
14FreeBSD Journal • September/October 2021

Have you ever bought new equipment for your FreeBSD box and it turned out that some
functionality didn’t work? Instead of returning it, it may be possible to write your own driv-
er without much effort. We will explain how to write a simple USB driver for FreeBSD.

Case Study
In this article, we will look into a driver for Razer Ornata V2. The device is a Mecha-mem-

brane keyboard which works perfectly on FreeBSD with one small issue: you can’t change the
backlight color. In some cases, you may find a keyboard that has a built-in color change. This
means that the color will change independently on the software run on your machine under
some key combination. In the case of this keyboard, the driver in operating systems controls the
backlight. Thanks to that, you can have fancy patterns on your keyboard like fire flames. The
disadvantage is that you have to have a driver for it. The device is shown in Figure 1.

Figure 1. Razer Ornata V2

BY MARIUSZ ZABORSKI

1 of 14

How to Implement
a Simple USB Driver

for FreeBSD

15FreeBSD Journal • September/October 2021

Gathering the Information
First of all, we have to understand the protocol used in the driver. In the case of drivers for

Razer, we have two ways of doing it:
•	Look into an openrazer (unofficial collection of Linux drivers for Razer devices)
•	Sniff the USB protocol from the Windows driver
In this article, we will combine these two methods. When we initially looked into the prob-

lem, there wasn’t support for Razer Ornata V2 in the openrazer, so we had to deduct some of
the parts from a USB protocol dump. The support for this keyboard was recently added to the
openrazer, but when you try to write your driver, parts of it may not be available anywhere else
than in the official Windows drivers. For educational purposes, we will assume that the open-
razer doesn’t support this keyboard.

OpenRazer
To get a needed context about the driver, we will try to find the package structure used to

communicate with the keyboard, as this allows us to understand the dump from the USB sniff.
The source code for openrazer is available under https://github.com/openrazer/openrazer. In a
driver/razercommon.h file, we will find a razer_report structure, which is the main structure
of the driver. It is used across all of the devices from this product. The structure is shown in
Listing 1.

Listing 1. The razer_report structure defined by openrazer

structstruct razer_report {
 unsigned charunsigned char status;
 unionunion transaction_id_union transaction_id; /* */
 unsigned shortunsigned short remaining_packets; /* Big Endian */
 unsigned charunsigned char protocol_type; /*0x0*/
 unsigned charunsigned char data_size;
 unsigned charunsigned char command_class;
 unionunion command_id_union command_id;
 unsigned charunsigned char arguments[80];
 unsigned charunsigned char crc;/*xor’ed bytes of report*/
 unsigned charunsigned char reserved; /*0x0*/
};

Sniffing a Windows Driver
To sniff a Windows USB driver, we can use a usbpcap (https://desowin.org/usbpcap/) tool.

It is a command-line tool that is very simple to use (in Listing 2, we have an example). When
we run the command tool, it will show us available devices; next, it will ask us which device
we want to sniff and where to save a pcap file. The generated pcap file is easily viewable using
Wireshark.

We will be targeting a Razer Windows driver. On Windows, the Razer Synapse tool allows
you to customize the backlight colors of the keyboard. Let’s try to set up different colors of
the keyboard while the usbpcap is running. Thanks to this tool, we will record all requests sent
to the keyboard (the Razer Synapse is shown in Figure 2). At this point, we will apply the red
scheme on the whole keyboard.

2 of 14

https://github.com/openrazer/openrazer
https://desowin.org/usbpcap/

16FreeBSD Journal • September/October 2021

Listing 2. Usage of usbpcap to capture the USB protocol

Following filter control devices are available:
1 \\.\USBPcap1
 \??\USB#ROOT_HUB20#4&19d0fd2a&0#{f18a0e88-c30c-11d0-8815-00a0c906bed8}
 [Port 1] Generic USB Hub
 [Port 4] ThinkPad Bluetooth 4.0
 [Port 6] Integrated Camera

2 \\.\USBPcap2
\??\USB#ROOT_HUB20#4&182122df&0#{f18a0e88-c30c-11d0-8815-00a0c906bed8}
 [Port 1] Generic USB Hub

3 \\.\USBPcap3
\??\USB#ROOT_HUB30#4&23ace5cb&0&0#{f18a0e88-c30c-11d0-8815-00a0c906bed8}
 [Port 1] Generic USB Hub
 Razer Ornata V2
 Razer Ornata V2
 Razer Ornata V2
 Razer Ornata V2
 Razer Control Device
Select filter to monitor (q to quit):Select filter to monitor (q to quit): 3
Output file name (.pcap):Output file name (.pcap): t1.pcap

Combining Methods
Now that we have a pcap from the dump, we can start analyzing the recorded protocol.

Don’t get into too much detail on how USB drivers work; instead, glean the general idea about
the protocol. Most of the values we will just copy, as we might need to change them. We only
want to generate similar requests as the original driver.

In Figure 3, we can see a dump created using usbpcap under Wireshark; in this case, the
driver uses a setup packet. The setup packets are used for detection and configuration of the
USB devices. In Table 1, we can see a package defined by the USB specification as well as the
values that were sent by the driver.

Figure 2. Razer Synapse tool. The tool is used to configure the backlight color.

3 of 14

17FreeBSD Journal • September/October 2021

Table 1. Format of Setup Data from USB documentation, with the values from the dump.

Offset Field Size Value Description Values from pcap
0 bmRequestType 1 Bitmap Characteristics of request:

•	D7: Data transfer direction
0 = Host-to-device
1 = Device-to-host

•	D6...5:Type
0 = Standard
1 = Class
2 = Vendor
3 = Reserved

•	D4...0:Recipient
0 = Device
1 = Interface
2 = Endpoint
3 = Other

•	4...31 = Reserved

0x21
•	Data transfer direction:

Host-to-device
•	Type:

Class
•	Recipient:

Interface

1 bRequest 1 Value Specific request (for more de-
tails please refer to the USB
Specification)

0x09
SET_REPORT

2 wValue 2 Value Word-sized field that varies ac-
cording to request

0x300

4 wIndex 2 Value
or

Offset

Word-sized field that varies ac-
cording to request; typically
used to pass an index or offset

2

6 wLength 2 Count Number of bytes to transfer if
there is a data stage

90

After the setup data, we have specific data for a Razer Driver. In Figure 4, we combined the
pcap data with the razer_report structure from the openrazer project. Next, we can easily
see some more things about the arguments. First, we have 2 bytes set to 0, which we can as-
sume are reserved. Next, we have a one byte set to 1. When we look into the pcap, we can see
many similar packages that, in this place, have this value in range from 0 to 5. We can verify this
later, but actually it seems that this is the row number on the keyboard. Then, we have a value
0x15 (21), which is actually the number of keys in a row. Finally, there is a 21-times repeated val-
ue 0xff0000, which seems to refer to the red color that we set in RGB (R: 255, G:0, B:0).

Figure 3. The pcap generated using usbpcap under Wireshark. The Setup packet is highlighted.

4 of 14

18FreeBSD Journal • September/October 2021

Figure 4. The setup data with the structure obtained from openrazer.

0000 00 1f 00 00 00 47 0f 03 00 00 01 00 15 00 00 00

0010 ff 00 00 ff 00 00 ff 00 00 ff 00 00 ff 00 00 ff

0020 00 00 ff 00 00 ff 00 00 ff 00 00 ff 00 00 ff 00

0030 00 ff 00 00 ff 00 00 ff 00 00 ff 00 00 ff 00 00

0040 ff 00 00 ff 00 00 ff 00 00 ff 00 00 ff 00 00 00

0050 00 00 00 00 00 00 00 00 a0 00

Fields Values
Status
Transaction ID
Remaining packets
Protocol Type
Data Size
Command class
Command ID
Arguments
CRC
Reserved

0x00
0x1f
0x0000
0x00
0x47
0x0f
0x03
0000010015
0xa0
0x00

The packages used by the Razer Synapse seem to allow us to set each key to a different col-
or. Each package refers to a single row on the keyboard. Without going into too much detail of
USB and Razer protocol, this should be enough to implement any type of backlight effect we
might like.

Lastly, we need to find a vendor and product identifier which will allow us to find the cor-
rect USB device. To do that, we can use the usbconfig(8) tool on the FreeBSD box. The utility
has a special option, dump_device_desc, which allows us to print the details of all USB devices
connected to our box. The example of usage is shown in Listing 3.

Listing 3. Identifying vendor and product ID using usbconfig(8) tool.

usbconfig dump_device_desc
ugen0.4: <Razer Razer Ornata V2> at usbus0, cfg=0 md=HOST spd=FULL (12Mbps)
pwr=ON (500mA)

 bLength = 0x0012
 bDescriptorType = 0x0001
 bcdUSB = 0x0200
 bDeviceClass = 0x0000 <Probed by interface class>
 bDeviceSubClass = 0x0000
 bDeviceProtocol = 0x0000
 bMaxPacketSize0 = 0x0040
 idVendor = 0x1532
 idProduct = 0x025d
 bcdDevice = 0x0200
 iManufacturer = 0x0001 <Razer>
 iProduct = 0x0002 <Razer Ornata V2>
 iSerialNumber = 0x0000 <no string>
 bNumConfigurations = 0x0001

5 of 14

19FreeBSD Journal • September/October 2021

libusb&PyUSB
The first way of implementing a simple driver is to use libusb and PyUSB. This method allows

us to write a USB driver in a userland without any additional kernel modules. Writing drivers in
a userland is the most secure, because if there is a bug, it will expose only the kernel part for
attack.

The libusb is a library for USB devices. It is a cross platform library, so we can see a port of
it in FreeBSD, Linux, OpenBSD or even Windows. To simplify the task even more, instead of
writing a driver in C, we can implement it using Python, which is possible thanks to the PyUSB
module. PyUSB provides easy access to a host USB system. We can simply install pyusb using
the pkg(8) tool (e.g. pkg install py38-pyusb).

First, we have to find a valid device. To do that, we use a usb.core.find function. To identify
the right device, we can provide a product and vendor ID obtained from usbconfig(8), which is
shown in Listing 4.

Listing 4. Finding a device using PyUSB.

python
Python 3.8.10 (default, Jul 6 2021, 01:34:57)
>>> import usb.core
>>> dev = usb.core.find(idVendor=0x1532, idProduct=0x025d)
>>> dev.product
‘Razer Ornata V2’

To send a Setup packet, we use the ctrl_transfer function. The interface of this function
corresponds to the parameters described in the Setup packet. The simplest thing to do here
is to copy all sniffed parameters. The last step is to rebuild the package. In our driver, we will
assume that the color is hardcoded. Besides the color, row and CRC field, we will copy all of
them from the sniffed part (the whole process is shown in Listing 5). At the end, we also have
to recalculate the CRC field.

Listing 5. Sending a request to change a color using PyUSB.

importimport usb.core

Color
r = 0xff
g = 0x00
b = 0x00

defdef change_color(dev, line, r, g, b):
 # Recreate package
 package = bytes([
 0x00, # Status
 0x1f, # Transaction ID
 0x00, 0x00, # Remaining packets
 0x00, # Protocol Type
 0x47, # Data Size
 0x0f, # Command Class
 0x03, # Command ID

6 of 14

20FreeBSD Journal • September/October 2021

 # Arguments:
 0x00, # - unknown
 0x00, # - unknown
 line, # - line
 0x00, # - unknown
 0x15, # - number of keys
 0x00, 0x00, # - unknown
 0x00 # - unknown
])

 forfor _ inin range(0x15):
 package += bytes([r, g, b])

 # Fill up to 0x47 bytes size
 forfor _ inin range(0x3):
 package += bytes([0, 0, 0])

 # Recalculate crc
 crc = 0x00
 forfor x inin package:
 crc ^= x
 package += bytes([crc, 0x00]) # crc and reserved
 dev.ctrl_transfer(
 bmRequestType = 0x21,
 bRequest = 0x09,
 wValue = 0x300,
 wIndex = 0x02,
 data_or_wLength = package
)

dev = usb.core.find(idVendor=0x1532, idProduct=0x025d)
forfor line inin range(6):
 change_color(dev, line, r, g, b)

Kernel Module
In the case of a native driver, we have to write a FreeBSD kernel module. We also have to

implement some kind of communication between the kernel and the userland to tell the mod-
ule what color we want. To accomplish this, we can expose some additional sysctl, implement
a iocotl(9) or read the input from the USB dev node. In this article, we will look at the ioctl(9)
method.

Building a Kernel Module
First, we have to know how to compile the kernel module. The simplest way of doing this

is using a Makefile and including the bsd.kmod.mk file. Thanks to that, it will auto generate all
additional required files and headers. We also have to remember to include files like opt_usb.h,
buf_if.h and device_if.h., which is common for all kernel modules. In the KMOD detective, we
provide the name of the compiled driver. The example of Makefile is shown in Listing 6.

7 of 14

21FreeBSD Journal • September/October 2021

Listing 6. Makefile for building kernel module in FreeBSD.

SRCS=ornata.c
SRCS+=opt_usb.h bus_if.h device_if.h

KMOD=ornata

.include <bsd.kmod.mk>

The three standard methods that almost all drivers have to implement is probe, attach and
detach. There are also additional methods, like suspend and resume, but we won’t look into
them.

The probe is executed first to examine the device and decide if the driver is supported or
not. Here, we can use a VendorID and ProductID to decide if this is the device we are looking
for. We can accomplish that using a usbd_lookup_id_by_uaa function, which will iterate over
the given array of vendors and products to find a matching pair. We also have to check if the
device is in host mode (USB_MODE_HOST), which is needed to initiate data transfers. Next, we
want to be sure the device is actually a keyboard. The probe function is shown in Listing 7.

Listing 7. The USB probe function

static conststatic const STRUCT_USB_HOST_ID ornata_devs[] = {
	 {USB_VPI(0x1532, 0x025d, 0)},
};

static intstatic int
ornata_probe(device_t self)
{
	 structstruct usb_attach_arg *uaa = device_get_ivars(self);

	 ifif (uaa->usb_mode != USB_MODE_HOST)
		 returnreturn (ENXIO);

	 ifif (uaa->info.bInterfaceProtocol == UIPROTO_BOOT_KEYBOARD)
		 returnreturn (ENXIO);

	 ifif (uaa->info.bInterfaceClass != UICLASS_HID)
		 returnreturn (ENXIO);

	 returnreturn (usbd_lookup_id_by_uaa(ornata_devs, sizeofsizeof(ornata_devs), uaa));
}

Two other methods that are useful are attach and detach. The attach function is called
when the probe phase is finished and the probe function returns success. It is an entry point
that allows the driver to initialize all required resources. At the opposite side, we have a detach
function that allows us to clean up after the device disappears.

In case of this, the driver in the attached function will initialize mutex needed for synchro-

8 of 14

22FreeBSD Journal • September/October 2021

nizing and allocate the USB driver’s entry points under /dev. The last part is done by the usb_
fifo_attach function. While creating a new node, we have to also define what operations it
supports (the ornata_fifo_methods variable), but we will look into that in the next phases.
While creating a node, we can define which user and group should be an owner (in our case
root(0) and wheel(0) group) and in what mode the node should be initialized (in our case ev-
eryone can read and write (666)). At this moment, we also introduce a helping structure which
stores all device specific variables. At the opposite side, in the detach routine, we call the
usb_fifo_detach function, which destroys its associated USB device node. These functions are
shown in Listing 8.

Listing 8. Attach and detach function for the driver.

structstruct ornata_softc {
	 structstruct usb_fifo_sc sc_fifo;
	 structstruct mtx sc_mtx;

	 structstruct usb_device	 *sc_udev;
};

static intstatic int
ornata_attach(device_t self)
{
	 structstruct usb_attach_arg *uaa = device_get_ivars(self);
	 structstruct ornata_softc *sc = device_get_softc(self);
	 intint unit = device_get_unit(self);
	 intint error;

	 device_set_usb_desc(self);
	 mtx_init(&sc->sc_mtx, “ornata lock”, NULL, MTX_DEF);

	 error = usb_fifo_attach(uaa->device, sc, &sc->sc_mtx,
	 &ornata_fifo_methods, &sc->sc_fifo,
	 unit, -1, uaa->info.bIfaceIndex,
	 0, 0, 0666);
	 ifif (error)
		 goto detach;

	 sc->sc_udev = uaa->device;

	 returnreturn (0);
detach:
	 mtx_destroy(&sc->sc_mtx);
	 returnreturn (error);
}

static intstatic int
ornata_detach(device_t self)
{
	 structstruct ornata_softc *sc = device_get_softc(self);

9 of 14

23FreeBSD Journal • September/October 2021

	 usb_fifo_detach(&sc->sc_fifo);
	 mtx_destroy(&sc->sc_mtx);

	 returnreturn (0);
}

Finally, we can define the driver module, which is shown in Listing 9. We are creating a ker-
nel driver using a DRIVER_MODULE macro. In this part, we are setting the probe, attach and
detach function to the strcuture driver. The MODULE_DEPEND macro is used to set the depen-
dency on another kernel module. This is only used to help the operating system to load all re-
quired modules before loading this one; however, this does not dictate the order of the load.

Listing 9. Definition of kernel module.

staticstatic device_method_t ornata_methods[] = {
	 DEVMETHOD(device_probe, ornata_probe),
	 DEVMETHOD(device_attach, ornata_attach),
	 DEVMETHOD(device_detach, ornata_detach),

	 DEVMETHOD_END
};

staticstatic driver_t ornata_driver = {
	 .name	 = “ornata”,
	 .methods = ornata_methods,
	 .size = sizeofsizeof(structstruct ornata_softc)
};

staticstatic devclass_t ornata_devclass;

DRIVER_MODULE(ornata, uhub, ornata_driver, ornata_devclass, NULL, 0);
MODULE_DEPEND(ornata, ukbd, 1, 1, 1);
MODULE_VERSION(ornata, 1);
USB_PNP_HOST_INFO(ornata_devs);

At this point, we can implement a function that will send setup data to the device. This can
be done using the usbd_do_request_flags function and the usb_device_request structure
representing the request. For the data part, we can use the structure from openrazer, as it is al-
ready implemented in the C language. For example, in the case of the python driver, the func-
tion will expect the color and the line to set, and most of the variables are just copied from our
sniffed requests. We also have to remember to recalculate the CRC field. The USET macros al-
low us to set data independent of CPU endianness. The function for setting the backlight color
is shown in Listing 10.

Listing 10. Attach and detach function for the driver.

static voidstatic void
ornata_set_color(structstruct ornata_softc *sc, uint8_t r, uint8_t g, uint8_t b, uint8_t
line)
{
	 structstruct razer_report rr;
	 structstruct usb_device_request req;

10 of 14

24FreeBSD Journal • September/October 2021

	 charchar crc, *ptr;
	 intint i;

	 memset(&rr, 0, sizeofsizeof(rr));

	 req.bmRequestType = 0x21;
	 req.bRequest = 0x09;
	 USETW(req.wValue, 0x300);
	 USETW(req.wIndex, 2);
	 USETW(req.wLength, sizeofsizeof(rr));

	 rr.status = 0x00;
	 rr.transaction_id = 0x1f;
	 rr.remaining_packets = 0x00;
	 rr.protocol_type = 0x00;
	 rr.data_size = 0x47;
	 rr.command_class = 0x0f;
	 rr.command_id = 0x03;

	 rr.arguments[2] = line;
	 rr.arguments[4] = 0x15;

	 forfor (i = 8; i < 8 + 0x15 * 3; i += 3) {
		 rr.arguments[i] = r;
		 rr.arguments[i + 1] = g;
		 rr.arguments[i + 2] = b;
	 }

	 crc = 0;
	 forfor (ptr = (charchar *)&rr; ptr != (charchar *)&rr + sizeofsizeof(rr); ptr++) {
		 crc ^= *ptr;
	 }

	 rr.crc = crc;

	 usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx, &req,
	 &rr, 0, NULL, 2000);
}

Implementing ioctl
The only missing part in the driver is the methods used to communicate with the USB device

node. We will implement the ioctl method, as it is the simplest (but requires an additional pro-
gram to send an ioctl).

First, we have to define the ioctl. To accomplish this, we can use _IOW macro, which defines
a macro for a write operation — which means that the memory will be copied from userland
to the kernel. For other purposes, we can use _IOR to define a read ioctl, or _IOWR for read/
write operation, or _IO, which transfers no data. We will also use an additional structure,
ornata_color, just to transfer the data in an organized way.

11 of 14

25FreeBSD Journal • September/October 2021

The definition of ioctl is shared between the userland and the kernel, so a good idea is to
define a C file header that contains these definitions. The header is shown in Listing 11.

Listing 11. Attach and detach function for the driver.

#ifndef _ORNATA_H_
#define _ORNATA_H_

#include <sys/ioccom.h>

structstruct ornata_color {
	 uint8_tuint8_t r;
	 uint8_tuint8_t g;
	 uint8_tuint8_t b;
};

#define	ORNATA_SET_COLOR	_IOW(‘U’, 205, struct ornata_color)

#endif

Now, getting back to the usb_fifo_attach, we use a structure ornata_fifo_methods
that hasn’t yet been defined. This structure defines supported operations on the device; for
example, open or close. In our case, we want to support ioctl operations. The basename field
describes the name of the node that should be created under /dev. When using the ioctl, the
memory is already safely copied from the userland to the kernel, so we can just use color struc-
ture. The implementation of ioctl is shown in Listing 12.

Listing 12. Implementation of ioctl method.

static intstatic int
ornata_ioctl(structstruct usb_fifo *fifo, u_long cmd, voidvoid *addr, intint fflags)
{
	 structstruct ornata_softc *sc;
	 structstruct ornata_color color;
	 intint error;
	 uint8_t line;

	 sc = usb_fifo_softc(fifo);
	 error = 0;

	 mtx_lock(&sc->sc_mtx);

	 switchswitch(cmd) {
	 casecase ORNATA_SET_COLOR:
		 color = *(structstruct ornata_color *)addr;
		 forfor (line = 0; line < 6; line ++) {
			 ornata_set_color(sc,
			 color.r,
			 color.g,
			 color.b,
			 line);
		 }

12 of 14

26FreeBSD Journal • September/October 2021

		 breakbreak;
	 defaultdefault:
		 error = ENOTTY;
		 breakbreak;
	 }

	 mtx_unlock(&sc->sc_mtx);
	 returnreturn (error);
}

static structstatic struct usb_fifo_methods ornata_fifo_methods = {
	 .f_ioctl = &ornata_ioctl,
	 .basename[0] = “ornata”
};

The disadvantage of this approach is that we have to implement an additional userland pro-
gram, because there is no way of generating the ioctl(2) from a command line. This program is
shown in Listing 13.

Listing 13. Example of usage of ioctl in userland.

intint
main(void)
{
	 intint fd = open(“/dev/ornata0”, 0);
	 structstruct ornata_color color;

	 color.r = 0xFF;
	 color.g = 0x00;
	 color.b = 0x00;

	 ioctl(fd, ORNATA_SET_COLOR, &color);

	 returnreturn (0);
}

Summary
Implementing a userland driver isn’t that complicated, thanks to libusb and pyusb. The most

complicated part is actually understanding the protocol used by the device. If the protocol is
simple, we can just sniff a lot of data from existing drivers on different platforms. If the protocol
is more complicated, maybe there is an open-source project and we can port some part of it to
FreeBSD. In the case of writing a native driver, we have to be patient, as the routines are more
challenging. Implementing the kernel driver, we have to be very careful, as we can introduce
bugs. Also, if we mess up something, the kernel may just panic, and we will need to restart the
machine.

13 of 14

27FreeBSD Journal • September/October 2021

Bibliography
•	USB 2.0 Specification — https://www.usb.org/document-library/usb-20-specification
•	FreeBSD Device Drivers A Guide for the Intrepid by Joseph Kong
•	Openrazer source code — https://github.com/openrazer/openrazer
•	Roland’s homepage — Setting the Razer ornata chroma color from userspace

(https://rsmith.home.xs4all.nl/hardware/setting-the-razer-ornata-chroma-color-from-
userspace.html)

MARIUSZ ZABORSKI currently works as a security expert at 4Prime. Since 2015, he has been
the proud owner of the FreeBSD commit bit. His main areas of interest are OS security and
low-level programming. In the past, he worked at Fudo Security, where he led a team develop-
ing the most advanced PAM solution in IT infrastructure. In 2018, Mariusz organized the Polish
BSD User Group. In his free time, he enjoys blogging at https://oshogbo.vexillium.org.

14 of 14

Pluggable Authentication Modules:
 Threat or Menace?

PAM is one of the most misunderstood parts of systems
administration. Many sysadmins live with authentication
problems rather than risk making them worse. PAM’s very
nature makes it unlike any other Unix access control system.

If you have PAM misery or PAM mysteries, you need PAM
Mastery!

“Once again Michael W Lucas nailed it.” — nixCraft

PAM Mastery by Michael W Lucas
https://mwl.io

https://www.usb.org/document-library/usb-20-specification
https://github.com/openrazer/openrazer
https://rsmith.home.xs4all.nl/hardware/setting-the-razer-ornata-chroma-color-from-userspace.html
https://rsmith.home.xs4all.nl/hardware/setting-the-razer-ornata-chroma-color-from-userspace.html
https://oshogbo.vexillium.org

