once again, we find the mapping of the fifth sector is on the device and the
contiguous sectors count is 4. This time we create another child bio to read the remaining four sec-
tors from the device. Now the parent (read) bio must wait until we receive the acknowledgment
from the device for both child BIOs. In the end, read IO will get the data from both child BIOs and
the cache, and then we call the bio_done and complete the read request.

ARKA SHARMA has working experience on various storage components like drivers, FTLs,
and option ROMs. Before getting into FreeBSD in 2019, he worked in WDM mini-port and UEFI
drivers.

AMIT KUMAR is a system software developer and currently works on storage products based
on FreeBSD. He has been a FreeBSD user since 2019. In his spare time, he likes to explore the
FreeBSD IO stack.

ASHUTOSH SHARMA currently works as a software engineer at Isilon. His main area of inter-
est is storage subsystems. In the past, he worked on Linux md-raid.

In another scenario, where

the first requested sector is

mapped with the device,

we calculate the number of

contiguous sectors whose

data reside in the device and

we create a child bio for

those contiguous sectors and

send a read request to the

device with appropiate PPA.

5 of 5

10FreeBSD Journal • November/December 2021

FreeBSD is an open source community, and when there is a feature missing, we have the
power to add it ourselves. That power isn’t limited just to software, we can use it for social
events too.

I have been involved in running technology-based meetings and groups for about 13
years. This began in University, when I helped start the student computer science society, and
since then, I have run monthly meet ups, a hackerspace with weekly meetings, a tiny festival
that was accidentally on Hackaday, and a Friendly Wee Tech Conference in the North East of
Scotland.

FreeBSD encompasses all sorts of events. We have user group meetings (the famous NY-
CBug is a great example), there are semi-frequent hackathons and bugsquashes hosted by
the community and user groups, and we have several conferences a year. Conferences range
from the BSD DevRoom sub event at FOSDEM to three large BSD-focused events (BSDCan, Eu-
roBSDCon, AsiaBSDCon) and some purely technology-driven events like the OpenZFS developer
summit and the BSDCam unconference. All sizes of event are open for you to run, but smaller
events that can be put on by one or two people are a good (and realistic) place to start.

If you have never run anything before, there is nothing to fear. I continue to be surprised at
how friendly people are everywhere--even the scariest hackerspace in a secret complex in Ber-
lin was full of really friendly people who just wanted to nerd out with like-minded people.

Informal Meetings
On the way into the pandemic, I had one really good idea. I am part of a local group of

hackers that meets through a hackerspace plus a few times a year at conferences and festivals,
I forced us to meet twice a week. First over Mumble, then Jitsi, and finally through a work ad-
venture based Jitsi chat thing that allowed us to have multiple conversations focused in a single
setting. Meeting frequently gave all of us a way to keep speaking to our friends, and many of
us became a lot closer in the pandemic than we were before.

These informal meetings were a great way to keep everyone in touch and created a focal
point beyond just chatting on IRC. Informal meetings are a great way to judge interest in an
area for a FreeBSD user group. They give you focused time where you can meet with interested
people--you get to know each other and plan things out. Informal meetings can have other ac-
tivities bolted on to them too. For many years, the TechMeetUp group I helped organize was a
pizza eating session, followed by a talk, and then a trip to the pub.

BY TOM JONES

1 of 4

Building FreeBSD
Communities
This is some advice for running different types
of community events ranging from small informal
meetings to single-track conferences.

11FreeBSD Journal • November/December 2021

Regular, informal meetings work best when you get a core group of people to commit to
attending. You can use that core group as a kernel to build out from, making the event public
and advertising it as much as you can (or want). Without a core set of people, you might find
you have very few attendees and things can be awkward. After running events for a number
of years, I have come up with a rule that the first meeting will be exciting and new, the second
meeting will be much smaller, and the third meeting will start to have people that regularly go
to things.

The logic behind this is that it is easy to get attention for a new meeting, but the people
who go to exciting new things don’t tend to go to regular meetings. The second meeting sees
a downturn because those people who were excited, have found something else to be excited
by. The second meeting is normally smaller, anyone who heard about your first great meeting
has probably planned to come to your second meeting, but then life has gotten in the way, or
they just plain forgot. By the third meeting, you start to build a weight of common knowledge
and the people who forgot or missed will remember and show up.

This means that if you want to go down the path of organizing regular meetings, then you
have to take heart and steel yourself for disappointment, as it is very likely that it will take sever-
al meetings for attendance to grow and for the event to find its feet. It just takes time for word
of mouth to spread.

In 2022, you will likely start informal meetings with just a regularly scheduled video call.
For a call as a meeting, all you need is somewhere to meet and then get people to show up. I
wouldn’t plan any regular, in-person meetings in 2022 without a fallback plan for when things
change.

In-person venues need to allow for people to speak and therefore work best if they are in
public places. You are more likely to go and meet strangers if you don’t have to go to some
hidden room in the basement of a university building. Bars are popular for meetings like this,
but I tend to discourage that choice, as it can exclude anyone not comfortable meeting strang-
ers in bars. If a public university space isn’t available to you, coffee shops are often a good alter-
native. Make sure to plan your meeting around the venue’s activity schedule. There is nothing
worse than getting everyone together to talk about kernel hacking and then something else
begins.

Wherever you meet should have power, a source for refreshments and should be easy to
get to.

Hackathons/Bugsquashes/Installfests and other Activities Days
In parallel with or as an alternative to regular meetings is the opportunity to run day-long,

focused activities. I am very partial to Hackathons and development activities, but you might
get the same sort of pleasure from helping others install FreeBSD or build test labs.

Day-long events can be an ego gamble. It is very upsetting to put a lot of energy into planning
a hackathon and then only have one or two other people show up (ask me how I know :D).

Day long events benefit greatly from a format (how are you going to approach what you
do?) and a theme (what is the core focus of what you are doing?). You can get by with one of
these, but I think strongly focused events work a lot better.

This means that rather than having a hackathon, you host a ‘Network Hackathon’ or an
‘Embedded Device’ hackathon, which makes the “what you are going to do” and “how you
are going to do it” clear. Installfests are a clear idea, but maybe, instead, you want to host a
‘build a FreeBSD Cluster Saturday.’ I have run un-themed events, and they always require a lot
of explanation of the ‘what will we do’ type.

2 of 4

12FreeBSD Journal • November/December 2021

Virtual events of this form are straightforward to run, you need to pick a time zone and time
period that allows the core people you want to turn up to be able to turn up. I have found it
works well to get three or four other people to commit to a slot and then others to join if they
can. In addition to a time, you need a meeting technology, which can be a video call, a voice
chat, or you all can just get together in IRC.

In-person, day-long events require some planning and infrastructure. You have to cater to
the needs of people for the duration of the event, so—given the computer enthusiasts that
BSD folk generally are—you need a place that has power and Internet as a minimum. You need
available rest room facilities, heat in the winter and cooling in the summer or a park—BSD park
meets should be a thing!

You don’t have to arrange food or refreshments, but you should arrange for a location that
makes it possible to get refreshments or give people fair warning that they will have to look af-
ter their own basic needs. There was an OpenBSD, multi-day hackathon in a mountain cabin
—a several hour hike from any food, but I think the participants were warned before they
showed up.

Day-long hackathons and Installfest events can be very successful. You can track how some
of them have gone in the past by looking at the ‘Event’ tag in the FreeBSD commit log. How-
ever, if you are the organizer, then you might spend more time managing things and looking
after people than you expect--don’t plan to get too much done!

Small Conference
The next step after running some single-day, activity-based events is running conferences.

I don’t think anyone who has run a conference would recommend that you run a conference
(myself included). I also know that if you really want to run a conference, then you won’t heed
this advice.

Conferences are difficult to run because there are a lot more human-based, moving parts.
The considerations for single-day activity events are still there, you need power, internet, food,
water, and oxygen enough for everyone, but you also have to schedule and manage a lot of
people.

The difference is that in a single-day activity, your entertainment is the activity, the network
stack can’t not show up. When you are running a conference with speakers, there is always the
worry that speakers won’t show up, that it will run too short or far too long, or at the absolute
worst, you’ll have speakers and no audience.

You have to manage the venue, speakers, attendees, volunteers and the bits and bytes on
the network.

Conferences require a lot of planning and involvement before the event. A conference has a
day-long schedule to fill with talks and sessions. These need to come from the community you
have built up (which is why it is good to run regular events). You need to solicit presentations
and sessions generally, which is normally done with a Call for Papers or CFP. The secret thing
you don’t see as an attendee is that organizers will also have to solicit talks directly from poten-
tial speakers that you know will do a good job.

Conferences need a theme. The major BSD and open source conferences typically have the
theme of ‘BSD’ or ‘Open Source.’ These are general themes, and while they might have a big
audience on a global scale, they probably don’t on a local scale. While you might want to run
the ‘Weimar FreeBSD tmpfs Storage Appliance’ conference, you limit who will attend with the
level of specificity. There are already a few large BSD conferences in the year, but there is still
plenty of room for smaller, single-day events focused on a topic or a geographic region.

3 of 4

https://undeadly.org/cgi?action=article;sid=20171205045703

13FreeBSD Journal • November/December 2021

I have found that general topics are good, and then you can gently (or not so) encourage
your local BSD friends to submit. The Friendly Wee Tech Conference I run has the theme ‘Tools
and Infrastructure.’ We managed to have a talk about building Ham radio infrastructure using
HamBSD next to other great talks about interesting tooling, the security of numberplate readers
and hosting stuff on NixOS.

Conferences are hard work but very gratifying. If you decided to start a conference, there
is a lot of help and advice available from the community. I found Li-Wen Hsu’s talk “How to
Bootstrap a BSD Conference” very helpful when I was contemplating running one myself.

The community will be able to give you advice on pitfalls to avoid, who to pester for talks,
and the time of the year to slot your event into the calendar.

Filling the Gap Between Events
It is good to have a place to bring together like minded people during events, but also be-

tween them. Informal community spaces give you somewhere to meet to discuss and plan your
next event.

The FreeBSD project already has many of these communities. There are informal community
spaces formed around mailing lists, IRC networks and the excellent FreeBSD Discord (you can
join with this invite link https://discord.gg/freebsd). These are FreeBSD communities that focus
on sub parts of the project. For regional or national activities, you can create similar spaces by
forming regional FreeBSD or just BSD groups and meeting in whatever form you can get the
most traction.

I love IRC, but there are many that have bad memories from the past or find it too obtuse
to use. If you already speak to friends on Telegram or Discord, then you can start forming and
planning your meetups using those tools. The way you meet really doesn’t matter, only that
you meet and organize and create a sense of community.

I Want to Come to Your Event
There are more possibilities for events than I can cover here. They are all very rewarding to

run, even if in the buildup they are stressful, and you find yourself worrying for other people
and hoping that their talks will be a success.

The building blocks of successful events and communities are consistency and good plan-
ning. Nothing appears in the world fully formed though, and if you can find some friends—
new or old--to run events with, then you will have a much more enjoyable time (and it will
probably be more successful). Even when events have flopped for me, I have still had a good
time hanging out with friends and laughing about how our grand plans of success failed. Af-
ter successful events, I have had the best conversations of my life, where people recount stories
from the day from something that I helped pull together. Even with the stress of someone ask-
ing you ‘when is the next one?’ it is an amazing feeling and makes running events worthwhile.

I want to see user groups and meetings in every country, and the only way to do that is to
get more people organizing things.

TOM JONES is a FreeBSD hacker from the North East of Scotland and has been involved in
community groups and running events for more years than he wants to admit.

4 of 4

https://papers.freebsd.org/2018/bsdcan/lwhsu-how_to_bootstrap_a_bsd_conference/
https://papers.freebsd.org/2018/bsdcan/lwhsu-how_to_bootstrap_a_bsd_conference/

14FreeBSD Journal • November/December 2021

If you are a longtime FreeBSD user, you probably know everything I have to say, and, what’s
more, you can probably add a few more points. But hopefully, there will be some Linux or even
Windows users among readers who might learn something new!

FreeBSD is not just a kernel but a complete operating system. It has everything to boot and
use the system: networking utilities, text editors, development tools and more. Why is that a
big deal? Well, because all these components are developed together, they work perfectly to-
gether! And a well-polished system is also easier to document. One of my favorite pieces of
documentation is the FreeBSD Handbook which covers most of the operating system and is
(most of the time) up to date.

Of course, not everything can be integrated
into the base operating system, and this is where
FreeBSD ports and packages can be useful. The
ports system allows a clean separation of the base
system and third-party software which allows you to
install third-party software on top of a FreeBSD base
system.

There are tens of thousands ready-to-use soft-
ware packages to choose from. For example, all the
graphical desktop applications are in ports, just as
various web servers or more up-to-date develop-
ment tools.

FreeBSD is flexible. It runs on anything from Raspberry Pi through desktop machines to high-
end servers. You can use binaries provided by the FreeBSD project for both the base system
and packages. But you can also recompile everything and carefully customize to your own envi-
ronment. It’s really no wonder so many appliances are FreeBSD-based.

The engineering of FreeBSD is fantastic. All small aspects of the operating system are care-
fully designed before implementation which results in perfect solutions in most cases, but also
means slightly slower progress. If you like to use the latest and greatest hardware as your desk-
top, it might not yet be fully supported—if at all. This is why many people consider FreeBSD a
server OS (including me), even if FreeBSD runs perfectly on the desktop—on older hardware.

BY PETER CZANIK

1 of 3

27 Years with
the Perfect OS

FreeBSD is flexible. It runs on

anything from Raspberry Pi

through desktop machines

to high-end servers.

FreeBSD is perfect and I have been using it for a bit over
27 years. But FreeBSD is not the only OS on my desktop.

https://docs.freebsd.org/en/books/handbook/

15FreeBSD Journal • November/December 2021

The University Years
When I started university 27 years ago, the facility already had a FreeBSD server—a 486

box with 16 MB (not GB) of RAM and an SCSI hard drive. I do not recall the exact version of
FreeBSD, but it was still 1.X, as version 2.0 was released only months later. It took many days to
download the new version: our whole university had a 64K line at that time.

There was no Linux at the facility, and it became my task to install the first Linux server,
which gave me the opportunity to see the early days of both operating systems next to each
other. When it came to number of installed systems, Linux quickly won with its “good enough”
attitude, as the always perfect FreeBSD was often slower to adopt new hardware or tech-
nologies. However, when it came to work, the well-designed, no-surprise implementation of
FreeBSD was and still is a lot more pleasant experience—at least for me.

In the first two years, I was a regular FBSD user, but for another sixteen years, I also main-
tained the server, even after I had left the university. FBSD was famous for its stability, and even
long after Gmail became widely available, many students and faculty asked for a username on
that server.

Being Jailed!
Fortunately, it was not me, but the web servers! I had a part-time sysadmin job and was

running web servers. Serving static pages is not scary
but serving PHP pages takes some courage. Luckily,
just when I needed to solve PHP serving for custom-
ers, jails were introduced to FreeBSD.

At first, I had a single server, and all the jails were
created and configured by hand. That is not a huge
problem when you can count your customers on
one hand. But it becomes quite problematic when
you have multiple servers and dozens of customers.
So, I introduced a couple of shell scripts, later we
introduced central management, LDAP, and a Win-
dows-based management app and almost every-
thing could be automated.

While many hosting companies around us con-
tinuously reported breaches affecting multiple cus-
tomers, using a well-hardened, FreeBSD base system
and self-build, and hardened jails on top did the trick
for us. Of course, even the best hardened jail environment cannot help on a badly configured
WordPress instance. Quite a few web servers were defaced but this consistently only impact-
ed a single jail. That’s not bad when you have hundreds of jails running on a single server, and
at the peak, there were dozens of physical and virtual machines in the cluster. Everything was
compiled by me on these servers, and I removed all options from the base system that were
not mandatory for running the jails. Software inside the jail was hardened both at compile time
and by configuration.

Once I left the company, the same system stayed in use for another five years without any
updates. They carefully monitored system logs, and before shutting down the whole system, I
got access one more time for an audit. After spending a couple of hours checking the last re-
maining hosts, I could not find any evidence of a security incidence. FreeBSD jails are fantastic!

2 of 3

After spending a couple

of hours checking the last

remaining hosts, I could

not find any evidence of

a security incidence.

FreeBSD jails are fantastic!

16FreeBSD Journal • November/December 2021

The syslog-ng Years
When I joined my current workplace, one of the first tasks was to make sure that Linux

distributions and FreeBSD had up-to-date syslog-ng packages. Getting a package updated is
much faster if, in addition to asking for it, I also provide an updated package to the package
maintainer. So, I learned the basics of FreeBSD ports from the maintainer point of view.

I am not a FreeBSD ports committer, as I only work on a single package, but I work close-
ly with a committer and this arrangement is easier for both of us: I know the syslog-ng part
better, so I can change the port to enable new features. He knows FreeBSD ports a lot better
than I do and can make sure that the syslog-ng port conforms to the latest recommendations
about ports.

Ten years ago, at FOSDEM, I spent part of my
time at the BSD devroom. There was a talk about
how to extend one of the FreeBSD-based appliances
with additional packages. After the talk, I asked how
syslog-ng could be integrated. I even gave my busi-
ness card to the speaker. I was never contacted, but
soon after that discussion, I discovered that FreeBSD-
based appliances started to feature syslog-ng for
logging.

Syslog-ng was known for its portability. Over the
years, all the supported commercial UNIX variants
disappeared and the developer team focused on Li-
nux. My regular testing on FreeBSD helped to ensure
that syslog-ng did not turn into a Linux-only soft-
ware.

A couple years ago, I learned about BastilleBSD, a jail management system for FreeBSD. Re-
membering the pain of implementing my own scripts two decades earlier, I really appreciated
the features and ease of use that BastilleBSD provided. It now has a template system—similar
to Dockerfile in the Linux world—to make creating jails easier. There is also a template for sys-
log-ng. You can read more about it at: https://www.syslog-ng.com/community/b/blog/posts/
running-syslog-ng-in-bastille-revisited

What’s Next?
Occasionally, I give a try to FreeBSD on the desktop, but then I give up quickly. I love state-

of-the-art hardware but unfortunately FreeBSD does not. As an example, Windows and Linux
run without problems on my AMD Ryzen 5800 + nVidia 3070 system while FreeBSD runs only
in text mode—and I could not get graphics to work. So, for me, FreeBSD remains a server op-
erating system and I really love it. And, once I have some real servers again—and not just virtu-
al machines for development and testing—I look forward to running FreeBSD on them!

PETER CZANIK started using FreeBSD with version 1.X in 1994. He is an engineer working
as open source evangelist at Balabit (a One Identity business), the company that developed
syslog-ng. He assists FreeBSD and Linux distributions to maintain the syslog-ng package, fol-
lows bug trackers, helps users, and regularly speaks about sudo and syslog-ng at conferences
(SCALE, All Things Open, FOSDEM, LOADays, and others). In his limited free time, he is interest-
ed in non-x86 architectures and works on one of his PPC or ARM machines.

3 of 3

Occasionally, I give a try

to FreeBSD on the desktop,

but then I give up quickly.

https://www.syslog-ng.com/community/b/blog/posts/running-syslog-ng-in-bastille-revisited
https://www.syslog-ng.com/community/b/blog/posts/running-syslog-ng-in-bastille-revisited

Nov/Dec 2019 57

November/December 2021

Open Channel SSD

Building FreeBSD Communities

27 Years with the Perfect OS

WIP/CFT:OccamBSD

2022 Editorial Calendar
• Software and System Management

(January-February)

• ARM64 is Tier 1 (March-April)

• Disaster Recovery (May-June)

• Science, Systems, and FreeBSD (July-August)

• Performance (September-October)

• Topic to be decided (November-December)

18FreeBSD Journal • November/December 2021

What is OccamBSD?
FreeBSD can be compiled many different ways—the FreeBSD operating system has many com-
ponents that can be built conditionally. Optionally built components are very powerful, they
help keep the operating system modular and make it easy to remove features that are not re-
quired for a build, whether this is embedded or not.

OccamBSD is a tool for building small, embedded FreeBSD images. Rather than copying indi-
vidual tools to make custom images or relying on external specialized build tools, OccamBSD is
a shell script that uses FreeBSD’s build infrastructure to create minimal images with three boot
targets in mind—jails, and the bhyve and Xen Hy-
pervisors.

The resulting minimal system contains approx-
imately 400 files in three-dozen directories, and
rather than being unrecognizable, provides a
glimpse of what 4.4BSD-Lite2 looked like before
the modern BSDs were born.

With OccamBSD, we have a unique opportunity
to see the majority of build options in action and
to explore what a “world” without “buildworld”
looks like, providing a minimum userland that al-
lows for a successful login using a bhyve virtual
machine.

The minimum files required to boot under
bhyve, with the exception of the VirtIO drivers, largely represent the code used by all FreeBSD
users at all times. This narrow scope is where all auditing, documentation, and computer sci-
ence education efforts should arguably begin. FreeBSD is otherwise overwhelming to a new
student or user.

Why it is interesting?
If you use FreeBSD, this highlights the code you use and is a rewarding exercise.

For a FreeBSD user, OccamBSD gives you an example of a very stripped-down system and

BY TOM JONES AND MICHAEL DEXTER

OccamBSD
WIP/CFT is a new column shepherded by Tom Jones that will
cover interesting, long-running projects and work in progress
you might like to know about and/or contribute to. This first
installment features Tom in conversation with OccamBSD author,
Michael Dexter.

1 of 2

OccamBSD is a tool

for building small,

embedded FreeBSD

images.

19FreeBSD Journal • November/December 2021

the opportunity to consider if a smaller system works for you. OccamBSD creates a learning en-
vironment that is smaller and thus easier to read and reason about compared to a full FreeBSD
environment, which might be a great starting point for a course or academic work.

How can I contribute?
OccamBSD is developed on GitHub. Contributions are welcome and you can get involved by
testing the tools, writing documentation, or submitting patches.

OccamBSD is happy to take new issues on github, bug fixes by pull request, and reports of
success wherever you can find the developers.

https://github.com/michaeldexter/occambsd
https://github.com/michaeldexter/occambsd/issues

TOM JONES wants FreeBSD-based projects to get the attention they deserve. He lives in the
North East of Scotland and offers FreeBSD consulting..

MICHAEL DEXTER is an OpenZFS support provider in Portland, Oregon loves to talk about the
bhyve hypervisor and OpenZFS.

2 of 2

OccamBSD

Pluggable Authentication Modules:
 Threat or Menace?

PAM is one of the most misunderstood parts of systems
administration. Many sysadmins live with authentication
problems rather than risk making them worse. PAM’s very
nature makes it unlike any other Unix access control system.

If you have PAM misery or PAM mysteries, you need PAM
Mastery!

“Once again Michael W Lucas nailed it.” — nixCraft

PAM Mastery by Michael W Lucas
https://mwl.io

https://github.com/michaeldexter/occambsd
https://github.com/michaeldexter/occambsd/issues

20FreeBSD Journal • November/December 2021

I
have run our CS department’s PostgreSQL server on FreeBSD in a virtual machine for a num-
ber of years now with great success. The server is mainly used in the database classes and for
projects requiring a database backend. I gave a talk at vBSDcon 2019 about the server which
you can find on youtube.
Recently, the department that hosts the virtualization server for this machine changed their

underlying storage to Ceph. This added more capacity and redundancy for them by synchroniz-
ing the I/O between three different buildings on
campus. Around the same time, the database pro-
fessors devised new lab exercises to let students
become familiar with large sets of data. One of
the exercises was to create mass data and insert
it into a database table, measuring execution time
with and without a table index. All well and good,
but soon after that particular lab began, profes-
sors and students started complaining about poor
performance. In some instances, a local postgres
installation on students’ laptops ran faster than on
our server with more CPU and memory. For ex-
ample, running a “SELECT COUNT(*) from big-
table;” with roughly 10 million rows took 2 min-
utes and five seconds on average. A local laptop took about a second. Running the same query
a second time took 1 second on the server, proving that it was served from the much faster
main memory cache.

BY BENEDICT REUSCHLING

Importing a ZFS ZIL via iSCSI
Don’t do this at work — like I did

PRACTICAL

This column covers ports and packages for FreeBSD that are useful
in some way, peculiar, or otherwise good to know about. Ports
extend the base OS functionality and make sure you get something
done or, simply, put a smile on your face. Come along for the ride,
maybe you’ll find something new.

Soon after that particular
lab began, professors
and students started
complaining about poor
performance.

1 of 3

https://www.youtube.com/watch?v=HvzKW62KxIU

PRACTICAL

21FreeBSD Journal • November/December 2021

I started my investigation on postgres, tuning some parameters in postgresql.conf and
restarting the server. This had only marginal success and people still complained about long in-
sert and query times. Since there was proof that PostgreSQL’s default settings had better per-
formance, the problem must have been storage—or I/O-related. When the VM was created,
its underlying portion of the Ceph storage was transformed into a ZFS pool, which in turn pro-
vided most of it as a dataset for the postgresql database. Since a lot of students were inserting
the same data and queried it afterwards, the ZFS ARC was serving those directly from memory.
Not all data could fit in the ARC or was evicted from it by other queries. As soon as we hit the
disk with writes, the slowdown was noticeable with large data generated by the users.

To confirm our suspicion that the underlying storage was the problem, I picked a server from
our big data cluster with 64 CPUs, 384 GB RAM, 4x 512 GB NVMe and installed FreeBSD on
it. Then I used “zfs send” to copy the dataset
hosting the postgresql server over to this new
server. After starting the postgres service, I had a
complete copy of the server to play with on beef-
ier hardware. Running the same COUNT(*)-que-
ries on the new server proved that they were as
fast (if not faster) than a student’s laptop, even
if they had an SSD. Clearly, performance on our
virtual server was to blame. Solving this problem
was not that easy though as our IT-department
couldn’t simply attach an SSD or NVMe to this VM
to speed it up. Purchasing and installing it in the
server (which meant downtime) would take longer
than the remaining time in the semester.

My idea was to export one of the NVMe disks
from the server we just tested on to the VM via
iSCSI to create a tablespace. Tablespaces allow the
database administrator to define where database
objects should be stored on the file system. With
iSCSI, storage from a server (called target) can be
sent over the network to another machine (called
initiator) that imports it. Instead of a network share, the iSCSI protocol lets the storage appear
on the importing machine as local block storage—an important difference. This new storage is
handled like any other and can be partitioned and formatted with a new filesystem just like a
device attached locally.

FreeBSD has iSCSI built-in by default and only requires a few changes in configuration files to
set it up. Here is the configuration on the server exporting the NVMe:

First, I created a volume of 200 GB on one of the NVMe drives called iscsi_export:

zfs create -V 200g nvme/iscsi_export

Next, I edited /etc/ctl.conf to contain these sections:

2 of 3

Solving this problem
was not that easy though
as our IT-department
couldn’t simply attach
an SSD or NVMe to
this VM to speed it up.

PRACTICAL

22FreeBSD Journal • November/December 2021

portal-group pg0 {
 discovery-auth-group no-authentication
 listen ip.address.of.initiator
}

target iqn.dns-name-of-initiator:nvme {
 portal-group pg0
 chap postgres verysecurepasswordgoeshere

 lun 0 {
 path /dev/nvme/iscsi_export
 size 200G
 }
}

I changed the ownership and permissions on this file to root since it contains a cleartext
password.

Upon reboot of the server, the iSCSI initiator should be started again, so I put
ctld_enable=”YES” into /etc/rc.conf:

 # sysrc ctld_enable=yes

To activate the initiator, I started the service:

 # service ctld start

This mostly follows the descriptions of the iSCSI section in the FreeBSD handbook.
Over on the VM importing the storage disk, I put the following into /etc/iscsi.conf:

 TargetAddress = ip.address.of.initiator
 TargetName = iqn.dns-name-of-initiator:nvme
 AuthMethod = CHAP
 chapIName = postgres
 chapSecret = verysecurepasswordgoeshere
 }

Since the postgres users log into this server via SSH to run postgresql’s commandline utility
psql, keeping the password in this file secure from prying eyes is important. A chmod of 0700
followed by a chown with owner and group set to root and wheel solves this. An entry to /
etc/rc.conf is necessary to initiate the storage import upon reboot (more on that later):

 # sysctl iscsid_enable=yes

3 of 3

https://docs.freebsd.org/en/books/handbook/network-servers/#network-iscsi

PRACTICAL

23FreeBSD Journal • November/December 2021

Next, we can import the disk by starting the service:

 # service iscsid start

Upon successful import, a new device (probably da0 or similar) appears in /dev. A separate
ZFS pool was created on it:

 # zpool create nvme_ts /dev/da0

Yes, this is not redundant, but for our benchmarking purposes, it was sufficient enough. On
the postgres side, logged in as the database superuser in psql, the tablespace is defined by this
statement (see https://www.postgresql.org/docs/current/manage-ag-tablespaces.html for de-
tails):

 psql#>CREATE TABLESPACE nvme LOCATION /nvme;

Checking the access permissions again, but after the command is complete, the postgres da-
tabase users can use the tablespace and put database objects (like tables) on it. Either by explic-
itly defining where the data should be stored:

 psql#>CREATE TABLE nvme_powered_table(i int) TABLESPACE nvme_ts;

or setting the tablespace as default:

 psql#>SET default_tablespace = nvme_ts;

With this new configuration (clearing the cache first) and reload of a fresh batch of 10 GB
data into the nvme_powered_table, the database insert performance on the VM improved to
7 seconds (from its original more than 2 minutes). Having an NVMe tablespace is certainly nice,
but we went further. This is also when trouble started...

Not Thinking Things Through
We decided to use the exported storage as a ZIL to speed up the slower writes on the

Ceph-backed pool. The ZIL would acknowledge to the application (the database) that the
writes have reached stable storage and would later write to the slower disk while the database
continued its work. A ZIL usually does not have to be big, as the data in it gets quickly evicted.
We reduced the amount of exported disk space in the iSCSI-initiator and re-imported the
disk in the database VM. Then we configured the iSCSI disk as a ZIL with the following com-
mand:

 # zpool add pgpool log da0

The device showed up and worked immediately. I/O on the pool was now quickly acknowl-
edged as “written” and the database could continue without waiting. The ZIL trickled the write

https://www.postgresql.org/docs/current/manage-ag-tablespaces.html

PRACTICAL

24FreeBSD Journal • November/December 2021

requests to the slower Ceph storage. This boosted the database performance a good degree
and we went into production.

Don’t Try This At Work
What I did not realize at the time is how badly this integrates into the boot process. When

FreeBSD with a ZFS-only filesystem boots, it tries to detect all the storage devices contained in
the pool. At this point during the boot, the network is not yet completely configured and thus
no iSCSI services are available to import the external device. When it comes to the ZIL device,
it turned out that ZFS requires this to boot properly and complains about a missing disk in the
pool. The boot process is halted at this early stage, even though the main vdev of the pool was
available (but ZIL wasn’t). You can imagine that this does not go well on a production server
and only the management console of the server itself revealed what was going on.

Note that this can happen in two ways: either the iSCSI target (the server exporting the stor-
age) goes down or loses connectivity, or the initiator (the client importing the device). Seasoned
sysadmins know that during a typical day, interruptions of this kind can happen, often unan-
nounced and unexpected. It is only a matter of time when this would have happened and now
that it did, we needed a way to fix it--quickly.

Rebooting the server with a FreeBSD ISO image and selecting the Live-CD option in the in-
staller was next. From the Live-CD’s shell environment, we could mount the pool with the miss-
ing ZIL device on /mnt like this:

 # zpool import -R /mnt -m pgpool

After the import was finished, we could inspect the remaining devices in the pool:

 # zpool status

The output showed the missing cache device with its long unique numeric identifier. The
next action was to remove the ZIL device from the pool:

 # zpool remove pgpool <verylongnumericidentifier>

Typing in the long identifier instead of the much shorter device name serves as a good re-
minder to avoid this situation in the future. Once this had been done and the output of zpool
status confirmed the removal, the pool was exported again. This is usually done upon reboot,
but we did not want to take any chances.

 # zpool export pgpool

After the machine rebooted, we were happy to see it complete the boot this time and gave
us our familiar login prompt back. Disaster averted, but the underlying performance problem
was still present.

PRACTICAL

25FreeBSD Journal • November/December 2021

Happy Ending
Clearly, the iSCSI export is too risky and could fail again. Although we did run like this for a

whole semester, Murphy’s law will let that happen at the worst time of night when sysadmins
are supposed to be sleeping. Certainly, a script could safely remove the ZIL from the pool upon
every shutdown. But power losses or crashes on both machines involved in the iSCSI export are
not covered by this. Luckily, our IT department was finally able to provide us an SSD-backed
Ceph storage as an alternative for this machine. The import is similar to iSCSI but is more stable
and less prone to crashes.

Ceph on FreeBSD works, but importing this device proved to be...interesting. Ceph supports
this kind of import on FreeBSD only via geom_gate, which is similar to iSCSI. After installing the
net/ceph14 package, the rbd-ggate command was available (rbd is the Rados Block Device of
Ceph). The man page rbd-ggate(8) is rather short, listing only a few commands and switches.
I was a bit worried at first as it dates back to 2014. With no recent updates, chances are that
support could have been broken by a change on newer FreeBSD versions. This was unfound-
ed, however. We only had to deal with some of the differences in how Linux and FreeBSD deal
with commandline arguments. On Linux, a --option is used, whereas on FreeBSD a single
-option is more common. The command initially looked like this:

 # rbd map -t ggate volumes/ssdvolume

The volumes/ssdvolume is the path to the SSD ceph storage given to us by the IT depart-

ment and maps a geom gate device upon successful import. The command failed because the
--id of the user doing the import was not provided (username and password protects this
storage from unauthorized imports by others). Here’s where the mixing of single and double
dashes became problematic, as the Linux-based rbd command refused to mix the --id with
the single -t parameter. We found a solution by providing the ID as an environment variable
like this:

 CEPH_ARGS=’--id postgresdb’ rbd map -t ggate volumes/postgresdb

With this combination, the command ran successfully and told us

 ggate0 created

This was confirmed by looking at /dev/ggate0. This is the imported device from Ceph, on

which we could now create a new ZFS pool:

 # zpool create ssdpool /dev/ggate0

Remembering what we learned from last time, we tried rebooting the machine to see how
it coped with this device during boot. We were happy to see that the system did reboot with-
out issues, and we could then re-import this new pool using:

PRACTICAL

26FreeBSD Journal • November/December 2021

 # zpool import ssdpool

We could then create a little startup script that was executed once the system finished boot-

ing to automatically re-import this pool and activate the postgres database on it. The postgres
database was cloned by snapshotting and zfs sending from the old, slower pool and receiving
it on the faster ssdpool. This works quite well, and the performance difference is definitely no-
ticeable. As I write this, the first student groups are already working on it (without their knowl-
edge) and I have not received any complaints yet.

Lessons Learned
Measure where performance is lost and isolate the bottlenecks. Use different test cases to

confirm any hypotheses about where the problem might be located. Test things before putting
them into production. Ensure solutions survive a reboot of both the exporting and importing
machine when dealing with storage coming over the network. Keep a FreeBSD Live-CD ISO
image handy to fix things in case of disaster. Document every step and command for yourself
and your peers to have them available when people are breathing down your neck while your
phone is ringing by users demanding the functionality back (when already in production). Be
ready to experiment and try out new things. Lastly, rely on FreeBSD to be a solid foundation in
the storage space with its flexibility and options it provides for combining different solutions.

BENEDICT REUSCHLING is a documentation committer in the FreeBSD project and member
of the documentation engineering team. He serves on the board of directors of the FreeBSD
Foundation as vice president. In the past, he served on the FreeBSD core team for two terms.
He administers a big data cluster at the University of Applied Sciences, Darmstadt, Germany.
He’s also teaching a course “Unix for Developers” for undergraduates. Benedict is one of the
hosts of the weekly bsdnow.tv podcast.

Write
For Us!
Write

For Us!
Contact Jim Maurer

with your article ideas.
(jmaurer@freebsdjournal.com)

https://www.bsdnow.tv/

Dear Worst Columnist in This Journal,

My company has rack upon rack of storage servers.
When I started as a sysadmin, nine-gigabyte
drives were common. Now, each drive is multiple
terabytes, and we’re building arrays that aren’t
just petabytes but exabytes. We’re building a
data center for multiple zettabytes. What can any
company be doing with all this storage?

 —It’s not bootleg movies, I checked

Dearest Bootleg,
That really is the question, isn’t it? We have vast amounts of data storage capacity, and yet a

measurable fraction of the world’s manufacturing capacity is dedicated to producing more. We
have entire container ships full of SSDs adrift in the Pacific Ocean, eagerly awaiting that glori-
ous moment when they finally get to dock and offload all that blank storage. Organizations like
yours order disks by the pallet. What can anyone do that generates so much data that they need
yawning chasms of storage?

Unless you’re working in exciting big data fields like bioinformatics or ripping holes in the uni-
verse at the Large Hadron Collider in the hope that your favorite incarnation of The Doctor will
show up and tell you to stop, most of those petabytes are either data that you shouldn’t have,
obsolete data, or data that nobody will take responsibility for throwing away.

Organizations have a horrible habit of keeping every scrap of data that they get, even when
possession of that data poses an appalling risk to the organization’s health or existence. How
many data breaches have you seen where a company leaked, say, Social Security numbers or
credit card numbers or biological analyses of nose hair samples, and you immediately asked your-
self why the company had that information in the first place? It’s like a disease. Perhaps a C-lev-
el officer made the decision to gather this data, or maybe it was an unsupervised web design-
er infuriated with his manager who decided that the database could handle one more column.
The decision to collect that kind of data comes easily but getting rid of it demands meeting after
meeting. Given the choice between calling that meeting and playing NetHack, most of us cuddle
our keyboards. After all, if the data gets stolen, you probably won’t be the employee chosen for
sacrifice at the Temple of Mass Media—and if you are, you can use that symbolic execution as a
point on your resume demonstrating that you are experienced and land a better job.

Then there’s the old data. Last year’s expense reports. 1993’s expense reports. Spreadsheets
containing estimates of expenses before replacing the leaky roof on the building that the previ-
ous CEO moved the company out of. A folder labeled “blackmail photos,” and while they’re cer-
tainly incriminating, especially the one with the chocolate fountain and the barbeque tongs, no-

1 of 3

27FreeBSD Journal • November/December 2021

by Michael W Lucas

freebsdjournal.org

body currently employed recognizes anyone in any of the photographs. These documents are an
archive of the organization’s history. When the time comes that your friendly little real estate firm
serendipitously discovers a cure for cancer and the CEO decides to hire a ghostwriter to chronicle
the organization’s amazing history, some poor bastard is going to have to dig through all those
fossilized layers searching for evidence that can be misconstrued to demonstrate brilliance.

All this data could conceivably be used—one day—if a bizarre, never-to-be-repeated series
of coincidences should strike that makes the long-dreaded astrological alignment of Jupiter, Plu-
to, and Halley’s Comet with Polaris seem commonplace. It won’t happen, but it could. The most
pernicious data, though, is cruft that can never possibly be used, but nobody will take the re-
sponsibility to discard. Old database backups that might, possibly, be necessary. Old databases
that can never be useful under any circumstances, because the software to read those backups
runs only on SCO UNIX and even NetBSD has dropped that binary compatibility layer. Realisti-
cally, even though you have the skills to crack open what is almost certainly a bunch of com-
ma separated values with a weird file extension, if anyone asked, you’d be much more likely to
laugh and say there is no way to read that data than actually break out file(1) and strings(1) and

pipe the whole mess into Perl and produce a handy Ex-
cel-compatible spreadsheet. Images of laptop hard drives
from employees who fled in 2001, because their man-
ager declared that the next person to fill that role would
need that employee’s files—and then refused to re-
lease those files to said replacement. Test spreadsheets
that were discarded as failures. Accounting files that
were eradicated for excessive honesty and replaced with
IRS-friendly versions. As your organization ages it will ac-
quire more and more of this detritus, filling drive after
drive, until nobody is willing to either look at the data or
take responsibility for discarding it.

Any reasonable sysadmin finds this offensive. We want our systems to be clean! We want
our storage tidy and elegant. Lugging around petabytes of the wreckage—or worse, backing up
said petabytes—violates our proprieties. Many of us itch to attack this debris, discarding what is
unneeded and organizing the rest. I’m forced to call out System Administration Rule #18 here: it
is cheaper for the organization to buy more storage than to pay you to clean out existing files.
Think back on those old 9-GB hard drives. Remember how many thousands or millions of files
they could hold? Opening each file, assessing the contents, and deciding if it merited survival or
should be cast into the outer darkness was an overwhelming task. Those drives were minuscule
by today’s standards. This isn’t a modern problem; my first hard drive was 20 MB, and it con-
tained more files than I could cope with. Worse, many of those files still exist. Every system I get
has more hard drive capacity than the last. I’m never quite sure what files I will need, so I copy
everything from the old hard drive into an archive folder on the new system. The only thing I
don’t have is the code for the Sinclair ZX80 maze game that Young Lucas enjoyed playing, and
I’m sure that’s available somewhere on the Internet. Destroying these files is a high-risk, low-gain
game for any manager. If successful, the organization can avoid spending a few hundred bucks
on storage. If unsuccessful, some of those antediluvian files turn out to be of vital importance
and the manager’s career is over. Even options like archiving to tape pose risks. While every true
sysadmin archives everything in an open source format like tar, many organizations insist on us-
ing “Enterprise Backup Systems” with an appalling habit of obsoleting support for old formats.

2 of 3

We want our systems
to be clean!

We want our storage
tidy and elegant.

28FreeBSD Journal • November/December 2021

With ample opportunity for self-humiliation and minimal potential reward, nobody is going to
tackle this morass.

You cannot solve this problem.
You can avoid contributing to it.
Consider the data you, personally, are responsible for. Are you following your organization’s

data retention policy? If your organization has no data retention policy, establish one yourself. It
can be as simple as telling your team, “Hey, I want to discard all logs on these systems after 60
days. Does anyone have a problem with that?” Perhaps you’ll need some data longer, and other
data you can throw away after a week. A good data retention policy can even keep you out of
court — logs that do not exist cannot be subpoenaed. You don’t want to go to court. Court is
not fun, and neither lawyers nor judges understand sysadmin humor.

Or you can buy even more storage and stop worrying.

Have a question for Michael?
Send it to letters@freebsdjournal.org

MICHAEL W LUCAS is the author of Absolute FreeBSD, TLS Mastery, and $ git sync murder.
His DNSSEC Mastery and Domesticate Your Badgers should be out in early 2022, despite earnest
requests from the Humane Society. For a complete list of everything he’s done, query his SNMP
table. Submit your questions to letters@freebsdjournal.org.

3 of 3

all the storage; we use ZFS to replicate the data between cluster nodes; we use
compression and snapshots. And we heavily use Capsicum to make it all secure.

We want to be sure that even if someone breaks into a single session, he can-
not access other sessions. He cannot actually access anything, because if he
breaks in before authentication, he won't be granted access to connect to the
server. Only after successful authentication will we provide a connection to the
destination server.

And Capsicum makes it really clean and very efficient actually.
Al lan: You don't have to enumerate all the things you can't do. You're saying
you're only allowed to do these things?

• Pawel: Yes. This is capability ideology. You only grant the exact rights or access
to resources that the process requires. Which is not UNIX ideology because, of
course, if you are running a UNIX program, it has access to everything.
Al lan: Was there anything else you wanted to talk about?

• Pawel: Not really. •

Sept/Oct 2019 23

FreeBSD is internationally recognized as an innovative
leader in providing a high-performance, secure, and stable
operating system.
Not only is FreeBSD easy to install, but it runs a huge number

full source code.

The FreeBSD Community is proudly supported by

T

Help Create the Future.
Join the FreeBSD Project!

The FreeBSD Project is looking for

Find out more by

Checking out our website

Downloading the Software

for people like you to help continue
developing this robust operating system.
Join us!

Already involved?

Don�t forget to check out the latest
grant opportunities at
freebsdfoundation.org

29FreeBSD Journal • November/December 2021

freebsdjournal.org

mailto:letters@freebsdjournal.org

Donate to the Foundation!

Support
 FreeBSD

You already know that FreeBSD is an internationally
recognized leader in providing a high-performance,
secure, and stable operating system. It�s because of
you. Your donations have a direct impact on the Project.

Please consider making a gift to support FreeBSD for the
coming year. It�s only with your help that we can continue
and increase our support to make FreeBSD the high-
performance, secure, and reliable OS you know and love!

Your investment will help:

Funding Projects to Advance FreeBSD

Increasing Our FreeBSD Advocacy and

Providing Additional Conference
Resources and Travel Grants

Continued Development of the FreeBSD
Journal

Protecting FreeBSD IP and Providing
Legal Support to the Project

Purchasing Hardware to Build and
Improve FreeBSD Project Infrastructure

Making a donation is quick and easy.
freebsdfoundation.org/donate

®

®

BSD Events taking place through March 2022
BY ANNE DICKISON

SCALE 19x
March 3-6, 2022
Pasadena, CA
https://www.socallinuxexpo.org/scale/19x

The 19th annual Southern California Linux Expo — will take place on March 3-6, 2022, at the
Pasadena Convention Center. SCALE is the largest community-run open-source and free software
conference in North America. It is held annually in the greater Los Angeles area.

Please send details of any FreeBSD related events or events that are of interest for FreeBSD
users which are not listed here to freebsd-doc@FreeBSD.org.

FreeBSD Fridays
https://freebsdfoundation.org/freebsd-fridays/

Stay tuned for new episodes in early 2022.
Past FreeBSD Fridays sessions are available at: https://freebsdfoundation.org/freebsd-fridays/

FreeBSD Office Hours
https://wiki.freebsd.org/OfficeHours

Join members of the FreeBSD community for FreeBSD Office Hours. From general Q&A to
topic-based demos and tutorials, Office Hours is a great way to get answers to your FreeBSD-
related questions.

Past episodes can be found at the FreeBSD YouTube Channel.
https://www.youtube.com/c/FreeBSDProject.

31FreeBSD Journal • November/December 2021

FOSDEM 2022
February 5-6, 2022
VIRTUAL
https://fosdem.org/2022/

FOSDEM is a two-day event organized by volunteers to promote the widespread use of free and
open source software. Taking place, February 5-6, 2022, FOSDEM offers open source and free
software developers a place to meet, share ideas and collaborate. Renowned for being highly
developer-oriented, the event brings together some 8000+ developers from all over the world.
The conference will once again be held virtually.

https://www.socallinuxexpo.org/scale/19x
mailto:freebsd-doc@FreeBSD.org
https://freebsdfoundation.org/freebsd-fridays/
https://freebsdfoundation.org/freebsd-fridays/
https://wiki.freebsd.org/OfficeHours
https://www.youtube.com/c/FreeBSDProject
https://www.youtube.com/c/FreeBSDProject
https://fosdem.org/2022/
https://fosdem.org/2022/

