
May/June 2021

SECURITY

Seven Ways to Increase Security
in a New FreeBSD Installation

The copyinout Framework

Using TLS to Improve NFS Security

Plus:
Capsicum Case Study: Got
Practical Ports

LETTER
from the Foundation

FreeBSD Journal (ISBN: 978-0-615-88479-0) is published 6 times
a year (January/February, March/April, May/June, July/August,

September/October, November/December).
Published by the FreeBSD Foundation,

3980 Broadway St. STE #103-107, Boulder, CO 80304
ph: 720/207-5142 • fax: 720/222-2350
email: info@freebsdfoundation.org

Copyright © 2021 by FreeBSD Foundation. All rights reserved. This magazine may not be
reproduced in whole or in part without written permission from the publisher.

Publisher •

Editor-at-Large •

Design & Production •
Advertising Sales •

Walter Andrzejewski
walter@freebsdjournal.com

James Maurer
jmaurer@freebsdjournal.com

Reuter & Associates

Walter Andrzejewski
walter@freebsdjournal.com
Call 888/290-9469

P O B O X 4 0 8 , B E L F A S T , M A I N E 0 4 9 1 5

J O U R N A L

E d i t o r i a l B o a r d

®

S&W PUBLISHING LLC

John Baldwin • FreeBSD Developer and Chair of
FreeBSD Journal Editorial Board.

Justin Gibbs • Founder of the FreeBSD Foundation,
President of the FreeBSD Foundation,
and a Software Engineer at Facebook.

Daichi Goto • Director at BSD Consulting Inc.
(Tokyo).

Tom Jones • FreeBSD Developer, Internet Engineer
and Researcher at the University of
Aberdeen.

Dru Lavigne • Author of BSD Hacks and
The Best of FreeBSD Basics.

Michael W Lucas Author of more than 40 books including
Absolute FreeBSD, the FreeBSD
Mastery series, and git commit murder.

•

Ed Maste • Senior Director of Technology,
FreeBSD Foundation and Member
of the FreeBSD Core Team.

Kirk McKusick • Treasurer of the FreeBSD Foundation
Board, and lead author of The Design
and Implementation book series.

Hiroki Sato • Director of the FreeBSD
Foundation Board, Chair of Asia
BSDCon, Member of the FreeBSD
Core Team, and Assistant
Professor at Tokyo Institute of
Technology.

Benedict Reuschling • Vice President of the FreeBSD Foundation
Board and a FreeBSD Documentation
Committer.

Robert N. M. Watson • Director of the FreeBSD Foundation
Board, Founder of the TrustedBSD
Project, and University Senior Lecturer
at the University of Cambridge.

Mariusz Zaborski • FreeBSD Developer, Manager at
Fudo Security.

3FreeBSD Journal • May/June 2021

Security
Information Security has a concept of “Defence in
Depth,” a strategy of applying multiple layers of
security measures which work in concert to limit the
impact of an attacker gaining unauthorized access to
a system, for example, by exploiting a vulnerability.
These layers include techniques applied to the
design of a system or program, those applied during
development, mitigations applied at run-time, and
operational procedures and techniques.

The “Principle of Least Privilege” is a technique
that can apply during design and operation. The
principle states that a process should operate with
only those privileges that are required. Tools like static
analysis (automated source code analysis) are applied
during development. Some tools operate on running
software as part of the development process, such as
code-coverage-guided automated fuzzing. American
Fuzzy Lop (AFL) and Syzkaller are two such examples
which have been used to good effect in FreeBSD.
Runtime mitigations apply when software is used in
production. Examples include address randomization
and limitations on memory protection. Finally,
operational procedures and techniques include those
employed by the software author or provider, such
as the FreeBSD security team’s process for issuing
security advisories, and by the user or sysadmin, such
as setting and documenting configuration options.

Welcome to this security-focused FreeBSD Journal
issue. We’ll touch on a few different areas related to
security, including ports, base system userland and
kernel topics, and system configuration.

On behalf of the FreeBSD Foundation,
Ed Maste
Senior Director of Technology

May/June 2021

 3 Foundation Letter
By Ed Maste

 5 We Get Letters
Dear They’ll Blame Me
for Ransomware
by Michael W Lucas

39 Practical Ports
Security Scanning a Jail
By Benedict Reuschling

43 Events Calendar
By Anne Dickison

 8 Seven Ways to Increase Security
in a New FreeBSD Installation
By Mariusz Zaborski

14 The copyinout Framework
By Konrad Witaszczyk

25 Using TLS to Improve NFS Security
By Rick Macklem

33 Capsicum Case Study: Got
By Yang Zhong

4FreeBSD Journal • May/June 2021

Dear Letters Columnist,

The boss says “everything must be secure.” I
started making a list of things to check for security,
and there’s no way I can do all this. What do I do?

Thank you,
 — They’ll Blame Me

for Ransomware

Oh, TBMfR, my sweet summer child.
You hit the “rant” button. Buckle in.
I’ve previously written in this very column about how the word “firewall” means nothing. The

term is void, without clarity or purpose. The F-word should be removed from your vocabulary
immediately, by armed force if necessary, and replaced by a more specific term that means…
something. Anything.

“Security?” It’s like that, but even more appalling.
I will readily concede that out in meatspace, these eight distasteful letters have a role. How

would you know which people to avoid without the phrase security guard? Yes, yes, authori-
tarian goon could serve in its place, but it doesn’t precisely roll off the tongue. Social Security?
That’s a thing. But how do these relate to computing?

As always in these cases, I reach for the Single Source of Linguistic Truth: my Oxford English
Dictionary, from that delightful Edwardian era best known as World War Intermission. Comput-
ers were people then and understood instructions like “lock up the cipher’s secret keys at the
end of your shift.” We didn’t have to define locks, or secrets, or ciphers in sufficient detail that
a machine designed to the highest standards of malicious obedience couldn’t misunderstand
them. Security meant “do it right or the authoritarian goons will smack you until you do.” So,
let’s go to the official definition of this word.

Wait. The official definition fills most of page 370 and spills over onto 371. There’s no way I’ll
quote all that. I’ll skim and cherry-pick some definitions that conveniently support my argument.

1. “The condition of being secure.”
Defining a word with its own root? That’s nearly as helpful as the documentation helpdesk

staff give users. Moving on.
2. “The condition of being protected from or not exposed to danger; safety.”
Here’s my question: does the boss want the staff computers protected from danger, or the

staff protected from the dangers of computers? Don’t you dare try to tell me that computers
don’t threaten people; I’ve seen YouTube, and don’t get me started on Myspace or Facestagram
or whatever they call it these days.

1 of 3

5FreeBSD Journal • May/June 2021

by Michael W Lucas

freebsdjournal.org

3. “Freedom from doubt; confidence, assurance. Now chiefly, well-founded confi-
dence, certainty.”

Computers are not only doubt incarnate, they are unapologetic doubt factories, spewing dig-
ital uncertainty every millisecond they’re running. We call ourselves engineers, but civil engineers
get really upset when a suspension bridge unexpectedly dumps core. It’s the sort of thing that
makes the news and gets unpopular employees exiled to Farawayistan to maintain that oh-so-
vital sham of accountability. In computing, when a server crashes, we check the logs and see
there’s nothing, so we wait to see if it happens again, all the while desperately hoping it doesn’t.
Maybe we turn on extra monitoring if we have it. This isn’t a matter of laziness. The tools to
identify many problems do not exist, and the ones that do exist are beyond the comprehension
of the average sysadmin. You can learn the tools, yes, but when you master them, you have
to figure out how to fix them and then it’s too late, you’ve become a developer and your life is
essentially concluded. Civil engineers at least have the benefit of being able to go look at their
bridges and say helpful things like “This critical bolt is starting to bend, maybe we should stop
sending trains full of lead across it while I check it out.” They’ll be told no, of course, but the en-
gineers know to save the memos so that when the bridge dumps core the blame flows uphill.

If you don’t want doubt, get a different job. Try something with feral hamsters. They’re more
rational than computers.

4. “Freedom from care, anxiety, or apprehension; a feeling of safety or freedom
from or absence of danger.”

Oh heck, I know—I KNOW—that you did not just try to apply “freedom from care” to any-
thing in systems administration. Anxiety and apprehension are the soul of technology manage-
ment. Confidence is for the organization’s Chief Scapegoat Officer, someone so far removed
from the day-to-day operation that they have no idea what’s really going on down in the cubi-
cle sewer. People who do the real work understand that computers are untrustworthy. Your test
environment is exactly like your production environment, except that the database server has a
slightly older CPU lacking two instructions present in production? Guess what’s going to bite
you? Hint: it’s not that. You know about that. Rule 44 of systems administration clearly declares
that “a perfect deployment means only that you haven’t yet noticed the catastrophe.” If you
think this rule isn’t true, you haven’t been paying attention.

Your job description should read “go surfing in a blender.”
And that’s the real problem. You don’t want to get chopped into Sysadmin Smoothie. Espe-

cially not for something as daft as the Chief Scapegoat Officer being unwilling to perform his
one duty.

I recommend ignoring your boss’ instruction in favor of building your own professional repu-
tation.

The word “security” is thrown like a blanket over a bunch of other stuff. Experts who get
fancy certifications like the CISSP will tell you that the Security Blanket covers a combination of
confidentiality, integrity, and availability. I’m not an expert, because I let my CISSP lapse rather
than risk ambush from unscrupulous recruiters armed with trank guns and nets. (If I ever awak-
en in a cubicle and discover I have a dart in my back, a sedative-induced hangover, and my feet
forcibly jammed into—ugh—shoes, the world. Will. Pay.)

The good news is anyone can chant those three words. Confidentiality—the stuff that should
be secret, remains secret. Integrity—data isn’t mucked with except by authorized muckers. Avail-
ability—the computer more-or-less keeps running. The better news is you can take this mantra
back to the boss and request clarification. Every organization has its own threats. Nobody knows
what they are. Leverage this ocean of ignorance to accomplish three things.

2 of 3

6FreeBSD Journal • May/June 2021

First, address whatever your boss thinks the biggest threat is. That’s probably whatever’s been
in the news most recently. At this exact moment, that’s ransomware. This gives you every excuse
to deploy a mammoth ZFS-backed fileserver and a snapshot regimen and declare that anything
on the server is safe from ransomware.

Second, take advantage of the mandate to choose an interesting project that can be reason-
ably stuffed beneath the Security Blanket. Learn about proxy servers, or netflow, or DTrace, or
tcpdump. Use an article about security flaws in old processors to get everything older than ten
years old replaced.

Third, do the best you can with everything else.
Be sure to save all the emails where the boss refuses to let you do things. They might force

the Chief Scapegoat Officer to go out and fall on his sword.

Have a question for Michael?
Send it to letters@freebsdjournal.org

MICHAEL W LUCAS’s has written over 40 books and resists all efforts to make him stop. One
title, Only Footnotes, was a collection of all the footnotes from all his books, but he immediate-
ly invalidated it by adding more footnotes, so that doesn’t count. His most recent titles include
TLS Mastery and $ git sync murder. He’s currently writing a second edition of DNSSEC Mastery,
doubling down on the harm he previously inflicted on civilization.

3 of 3

all the storage; we use ZFS to replicate the data between cluster nodes; we use
compression and snapshots. And we heavily use Capsicum to make it all secure.

We want to be sure that even if someone breaks into a single session, he can-
not access other sessions. He cannot actually access anything, because if he
breaks in before authentication, he won't be granted access to connect to the
server. Only after successful authentication will we provide a connection to the
destination server.

And Capsicum makes it really clean and very efficient actually.
Al lan: You don't have to enumerate all the things you can't do. You're saying
you're only allowed to do these things?

• Pawel: Yes. This is capability ideology. You only grant the exact rights or access
to resources that the process requires. Which is not UNIX ideology because, of
course, if you are running a UNIX program, it has access to everything.
Al lan: Was there anything else you wanted to talk about?

• Pawel: Not really. •

Sept/Oct 2019 23

FreeBSD is internationally recognized as an innovative
leader in providing a high-performance, secure, and stable
operating system.
Not only is FreeBSD easy to install, but it runs a huge number

full source code.

The FreeBSD Community is proudly supported by

T

Help Create the Future.
Join the FreeBSD Project!

The FreeBSD Project is looking for

Find out more by

Checking out our website

Downloading the Software

for people like you to help continue
developing this robust operating system.
Join us!

Already involved?

Don�t forget to check out the latest
grant opportunities at
freebsdfoundation.org

7FreeBSD Journal • May/June 2021

freebsdjournal.org

8FreeBSD Journal • May/June 2021

FreeBSD can be used as a desktop or as a server operating system. When setting
up new boxes, it is crucial to choose the most secure configuration. We have a lot
of data on our computers, and it all needs to be protected. This article describes
seven configuration improvements that everyone should remember when configur-
ing a new FreeBSD box.

1 Full Disk Encryption
With a fresh installation, it is important to decide about hard drive encryption—par-

ticularly since it may be challenging to add later. The purpose of disk encryption is to
protect data stored on the system. We store a lot of personal and business data on our com-
puters, and most of the time, we do not want that to be read by unauthorized people. Our
laptop may be stolen, and if so, it should be assumed that a thief might gain access to almost
every document, photo, and all pages logged in to through our web browser. Some people
may also try to tamper with or read our data when we are far away from our computer.

We recommend encrypting all systems—especially servers or personal computers. Encryp-
tion of hard disks is relatively inexpensive and the advantages are significant.

In FreeBSD, there are three main ways to encrypt storage:
• GBDE,
• ZFS native encryption,
• GELI.
Geom Based Disk Encryption (GBDE) is the oldest disk encryption mechanism in FreeBSD.

But the GBDE is currently neglected by developers. GDBE supports only AES-CBC with a
128-bit key length and uses a separate key for each write, which may introduce some CPU
overhead. It also has to store a per-sector key, which adds some disk space overheads. Since

BY MARIUSZ ZABORSKI

1 of 6

Seven Ways
to Increase Security
in a New FreeBSD
Installation

9FreeBSD Journal • May/June 2021

other more efficient and flexible encryption alternatives appeared, GBDE has become less inter-
esting to developers and users.

Introduced in version 13.0, OpenZFS native disk encryption is the newest disk encryption
mechanism in FreeBSD. OpenZFS supports AES-CCM and AES-GCM with a 128-, 192-, or
256-bit key length. In OpenZFS encryption, not all data is encrypted. Datasets and snapshots,
pool layouts or dataset properties are stored unencrypted. Often, those data may not be confi-
dential, but it is something that users should be aware of. Another issue with OpenZFS disk
encryption is that FreeBSD cannot boot from an encrypted dataset.

OpenZFS native disk encryption is a solid choice if users want to encrypt only a couple of
datasets and protect only some parts of the system. The significant advantage of OpenZFS na-
tive disk encryption is that it can be enabled after installing the system. The only requirement is
to use ZFS on the box and users can create new encrypted datasets.

GELI is our utility of choice. It supports full disk encryption, in which case only a FreeBSD-boot
partition is not encrypted. And GELI supports many cryptographic algorithms. By default, it uses
AES-XTS with a 256-bit key length.

If a user fears bootloader tampering on their critical boxes, they may want to reconfigure
GELI. GELI can be set up to use a key file and a passphrase to encrypt a device. The bootload-
er can be moved and the key file from the hard disk to an external memory stick. No one can
boot without this memory stick (because the key is only on it). Even if someone stole the mem-
ory stick and the box, they could not decrypt the device unless they knew the passphrase. Just
remember to make a backup of the memory stick—if it is lost, no one will be able to recover
the data.

The default GELI encryption may be easily configured from the FreeBSD installer:

GELI also supports one-time keys. When the box is rebooted, the encryption key will not be
removed from the system. This means all data stored in the swap partition or temporary file
systems will be removed.

Potentially, the operating system may swap out a critical application—for example, a brows-
er—and store it on the hard drive, including user secrets stored in browser storage. If the swap
is not encrypted, the attacker may read information from a disk.

The swap encryption may also be easily enabled from the FreeBSD installer, and so it is cru-
cial to remember to address this. The option to do it is available on the same boot menu win-
dow as full disk encryption.

2 of 6

10FreeBSD Journal • May/June 2021

2 Use ZFS Because of Data Integrity
Another way of increasing the security of FreeBSD boxes is to use the best file system

on the market—ZFS. This is also something that users have to think about during the
installation process because changing a file system may be challenging. ZFS has dozens of ex-
citing features, but in this section, we will focus on only one: ZFS data integrity from a security
perspective.

ZFS uses Merkle trees. Merkle trees are data structures in which every leaf node has a cryp-
tographic hash. This means ZFS is hierarchically checksumming data and all of its metadata.

If there is an underlying problem with hard drives, like corrupted sectors, misdirected
write/read1, phantom write2 or something else that will corrupt our data, ZFS will discover this.

In file systems that do not support data integrity, the incorrect data may be returned to the
application when such inconsistency occurs. With ZFS, the error will be returned instead of
data. If we configure mirroring or RAIDZ, the file system will try to fix the issue.

ZFS supports many checksumming algorithms with SHA-256 as default. A user can decide
whether they want to enable or disable integrity checks and it is highly recommended to keep
it enabled. Thanks to data integrity, we can be sure that nothing was tampering with our data.

3 ZFS setuid and exec Properties
Besides data integrity, we can also add some additional protection with ZFS. We like

to disable setuid on datasets that do not need them. The ZFS setuid property con-
trols wherever the setuid bit is honored in file systems. The setuid binaries, when run, imper-
sonate the owner of the binary. The setuid is very useful, and at the same time very danger-
ous, so we recommend keeping it limited and disabling this property on most datasets—except
those containing systems bin/sbin directory.

Another attractive property is exec. This property allows us to disable whether programs in
a dataset are allowed to be executed. We like to disable it for /tmp and Download directories.
Most of the time, we move or download random files there, and we do not want to execute
them by mistake.

4 Do Not Use Root
UNIX-like operating systems have a powerful account called root, which has abso-

lute control over a system. It is obvious we should limit and audit access to this user.
One thing that increases security is to set up a very complicated, unguessable password for the
root account and not share it with anybody. Instead of logging or using su(1) for switching to
a root account, we should use applications like sudo(8).

sudo(8) is an application that allows you to control access to running commands as root
or any other user in the system. System administrators can create a list of privileged com-
mands that users can perform impersonating other users. In contrast to su(1), sudo(8) does
not require the root or other user password to operate. When a user wants to execute com-
mands with elevated privileges, it asks them for their own password. This limits password shar-
ing across system administrators. We can simply install sudo(8) using FreeBSD binary package
management:

pkg install sudo

Activities invoked by sudo(8) are logged. This adds some accountability in terms of who and
what had been run. This is also why we should avoid spawning or logging as a different user.

3 of 6

11FreeBSD Journal • May/June 2021

Please remember not to overcomplicate the sudo configuration, keep it as simple as possi-
ble, and never give access to scripts/programs that users can modify without using sudo(8). An
overlooked sudo entry can be used as an easy-to-use vector attack.

The system should be configured with a complicated password for the root user and avoid
allowing it to log in remotely (for example, through ssh(1)). When sudo(8) is up and running
on some of the critical boxes, users may even consider locking the root user:

sudo pw lock root

Just be sure there is an option to boot in the single mode or an alternative recovery method
in case root has to be unlocked.

Thanks to using sudo(8) on a daily basis—without a root shell—users can also omit is-
sues when leaving an unlocked computer where someone could use the root shell to install
malware. sudo(8) mitigates this issue by requesting a user password after some time of in-
activity.

5 Backup
There are two kinds of people in the world—those who do backups and those

who will do backups. Unfortunately, the second group will learn the importance of
backups the hard way—when they lose the data. The stories with ransomware3 and

cloud providers4 show us that many people still resist doing backups.3 It is better to prevent than
to cure—and the same goes with backup. Users understand the value of backups until it is too
late. If you only learn one lesson from this article—please remember to perform backups.

Fortunately, we have used ZFS on our boxes to employ another interesting feature called
snapshots. A snapshot is a copy of a dataset at a specific point in time. What is very useful
about them is that we can extract those copies using the command zfs and import them with
the command zfs receive. The easiest way to create a ZFS backup is by doing a snapshot
and exporting it to the file.

zfs snapshot -r name_of_the_pool@name_of_the_snapshot
zfs send -R -c name_of_the_pool@name_of_the_snapshot > export_name

The commands above will create recursive snapshots of all datasets in the pool
name_of_the_pool, and then export them to a file of export_name. The -c option means
that the exported data will be compressed. When importing, just be sure that the system also
supports all used compression algorithms. Now, the backup can be copied to an external disk,
encrypted, sent to a cloud, any other server, or any other platform where users want to keep
backups. There is also the possibility to do a simple remote backup using ssh:

zfs send -R -c name_of_the_pool@name_of_the_snapshot | ssh example.com
cat > mybackupfile

Or, if the remote server supports ZFS, this can also be automatically imported on it:

zfs send -R -c name_of_the_pool@name_of_the_snapshot | ssh example.com
zfs receive storage/mybackup

4 of 6

12FreeBSD Journal • May/June 2021

Thanks to this, the data will be available to browse on this server. Some additional configura-
tion may be required to enable access to ZFS features. The user must be allowed to do the zfs
receive command through zfs allow or by using sudo(8). Sending whole backups may be
a little too much overhead with respect to required storage and network bandwidth. Fortu-
nately, ZFS also supports sending incremental snapshots. Using it, ZFS will create streams only
with a difference between those two snapshots. The following command allows you to repli-
cate a snapshot using less storage and network resources:

zfs send -c -i name_of_previous_snapshot name_of_the_pool@name_of_the_
snapshot | ssh example.com zfs receive storage/mybackup

It is also possible to export these incremental portions to the files. However, if zfs send cre-
ates multiple small increment portions, they may be a little too complicated to recover—first the
whole backup needs to be imported, and then each single file needs to be separately imported
in the order of creation.

There are a couple of alternatives if the boxes are using different file systems. Users may
choose tools like dump(8) for UFS, rsync(1), or commercial products like Tarsnap.

6 Keep it Up to Date
Another lesson to remember is to upgrade our operating systems on a regular basis.

This is one lesson that everybody talks about but somehow it is often forgotten.

FreeBSD security patches may be downloaded and installed using these commands:

freebsd-update fetch
freebsd-update install

For pkg updates and system updates:

pkg update
pkg upgrade

When using some production tools, it is also sensible to check if they do not have known
vulnerabilities using:

pkg audit

As our file system of choice is ZFS, it is good to use a boot environment while doing up-
grades. That allows us to easily roll back to a previous version of the system when something
goes wrong.

7 Hardening
When installing a new FreeBSD instance, one of the last menus is about hardening

the operating system. Some options make minor tweaks in FreeBSD and they slightly in-
crease security. I’m thinking of things like hiding process UIDs and GIDs, clearing tmp on system
startup, and randomizing the process identifiers.

5 of 6

13FreeBSD Journal • May/June 2021

By default, all the hardening options are disabled. We would recommend enabling them.

After the installation, we also recommend enabling ASLR (address space layout randomiza-
tion), which changes the memory layout of the process each time they are run and makes ap-
plications harder to exploit. To enable it to run this on the FreeBSD box:

sysctl kern.elf64.aslr.enable=1
sysctl kern.elf32.aslr.enable=1

Users can also add those entries to /boot/loader.conf to enable them on the startup.

Summary
In this article, we described seven ways to improve the security of FreeBSD boxes. Using ZFS

in the FreeBSD world is very popular but reducing the dataset’s capabilities to run setuid and
exec files is not common—and users can benefit from it. We hope full disk encryption, back-
ups, and sudo(8) usage are already a standard, but it is always good to be reminded to use
them. We also discussed minor tweaks in the FreeBSD configuration that randomize or hide
some system information.

1. Misdirected write/read is a situation when the hard drive will write/read the data from a different place than the system requested. It
may accrue because of the bit flip on CPI/cable or when the hard drive head will mass up.

2. Phantom write is a situation when the operating system thinks that some data was stored on the disk, but for some reason, the op-
eration never made it to the disk.

3. https://www.zdnet.com/article/ransomware-this-is-the-first-thing-you-should-think-about-if-you-fall-victim-to-an-attack/
4. https://www.reuters.com/article/us-france-ovh-fire-idUSKBN2B20NU

MARIUSZ ZABORSKI currently works as a security expert at 4Prime. He has been the proud
owner of the FreeBSD commit bit since 2015. His main areas of interest are OS security and
low-level programming. In the past, he worked at Fudo Security, where he led a team develop-
ing the most advanced PAM solution in IT infrastructure. In 2018, Mariusz organized the Polish
BSD User Group. In his free time, he enjoys blogging at https://oshogbo.vexillium.org.

6 of 6

https://www.zdnet.com/article/ransomware-this-is-the-first-thing-you-should-think-about-if-you-fall-victim-to-an-attack/
https://www.reuters.com/article/us-france-ovh-fire-idUSKBN2B20NU
https://oshogbo.vexillium.org

14FreeBSD Journal • May/June 2021

Memory copying between user and kernel address spaces is a crucial operation performed as
part of system calls. It is used to copy system call arguments as well as a system call result. The
current copy function prototypes are type-agnostic and copy a number of bytes from an arbi-
trary buffer. When a kernel copies its memory to the user space, it must make sure it does not
leak any kernel data that might include secrets. This article describes the limitations of the cur-
rent copy functions in FreeBSD and CheriBSD [1] and proposes a framework that could improve
the security and code quality of system call handlers.

The described copyinout framework was implemented as part of the MSc thesis entitled
“Capability-aware memory copying between address spaces” [2] under supervision from Ken
Friis Larsen, University of Copenhagen, and David Chisnall, Microsoft Research Ltd. The original
idea of the type-aware copyin and copyout API was proposed by David Chisnall.

Memory Copy Functions in FreeBSD
FreeBSD includes two main functions that copy memory between address spaces: copyin()

and copyout() (see Listing 1). Both functions take three arguments: a source address, a desti-
nation address, and a number of bytes to be copied. copyin() copies len bytes from the us-
er-space address udaddr to the kernel-space address kaddr. copyout() works in the opposite
direction and copies len bytes from the kernel-space address kaddr to the user-space address
udaddr. The functions return 0 on success and EFAULT if an invalid address was passed.

int copyin(const void * __restrict udaddr, void * _Nonnull __restrict kaddr, size_t len);
int copyout(const void * _Nonnull __restrict kaddr, void * __restrict udaddr, size_t len);

Listing 1. copyin() and copyout() function prototypes in FreeBSD 13.0-RELEASE.

Directly from the function prototypes, we can identify one potential security issue. The copy
functions operate on arbitrary buffers. In case a buffer contains a structure object with padding
between structure fields, the padding is also copied. A padding leak with sensitive information
is commonly known as a kernel memory disclosure or a kernel memory leak. Such bugs can re-
sult in escalated privileges. They are not specific to FreeBSD and can be found in numerous op-
erating systems [3] [4] [5] as well as they have been a subject of extensive research of detection
[6] and mitigation [7] [8] [9] techniques.

BY KONRAD WITASZCZYK

1 of 11

The copyinout
Framework
ABI-independent, type-aware, capability-aware,
copyin and copyout API in FreeBSD and CheriBSD

15FreeBSD Journal • May/June 2021

The copy functions are used by system call handlers to copy system call arguments from the
user space to the kernel space and copy system call results from the kernel space to the user
space. Since the system calls are very frequently executed, kernel developers must provide copy
function implementations with the lowest possible overhead. This can be achieved by providing
machine-dependent implementations in an assembly language. Depending on a CPU architec-
ture, the copy functions can also make use of security features if a CPU model provides them.
For example, implementations for amd64 (see amd64/amd64/support.S) support Supervisor
Mode Access Prevention (SMAP).

ABI Support
FreeBSD includes support for multiple ABIs. In particular:
• Native ABI for programs compiled for the same target as the kernel;
• 32-bit ABI for a 32-bit version of an architecture for which the kernel was compiled;
• Linux ABI for Linux user-space programs.
The ABIs are implemented as compatibility layers. Each compatibility layer provides its system

call handlers that implement additional logic required to be executed before or after the kernel
enters or returns from kernel routines that operate on native ABI objects. This includes copying
and translating objects between address spaces, e.g. for the 32-bit ABI, a pointer in a system
call argument or a system call result must be translated from or to a 32-bit pointer.

System Call Handlers
The kernel calls a specific system call handler with copied in system call arguments each time

a user-space program makes a system call. For each supported ABI, the kernel keeps a
sysentvec structure object (see Listing 2) describing ABI-specific properties and functions
to be used by the kernel when a program is being executed. The structure includes the
sv_table array with system call handler function pointers at stored positions specified by their
corresponding system call numbers, and the sv_fetch_syscall_args function pointer to an
architecture-specific function that copies in system call arguments.

As an example, let’s consider the jail(2) system call. This system call has one argument:
a pointer to a jail structure object (see Listing 3). The jail structure includes parameters
describing the prison (see Listing 4). Once a user-space program performs the jail system
call and enters the privileged mode, the kernel calls the jail system call handler — the
sys_jail() function (see Listing 5) with already copied-in jail system call arguments — a
jail_args structure object. The system call handler copies in a jail structure and calls the
kern_jail kernel routine that implements jail system call logic.

struct sysentvec {
 (...)
 struct sysent *sv_table;
 (...)
 int (*sv_fetch_syscall_args)(struct thread *);
 (...)
}

Listing 2. sysentvec structure describing ABI-specific properties and functions.

2 of 11

16FreeBSD Journal • May/June 2021

struct jail_args {
 char jail_l_[PADL_(struct jail *)];
 struct jail * jail;
 char jail_r_[PADR_(struct jail *)];
};

Listing 3. jail system call arguments structure for the native ABI.

struct jail {
 uint32_t version;
 char *path;
 char *hostname;
 char *jailname;
 uint32_t ip4s;
 uint32_t ip6s;
 struct in_addr *ip4;
 struct in6_addr *ip6;
};

Listing 4. jail structure for the native ABI.

int
sys_jail(struct thread *td, struct jail_args *uap)
{
 (...)
 int error;
 struct jail j;

 (...)
 error = copyin(uap->jail, &j, sizeof(struct jail));
 if (error)
 return (error);
 (...)
 return (kern_jail(td, &j));
}

Listing 5. jail system call handler for the native ABI.

Compatibility Layers
Compatibility layers provide system call implementations for non-native ABIs. In particu-

lar, the 32-bit ABI is implemented as the freebsd32 compatibility layer. Let’s consider the same
jail system call for the 32-bit ABI. The 32-bit version of the jail arguments structure is called
freebsd32_jail_args (see Listing 6) and includes a pointer to an object of the 32-bit ver-
sion of the jail structure called jail32 (see Listing 7). The only differences between the jail
and jail32 structures are architecture-independent field types. Each pointer is replaced with a
32-bit unsigned integer. Since pointers are 32-bit unsigned integers in 32-bit architectures, this
change guarantees that the jail32 structure compiled for a 64-bit kernel has the same layout
as the jail structure compiled for a 32-bit kernel.

The jail system call handler for the 32-bit ABI is implemented as the freebsd32_jail
function (see Listing 8). The function copies in a 32-bit jail object, translates each field for its

3 of 11

17FreeBSD Journal • May/June 2021

native ABI version using macros (see Listing 9) and calls the same kern_jail kernel routine as
in the native ABI case. This means that the only difference between the native ABI and the 32-
bit ABI in the jail system call handler is translating a user-space jail object to its native ABI
version that can be used by the kernel.

struct freebsd32_jail_args {
 char jail_l_[PADL_(struct jail32 *)];
 struct jail32 * jail;
 char jail_r_[PADR_(struct jail32 *)];
};

Listing 6. jail system call arguments structure for the 32-bit ABI.

struct jail32 {
 uint32_t version;
 uint32_t path;
 uint32_t hostname;
 uint32_t jailname;
 uint32_t ip4s;
 uint32_t ip6s;
 uint32_t ip4;
 uint32_t ip6;
};

Listing 7. jail structure for the 32-bit ABI.

int
freebsd32_jail(struct thread *td, struct freebsd32_jail_args *uap)
{
 (...)
 int error;
 struct jail j;

 (...)
 struct jail32 j32;

 error = copyin(uap->jail, &j32, sizeof(struct jail32));
 if (error)
 return (error);
 CP(j32, j, version);
 PTRIN_CP(j32, j, path);
 PTRIN_CP(j32, j, hostname);
 PTRIN_CP(j32, j, jailname);
 CP(j32, j, ip4s);
 CP(j32, j, ip6s);
 PTRIN_CP(j32, j, ip4);
 PTRIN_CP(j32, j, ip6);
 (...)
 return (kern_jail(td, &j));
}

Listing 8. jail system call handler for the 32-bit ABI.

4 of 11

18FreeBSD Journal • May/June 2021

#define CP(src, dst, fld) do { \
 (dst).fld = (src).fld; \
} while (0)

#define PTRIN(v) (void *)(uintptr_t)(v)
#define PTRIN_CP(src, dst, fld) do { \
 (dst).fld = PTRIN((src).fld); \
} while (0)

Listing 9. Helper macros used by the jail system call handler for the 32-bit ABI.

The copyinout API
Kernel memory disclosure and code duplication issues described in the previous sections are

implications of type-unawareness of the copy functions. If copyin() and copyout() functions
were aware of a structure of an underlying object stored in a copied buffer, they could copy
fields of the objects and translate them if a user process ABI differs from the kernel ABI.

To eliminate these problems, we introduce the copyinout API. For each type foo that is
copied between the user space and the kernel space, we introduce type-aware copy function
variants (see Listing 10) that copy each field of the type foo and translate them from a source
ABI to a destination ABI, e.g. a 32-bit pointer is translated to a 64-bit pointer for a 32-bit pro-
cess on a 64-bit architecture. Additionally, the copy functions can perform additional operations
depending on a CPU model, e.g. a kernel compiled for a CHERI CPU [11] can create CHERI ca-
pabilities [12] to set bounds or permissions for a field. In contrast to the original copy functions,
the type-aware copy functions take only two arguments: a source address and a destination
address. copyin_foo() copies an object stored at the uaddr user-space address to an object
stored at the kaddr kernel-space address. copyout_foo() works in the opposite and copies an
object stored at the kaddr kernel-space address to an object stored at the uaddr user-space
address. For example, the jail structure described in the previous sections could be copied in
using the following function call:

copyin_jail(uap->jail, &j);

int copyin_foo(const void *uaddr, struct foo *kaddr);
int copyout_foo(const struct foo *kaddr, const void *uaddr);

Listing 10. copyin() and copyout() function variants for the type foo.

The copyinout Framework
Implementations of the type-aware copy functions are independent of the copyinout API

itself. In order to provide the implementations, we introduce the copyinout framework that
consists of:

• Type annotations describing what copy functions should be generated for a type;
• A table of copy function pointers for each ABI;
• A kernel interface to dynamically register copy functions and call them;
• A code-generating tool that generates copy functions based on the type annotations.

The kernel defines type annotations that indicate what copy function should be generated:
• __copyin to generate copyin();
• __copyout to generate copyout();
• __copyinout to generate both copyin() and copyout().

5 of 11

19FreeBSD Journal • May/June 2021

Additionally, the kernel defines field annotations that describe what value is stored in a field:
• __uaddr_array(bar) for a field that stores a pointer to an array with a number of ele-
ments stored in the field bar;

• __uaddr_bounded(bar) for a field that stores a pointer to a buffer with a number of
bytes stored in the field bar;

• __uaddr_code for a field that stores a code pointer;
• __uaddr_object for a field that stores a pointer to an object;
• __uaddr_unbounded for a field that stores a pointer to a buffer with an unknown num-
ber of bytes;

• __uaddr_str for a field that stores a pointer to a string and hence its bounds can be
computed with strlen().

The field annotations can be used to generate copy functions that make use of security-re-
lated mechanisms, e.g., construct CHERI capabilities. Having the copyinout framework inte-
grated, a kernel developer who wants to generate new copy functions for the type foo de-
fined in Listing 11 must only add appropriate annotations and run the code-generating tool. In
this case, the generated copy functions copy the field len and translate the pointer stored in
the pointer array. Additionally, in CheriBSD, they construct the bounded capability array with
bounds set to a value stored in the field len as part of the field translation.

struct foo { | struct foo {
 size_t len; | size_t len;
 int *array; | __uaddr_array(len) int * __capability array;
}; | } __copyinout;

Listing 11. Type foo before and after copyinout changes.

In order to provide separate copy functions for different ABIs, the copyinout framework im-
plements the copyinout table with type-specific copyin() and copyout() function point-
ers (see Listing 12) as part of the sysentvec structure (see Listing 13 as compared to Listing 2).
Each ABI allocates its own copyinout table that is dynamically filled with entries using the SYS-
INIT framework through the Linker Set technique [10]. The SYSINIT() and SYSUNINIT() macro
calls for the ABIs are generated by the code generating tool alongside generated copy functions.
This allows generating copy functions that are used within a kernel module and should be reg-
istered and unregistered when the module is loaded and unloaded. With the copyinout ta-
ble, the copyinout API can be defined as in-kernel macros that cast pointers and call functions
from a copyinout table corresponding to an ABI of a currently running thread (see Listing 14).
A copyinout table entry index for a specific function is a global variable initialized as part of the
SYSINIT() call. For example, the type foo with its generated functions has an associated vari-
able copyinout_foo_idx that can be used indirectly by the COPYIN_CALL() and COPYOUT_
CALL() macros to determine function addresses and make function calls (see Listing 15).

typedef int copyin_t(const void * __capability uaddr, void * __capability kaddr);
typedef int copyout_t(const void * __capability kaddr, void * __capability uaddr);

struct copyinout {
 copyin_t *ce_copyin;
 copyout_t *ce_copyout;
};

Listing 12. copyinout structure with type-specific copy function pointers.

6 of 11

20FreeBSD Journal • May/June 2021

struct sysentvec {
 (...)
 struct sysent *sv_table;
 (...)
 int (*sv_fetch_syscall_args)(struct thread *);
 (...)
 const struct copyinout *sv_copyinout;
}

Listing 13. sysentvec structure with the copyinout table.

#define THREAD_COPYINOUT(thread, type) \
 (thread)->td_proc->p_sysent->sv_copyinout[copyinout_##type##_idx]

#define COPYIN_FUN(type) \
 THREAD_COPYINOUT(curthread, type).ce_copyin
#define COPYIN_CALL(type, uaddr, kaddr) \
 ((int (*)(const void * __capability, \
 struct type * __capability))COPYIN_FUN(type)) \
 (uaddr, kaddr)

#define COPYOUT_FUN(type) \
 THREAD_COPYINOUT(curthread, type).ce_copyout
#define COPYOUT_CALL(type, kaddr, uaddr) \
 ((int (*)(const struct type * __capability, \
 void * __capability))COPYOUT_FUN(type)) \
 (kaddr, uaddr)

Listing 14. In-kernel macros for copyinout API calls.

#define copyin_foo(uaddr, kaddr) \
 COPYIN_CALL(foo, uaddr, kaddr)
#define copyout_foo(kaddr, uaddr) \
 COPYOUT_CALL(foo, kaddr, uaddr)

Listing 15. copyinout API function call macros for the type foo.

The main part of the copyinout framework is the code-generating tool written in C++
that uses the libclang library for code analysis. It traverses input Clang AST trees of header
files that include all type definitions for which copy functions should be generated and prints
prototypes, definitions or implementations of the copy functions (see Listing 16). The AST trees
can be generated with the following command:

clang -Xclang -ast-dump -fsyntax-only -c header-file

The copyinout framework includes a helper script that for an input base source tree gen-
erates AST trees, runs the copyinout tool and places generated functions in the base source
tree. This script could be added to the FreeBSD build system to automate code generation.

Currently, the function implementations can be generated in the C language for any archi-
tecture (generic) or in the assembly language for MIPS and CHERI-MIPS architectures. For

7 of 11

21FreeBSD Journal • May/June 2021

example, Listing 17 presents a copyin() function in the assembly language generated by the
copyinout tool for the type foo (see Listing 11) and the native ABI (a hybrid CheriBSD
kernel).

$./copyinout
usage: copyinout prototypes kernel-space-ast
 copyinout definitions native|freebsd32|cheri kernel-space-ast
 copyinout implementations native|freebsd32|cheri generic|mips user-space-ast
kernel-space-ast

Listing 16. copyinout tool usage.

struct foo { | LEAF(native_copyin_foo)
 | cgetbase t0 , $c3
 | blt t0, zero, _C_LABEL(copyerr)
 | nop
 | GET_CPU_PCPU(v1)
 | PTR_L t0, PC_CURPCB(v1)
 | PTR_LA t1 , copyerr
 |
 size_t len; | PTR_S t1, U_PCB_ONFAULT(t0)
 | cld v0, zero, 0($c3)
 | PTR_S zero, U_PCB_ONFAULT(t0)
 | csd v0, zero, 0($c4)
 |
 __uaddr_array(len) int * __capability array; | PTR_S t1, U_PCB_ONFAULT(t0)
 | cld v0, zero, 8($c3)
 | cfromptr $c5 , $ddc , v0
 | cld v0, zero, 0($c3)
 | li a0, 96
 | multu a0, v0
 | mflo v0
 | csetbounds $c5 , $c5 , v0
 | PTR_S zero, U_PCB_ONFAULT(t0)
 | csc $c5, zero, 16($c4)
 |
 | j ra
 | move v0, zero
} __copyinout; | END(native_copyin_foo)

Listing 17. copyin() function generated for the type foo and the native ABI (a hybrid CheriBSD kernel).

Memory Copying with the copyinout API
Having the copyinout framework, we can simplify system call structures and handlers.

For the previously discussed jail system call, we can replace the jail (see Listing 4) and
jail32 (see Listing 7) structures with a single one (see Listing 18). The jail system call for the
native ABI (see Listing 5) can be modified to use the type-aware copyin() function variant
copyin_jail() (see Listing 19). Since the copyin_jail() function is also ABI-independent
and can automatically translate a 32-bit ABI object to its native ABI version, we can also modi-
fy the jail system call handler for the 32-bit ABI (see Listing 8) to simply call the sys_jail()
function (see Listing 20).

8 of 11

22FreeBSD Journal • May/June 2021

struct jail {
 uint32_t version;
 __uaddr_str char * __capability path;
 __uaddr_str char * __capability hostname;
 __uaddr_str char * __capability jailname;
 uint32_t ip4s;
 uint32_t ip6s;
 __uaddr_array(ip4s) struct in_addr * __capability ip4;
 __uaddr_array(ip6s) struct in6_addr * __capability ip6;
} __copyinout;

Listing 18. jail structure with copyinout changes for all ABIs.

int
sys_jail(struct thread *td, struct jail_args *uap)
{
 (...)
 int error;
 struct jail j;

 (...)
 error = copyin_jail(uap->jail, &j);
 if (error)
 return (error);
 (...)
 return (kern_jail(td, &j));
}

Listing 19. jail system call handler with copyinout changes for the native ABI.

int
freebsd32_jail(struct thread *td, struct freebsd32_jail_args *uap)
{
 struct jail_args args;

 args.jailp = uap->jailp;

 return (sys_jail(td, &args));
}

Listing 20. jail system call handler with copyinout changes for the 32-bit ABI.

Conclusion
The initial implementation of the copyinout framework shows that copy-function gener-

ation can improve code quality in system call handlers and eliminate potential kernel memory
leaks in paddings. However, the code-generating tool must be improved to support more com-
plex data types and generate assembly copy function implementations for all supported plat-
forms. While work on the framework has been on hold for a while, we hope to resume it and
implement these improvements soon.

9 of 11

23FreeBSD Journal • May/June 2021

Future Work
Besides the basic functionality for the copyinout framework, there are several ideas on

how it can be improved or applied in the future:
• Assembly copy function implementation optimizations;

The current assembly implementations do not use any optimization techniques to mini-
mize the number of registers or cycles used during copying. For example, two half-word
adjacent fields could be loaded as one word with one load instruction and one register in-
stead of two load instructions.

• System call handlers reductions;
Compatibility layers implement many system call handlers that only translate objects be-
tween ABIs and not introduce any additional logic to their native ABI counterparts. Having
the copyinout API applied to them, the system call handlers seem to be redundant. For
example, the jail system call handler with copyinout changes for the 32-bit ABI (see List-
ing 20) only copies a pointer to a jail object from a jail system call arguments struc-
ture and calls the jail system call handler for the native ABI. It would be interesting to
apply the copyinout framework to system call argument structures as well and remove
such system call handlers from the compatibility layers.

• Cross-platform compatibility layers for emulators.
User-mode emulation in QEMU allows running programs for different architectures than
a host architecture without full system emulation. Each time a system call is encountered,
QEMU translates system call arguments from an emulated ABI version to a host user-space
ABI version, performs a system call on a host and translates a result to its emulated ABI ver-
sion. We could investigate if it is possible to implement a compatibility layer that includes
system call handlers for an emulated platform and using the copyinout framework can
copy and translate system call objects directly from or to an emulated user space.

References
[1] CTSRD. CheriBSD. FreeBSD adapted for CHERI-MIPS, CHERI-RISC-V, and Arm Morello.

https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/cheribsd.html.
[2] Konrad Witaszczyk. Capability-aware memory copying between address spaces. Universi-

ty of Copenhagen, 2019.
[3] The FreeBSD Project. FreeBSD-EN-18:12.mem. https://www.freebsd.org/security/adviso-

ries/FreeBSD-EN-18:12.mem.asc.
[4] The MITRE Corporation. CVE-2017-16994. https://cve.mitre.org/cgi-bin/cvename.

cgi?name =CVE-2017-16994.
[5] The MITRE Corporation. CVE-2010-4082. https://cve.mitre.org/cgi-bin/cvename.cgi?name

=CVE-2010-4082.
[6] Mateusz Jurczyk. Detecting Kernel Memory Disclosure with x86 Emulation and Taint

Tracking. https://googleprojectzero.blogspot.com/2018/06/detecting-kernel-memory-dis-
closure.html.

[7] Alexander Popov. Introduce the STACKLEAK feature and a test for it. https://lwn.net/Arti-
cles/735584/.

[8] Kees Cook. mm: Hardened usercopy. https://lwn.net/Articles/693745/.
[9] Thomas Barabosch, Maxime Villard. KLEAK: Practical Kernel Memory Disclosure Detec-

tion. https://www.netbsd.org/gallery/presentations/maxv/kleak.pdf.

10 of 11

https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/cheribsd.html
https://www.freebsd.org/security/advisories/FreeBSD-EN-18:12.mem.asc
https://www.freebsd.org/security/advisories/FreeBSD-EN-18:12.mem.asc
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-16994
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-16994
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-4082
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-4082
https://googleprojectzero.blogspot.com/2018/06/detecting-kernel-memory-disclosure.html
https://googleprojectzero.blogspot.com/2018/06/detecting-kernel-memory-disclosure.html
https://lwn.net/Articles/735584/
https://lwn.net/Articles/735584/
https://lwn.net/Articles/693745/
https://www.netbsd.org/gallery/presentations/maxv/kleak.pdf

24FreeBSD Journal • May/June 2021

[10] The FreeBSD Project. FreeBSD Architecture Handbook, Chapter 5. The SYSINIT Frame-
work. https://docs.freebsd.org/en/books/arch-handbook/sysinit/.

[11] Robert N. M. Watson, et al. Capability Hardware Enhanced RISC Instructions:
CHERI Instruction-Set Architecture (Version 8). Technical Report UCAM-CL-TR-951, Uni-
versity of Cambridge, Computer Laboratory, 2020.

[12] Robert N.M. Watson, et al. An Introduction to CHERI. Technical Report UCAM-CL- TR-
941, University of Cambridge, Computer Laboratory, 2019.

KONRAD WITASZCZYK is a Research Associate at the University of Cambridge working on
the CHERI project. He graduated with a BSc degree in Theoretical Computer Science from the
Jagiellonian University, an MSc degree in Computer Science from the University of Copenhagen
and spent almost 7 years at Fudo Security working with FreeBSD and its security-related tech-
nologies. Currently, Konrad lives in Warsaw, Poland.

11 of 11

Transport Layer Security, or TLS, makes ecommerce and online
banking possible. It protects your passwords and your privacy.
Let’s Encrypt transformed TLS from an expensive tool to a free
one. TLS understanding and debugging is an essential sysadmin
skill you must have.

TLS Mastery teaches what you must know.

Stop fighting with certificates and start using them. Give them
enough attention that you can automate and ignore them.

Learn TLS. Because we’re sysadmins and lies do not become us.

TLS Mastery by Michael W Lucas
https://mwl.io

“ ”
Security.
 You keep using that word.
 I do not think it means
 what you think it means.

https://docs.freebsd.org/en/books/arch-handbook/sysinit/

25FreeBSD Journal • May/June 2021

Traditionally, NFS has provided very limited security based on the IP address/DNS host name
of the client using exports(5). This can be subverted by IP address spoofing and simply does

not work for mobile clients without any fixed, well-known IP address or DNS host name. Also,
all data normally travels in clear text on the wire and, as such, can easily be sniffed.

RFC2203 was published September 1997 and provided a mechanism to alleviate at least
some of the above issues via the use of GSSAPI with Kerberos mechanism, commonly referred
to as Kerberized NFS. When used via the “sec=krb5p” (KerberosV with privacy), the RPC
message’s arguments and results are encrypted on the wire. Kerberos works well for user au-
thentication but is less convenient for machine authentication. Unlike NFSv3, NFSv4 requires a
“system principal” which is used to maintain the Open/Byte_range lock state on the server.
Kerberos has the concept of a host-based Kerberos principal of the form “host/<FQDN-of-
machine>@REALM”, for which a keytab entry can be created and copied onto a client to be
used as a “system principal”. The “<FQDN-of-machine>” instance should protect the keytab
entry from being used by another client, if compromised. However, this makes such a Ker-
beros principal useless for a mobile client without a fixed, well-known DNS host name. Also,
for “sec=krb5p”, only the data payloads of the RPCs are encrypted, exposing the RPC headers
and making it impractical to offload the encryption/decryption to specialized hardware. In sum-
mary, when combined with the administrative effort involved in implementing a Kerberos envi-
ronment, “sec=krb5p” has not been widely adopted and does not work well for mobile clients
without a fixed, well-known DNS host name.

In an effort to improve NFS security, an Internet Draft titled “Towards Remote Procedure
Call Encryption By Default” has been written, which describes the use of Transport Layer Secu-
rity (TLS) to encrypt RPC message traffic on the wire along with the use of X.509 certificates
for machine authentication. Since TLS is widely adopted, there are already specialized hardware
offload solutions, not to mention efficient software implementations. This article describes the
FreeBSD 13 implementation of this NFS over TLS, plus presents an example use case for mobile
clients, such as laptops.

Implementation
Although I refer to it as NFS over TLS, it is more correctly Sun RPC over TLS, since the imple-

mentation is done in the kernel RPC (krpc) and is largely transparent to the NFS layer. OpenSSL’s
libraries provide a comprehensive implementation of TLS and handling of X.509 certificates in

BY RICK MACKLEM

1 of 7

Using TLS to
Improve NFS
Security

26FreeBSD Journal • May/June 2021

user space. However, NFS is implemented in the kernel, and passing all NFS RPC messages up
into user address space so that they can be handled by the OpenSSL libraries seemed impracti-
cal. Fortunately, FreeBSD 13’s kernel added kernel TLS (KTLS) [TLS Offload in the Kernel, John
Baldwin, FreeBSD Journal,May/June 2020 https://issue.freebsdfoundation.org/publication/?m=
33057&i=667002&p=12&ver=html5] that performs efficient handling of TLS Application Data
Records, including encryption/decryption, within the network stack in the kernel.

This provided the basic mechanism to encapsulate/encrypt the RPC messages in TLS Applica-
tion Data Records and decrypt/de-encapsulate those RPC messages on the receive end. It does
not, however, handle the non-Application Data Records, such as those used for the TLS hand-
shake. To handle non-Application Data Records, rpc.tlsclntd(8) and rpc.tlsservd(8) were imple-
mented in user space for the client and server respectively. These daemons handle upcalls from
the kernel done via custom RPCs using the krpc over an AF_LOCAL socket, in a manner similar
to what the gssd(8) daemon does for Kerberized NFS. To handle these upcalls, the daemons
perform OpenSSL library calls to do the heavy lifting of handling non-Application Data Records,
including handling of the TLS handshake. The daemons also use a custom system call to regis-
ter with the krpc in the kernel, plus the odd case of needing to associate a file descriptor with
an already extant socket in the kernel.

When a client wishes to do NFS over TLS, it performs a STARTTLS Null RPC. A Null RPC is
an RPC with no arguments or results and is normally assigned RPC Number 0. To do a START-
TLS, the Null RPC request uses a new RPC credential type of AUTH_TLS. For the NFS service
in FreeBSD, if rpc.tlsservd is running, the krpc replies with a credential verifier made up of the
eight ASCII bytes “STARTTLS”. This STARTTLS probe done by the NFS client triggers a TLS
handshake to set up TLS on the TCP connection being used for RPC message transport.

The sequence of actions in the server at this point is:

• Block krpc reception on the TCP socket.
• Send the Null RPC reply with the credential verifier of “STARTTLS”.
• Do a handshake upcall to the rpc.tlsservd.

In the rpc.tlsservd to handle the handshake:
 - Acquire a file descriptor for the TCP socket.
 At this point the krpc has a TCP socket for the client’s NFS connection
 but there is no file descriptor reference for it.
 This was one of the more challenging corners of the implementation.
 My solution was to use the daemon’s custom syscall to associate a file descriptor with
 the socket.
 Once done, closure of the socket is relegated to the daemon instead of the krpc.
 - Add a structure to a linked list for the socket file descriptor,
 keyed on a unique 64bit reference number.
 - Call SSL_set_fd() to associate the socket with an SSL context.
 - Call SSL_accept() to do the actual handshake.
 - If the handshake succeeds, do BIO_get_ktls_send() and BIO_get_ktls_recv()
 calls to check that KTLS is now enabled on the socket.
 If either of these return zero, the handshake is considered failed.
 - Depending upon what command line options were specified for the daemon,
 any X.509 certificate provided by the client is verified and any
 user mapping specified by the certificate is used to create POSIX
 <uid, gidlist> credentials for the user.

2 of 7

https://issue.freebsdfoundation.org/publication/?m=33057&i=667002&p=12&ver=html5
https://issue.freebsdfoundation.org/publication/?m=33057&i=667002&p=12&ver=html5

27FreeBSD Journal • May/June 2021

 - Replies to the upcall RPC with a set of flags indicating whether
 the handshake succeeded, if a verified certificate was received and
 POSIX user credentials mapped from the certificate, if any.
 Included in the reply is the unique 64bit reference number for the socket,
 along with the startup date/time for the daemon, so that the kernel can
 refer to the socket in subsequent upcalls.
 The startup date/time differentiates the reference number
 from the same reference number that might be used by a previous or
 subsequent instance of the daemon.
• If the handshake succeeded, mark the krpc socket as using TLS, along with the flags

and credentials, if any, in the upcall’s reply.
• Unblock kernel RPC reception on the socket.

The socket should now be ready to handle RPC messages, with the KTLS handling the Ap-
plication Data Record encapsulation/encryption below the sosend() calls and the decryption/
de-encapsulation below the soreceive() calls used by the krpc, if the handshake succeeded.

If a non-Application Data Record is at the head of the socket’s receive queue, a new MSG_
TLSAPPDATA flag for the soreceive() call indicates that the call should return ENXIO so that the
non-Application Data Record will remain at the head of the socket’s receive queue. The ENXIO
return triggers an upcall to rpc.tlsservd to handle the non-Application Data Record. The kernel
code blocks reception on the socket by the krpc and then does the handle record upcall to the
daemon. The 64bit reference number, along with the daemon’s start date/time are passed up
in arguments, so that the daemon can identify the correct socket.

• This upcall simply does a SSL_read() with a length argument equal zero.
This call always fails, but processes non-Application Data Records
at the head of the socket’s receive queue before failing.

The third upcall to the daemon is done to shut down and close the TCP socket, with the
64bit reference number and daemon start date/time as arguments.

• This upcall closes the socket and removes the socket’s element from the linked list.
If not already done, as indicated by SSL_get_shutdown(), this upcall also does a
SSL_shutdown() before closing the socket, to send a Peer Reset TLS record to the client.

Although all of the above is handled by the krpc, the NFS server does use new flags related
to TLS that are passed to the NFS server by the krpc for an RPC to determine if the RPC is per-
mitted, based on the following exports(5) options.

There are three new exports(5) options:

tls - Indicates that the client must use NFS over TLS, but is not required
 to present any X.509 certificate to the server during TLS handshake.
tlscert - Indicates that the client must use TLS and must have provided
 a X.509 certificate during TLS handshake that verified.
tlscertuser - Indicates that the client must use TLS, must have provided
 a X.509 certificate during TLS handshake that verifier and that this certificate must have
 successfully mapped to a POSIX user

3 of 7

28FreeBSD Journal • May/June 2021

 credential (<uid, gid_list>).
 This mapping is generated from a login name found in the otherName
 component of subjectAltName with a “@domain”, where “domain” matches
 the one the server uses.
 This mapping is only generated if rpc.tlsservd is started with the
 -u/--certuser command line option.

If none of the above exports(5) options were specified, TLS is permitted, but not required.
There is also a command line option for rpc.tlsservd that specifies that the daemon re-

quire that the rDNS name for the client’s IP address match the “DNS” component of subjec-
tAltName in the client’s X.509 certificate. This is analogous to what RFC 6125 recommends that
a client do to verify the identity of a domain-named application service. Since this option is in-
tended to subvert client IP address spoofing, exports(5) cannot be used, since it is keyed on
the client’s IP address. As such, this option specifies that all clients doing NFS over TLS satisfy
this criterion and failures result in handshake failures. It is the strongest client host identity check
but requires that all clients have X.509 certificates that verify and where the DNS component of
subjectAltName is correct. All clients must also have fixed, well-known DNS addresses when
this option is specified.

The client daemon functions is a similar manner, but with some differences. Unlike
rpc.tlsservd, rpc.tlscltnd only requires a certificate if the -m/--mutualverf command
line option is specified. The client can also handle multiple certificates stored in different files, in
case different NFS over TLS servers require different certificates.

When an NFS mount establishes a new TCP connection to the server, where the “tls” mount
option has been specified, the krpc will do the following:

• Send the Null RPC request with the credential of type AUTH_TLS.
• If a Null RPC reply with a credential verifier consisting of the

ASCII bytes “STARTTLS” is received.
 - Block kernel RPC reception on the new TCP socket.
 - Do a handshake upcall to the rpc.tlsclntd.
 In rpc.tlsclntd to handle the handshake:
 - Acquire a file descriptor for the TCP socket.
 At this point the krpc has a TCP socket for the client’s NFS connection
 but there is no file descriptor reference for it.
 This is done by the daemon’s custom system call, similar to rpc.tlsservd.
 - Call SSL_set_fd() to associate the socket with an SSL context.
 - If the daemon was started with the command line option -m/--mutualverf,
 SSL_[ctx_]use_certificate_file()/SSL_[ctx_]use_PrivateKey_file() are
 called to provide a certificate during the handshake.
 An argument for the upcall may override the default names for the
 certificate/key files.
 The default names are “cert.pem” and “certkey.pem”, but may be
 overridden on a per-mount basis via the “tlscertname” mount option,
 in case different NFS servers require different certificates.
 - Call SSL_connect() to do the actual handshake.
 - If the handshake succeeds, do BIO_get_ktls_send() and

4 of 7

29FreeBSD Journal • May/June 2021

 BIO_get_ktls_recv() calls to check that KTLS is now enabled on the socket.
 If either of these return zero, the handshake is considered failed.
 If the handshake is successful:
 - Add a structure to a linked list for the socket file descriptor,
 keyed on a unique 64bit reference number.
 - Reply to the upcall RPC indicating the handshake succeeded.
 Included in the reply is the unique 64bit reference number for the
 socket, along with the startup date/time for the daemon, so that the
 kernel can refer to the socket in subsequent upcalls.
 else:
 - close the socket.
 - Reply failure to the kernel, which will result in all subsequent
 NFS RPCs failing with EACCES.
 - Upon receiving the upcall reply, the krpc sets a flag if the handshake
 succeeded and unblocks krpc reception on the socket.
For the client, if either the STARTTLS Null RPC or TLS handshake fails for a mount when the

“tls” option has been specified, all RPCs will fail with EACCES. This is done so that NFS mounts
with the “tls” option specified will not function unless TLS is working for the mount.

Mobile Devices Such as Laptops as a Use Case
A mobile device, such as a laptop, typically accesses the Internet from anywhere with no

fixed, well-known IP address. To allow a laptop to mount an NFSv4 file server from anywhere
on the Internet requires some reasonable security mechanism. Although NFS over TLS can be
used for NFSv3 mounts, enabling NFSv3 mounts from anywhere is awkward, since the Mount
protocol uses a dynamically assigned port number via rpcbind whereas NFSv4 mounts only use
port #2049. A such, this example will use NFSv4 mounts.

It is possible to use Kerberized NFS with privacy to do a mount from a FreeBSD laptop. The
laptop user would need to do commands such as:

 # sysctl vfs.usermount=1 - done as su/root
 # service gssd onestart - done as su/root
 % kinit - to acquire a TGT for the user
 % mount -t nfs -o sec=krb5p,nfsv4,minorversion=1 nfsv4-server.uoguelph.

ca:/ /mnt
 - done as the non-root user
 - Use the mount point.
 % umount /mnt

By using the mount option “sec=krb5p”, but not the “gssname” mount option, the
FreeBSD client will use the “user principal” as the “system principal”. This mount breaks badly if
the user’s TGT expires before the “umount”.

As far as I know, this has not been widely adopted, possibly due to the effort required to in-
stall Kerberos and maintain a KDC accessible from anywhere on the Internet.

To do this using NFS over TLS requires the generation of a X.509 certificate for the client. Al-
though there are many ways to create/sign X.509 certificates, this can easily be accomplished
by a site local CA, managed by the openssl(1) command in FreeBSD 13.

5 of 7

30FreeBSD Journal • May/June 2021

• Create a certificate for the laptop, signed by the site local CA.
Using openssl(1) the commands might be:

 # openssl genrsa -aes256 -out certkey.pem
 # openssl req -new -key certkey.pem -addext
“subjectAltName=otherName:1.3.6.1.4.1.2238.1.1.1;UTF8:rmacklem@uoguelph.ca”
-out req.pem

 # openssl ca -in req.pem -out cert.pem
• Copy cert.pem and certkey.pem into a directory named /etc/rpc.tlsclntd

on the laptop in some secure manner.
• Enable the client daemon, using the certificate.
 - edit /etc/rc.conf and add:
 tlsclntd_flags=”-m”
 - Due to the “-aes256” option, rpc.tlsclntd will query for the
 passphrase when starting, so it may be preferred to start the
 daemon manually before doing the mount instead of at boot time.
 - to start at boot time, add to /etc/rc.conf: tlsclntd_enable=”YES”
 - or start it manually before doing the mount via: # service tlsclntd onestart
 - Once the laptop is connected to the Internet, the mount can be done as su/root:
 # mount -t nfs -o nfsv4,minorversion=1,tls nfsv4-server.uoguelph.ca:/ /mnt

Since the client presents a certificate signed by the site local CA, the server can be reason-
ably assured that the client has a certificate created by the site local CA administrator. The
“-aes256” option used when creating the client’s private key forces the rpc.tlsclntd to query for
a passphrase to be entered for the key when rpc.tlsclntd is started. This subverts a trivial com-
promise where the laptop is stolen, or the certificate/key files are copied to another client. For
the certificate to be used on an unauthorized client, the passphrase would have to somehow
be captured/cracked.

It is also possible to revoke a certificate and add it to a CRL if for any reason the laptop
should no longer be allowed to do the mount.

For the above example, all RPCs done on the server will be performed using the POSIX cre-
dentials (<uid, gid_list>) of the login name “rmacklem” on the NFSv4 server. This avoids
any need for the laptop to have a uniform uid, gid space with respect to the server. It also limits
the risk due to a compromised laptop to files accessible by “rmacklem”. This optional configu-
ration may not conform to the Internet draft. A co-author of the draft agrees that mapping cli-
ent RPC credentials to a specific user based on the X.509 certificate presented during the TLS
handshake is useful and has in fact coined the term “TLS Identity Squashing” for it. However,
this individual would prefer a database that maps the certificate’s <issuerName, serialNumber>
tuple to the “user”. He argues that putting the “user” in the certificate conflagrates “machine”
vs “user” credentials. Being a pragmatist, I feel that putting the “user” in the certificate is just
an easy way to implement this. The rpc.tlsclntd could be modified to use a flat file/database to
implement this, if that were to become preferred practice.

The above is just one example use case. The command line options on the daemons allow a
range of configurations, ranging from only requiring TLS to encrypt RPC messages on the wire
to requiring all clients to present verifiable X.509 certificates where the DNS component of sub-
jectAltName must match the rDNS name for the client’s IP host address. The client may also
verify the authenticity of the NFS server in the manner recommended by RFC 6125 for TLS do-
main-named application servers.

6 of 7

31FreeBSD Journal • May/June 2021

To set up NFS over TLS on FreeBSD 13, see:
https://people.freebsd.org/~rmacklem/nfs-over-tls-setup.txt
plus the man pages for rpc.tlsclntd(8), rpc.tlsservd(8), exports(5), ktls(4)and

mount_nfs(8).

RICK MACKLEM For over 30 years, starting in 1980, Rick was the system administrator for a
CS department, running BSD systems among others. When the VAX 11/780 running 4.3BSD
was being replaced by MicroVAXII systems, there was a need for NFS on 4.3BSD, so Rick im-
plemented that and contributed it to CSRG. A Usenix paper titled “Lessons Learned Tuning the
4.3BSD NFS Implementation” described the first implementation of NFS over TCP done as a
part of this work. Now retired, Rick continues to work on NFS implementation for FreeBSD.

7 of 7

Write
For Us!
Write

For Us!
Contact Jim Maurer

with your article ideas.
(jmaurer@freebsdjournal.com)

https://people.freebsd.org/~rmacklem/nfs-over-tls-setup.txt

Nov/Dec 2019 57

2021 Editorial Calendar
• Case Studies (January-February)

• FreeBSD 13 (March-April)

• Security (May-June)

• Desktop/Wireless/Graphics (July-August)

• Cloud (September-October)

• Embedded (November December)

33FreeBSD Journal • May/June 2021

I’ve been working with Capsicum for some time as part of my internship with the FreeBSD
Foundation. This article details my process of applying the Capsicum sandboxing framework to
a large program called Got. Along the way, I’ll give a simple and concrete introduction to Capsi-
cum: what problems it deals with, the reasoning behind its solutions, and how to use it. We will
find that Got is particularly well-suited to Capsicum, and I’ll discuss how Got’s structures make
the program Capsicum-friendly.

Capsicum Concepts
Capsicum exists to fix a straightforward problem with computer programs: they have too

much power. I like to think of it like this. In a world without Capsicum, if I log in to my com-
puter and run some program, there is nothing stopping that program from deleting my entire
home directory without warning. Of course the program probably will never do that intention-
ally, but it has enough power to do so. This becomes a real concern when thinking about secu-
rity: if someone finds a vulnerability in a program, they could exploit it to do anything the pro-
gram can do. Therefore, if the program is wielding an excessive amount of power, the attacker
can use it to do an excessive amount of damage.

In comes Capsicum1, which provides tools to control a program’s power. One important con-
cept Capsicum deals with is that of a global namespace. Essentially, a global namespace is a
group (“space”) of objects, each of which have an identifier (“name”) that uniquely identifies
it among all objects (“global”). An easy example of a global namespace is the file system: the
space is the group of all files, and each file’s absolute path is its unique ‘name’. The FreeBSD
operating system has many global namespaces2, but the file system is ubiquitous and very im-
portant; I’ll be talking about it a lot from now on.

Capsicum-less programs deal frequently with global namespaces. When these programs
want to open() a file, they can pass in a file’s absolute path. While this seems normal enough,
the program is actually using its tremendous power here: “Out of every single file on this com-
puter, I want this one!” While file permissions and such will prevent the program from ac-
cessing every file, this amount of power is certainly in the ‘delete-your-whole-home-directory’
range.

Even worse, when the program is exercising its power like this, it’s exercising the power im-
plicitly. It does not say: “I would like to exercise my power to access every file, and here is a
‘key’ to verify that I have this power”; the program just always has the power. This power to do
things ‘by default’ is called ambient authority3. When accessing these global namespaces, pro-
grams are always exercising their ambient authority.

Therefore, Capsicum recognizes global namespaces as basically an uncontrollable source
of power, and so introduces capability mode — a state in which a program cannot use glob-

BY YANG ZHONG

1 of 6

Capsicum
Case Study: Got

34FreeBSD Journal • May/June 2021

al namespaces at all, and therefore also have no ambient authority. Programs ‘enter’ capability
mode by calling cap_enter()4, and cannot ever leave. In capability mode, a program cannot
open() new files, and is therefore restricted to file descriptors that it open()-ed before calling
cap_enter(), or file descriptors provided through a connection to a different process. This en-
vironment that limits the resources a program has access to is called a sandbox, which is why
Capsicum is described as a sandboxing technique.

Capsicum does more than this. Another important concept is that of capabilities, which in
Capsicum’s case are objects that extend file descriptors; they let you finely limit what any file
descriptor is capable of doing, and serve the more hidden role of making capability mode ac-
tually work. There is also the Casper library, which provide common services for Capsicumized
programs.

The Target: Got
So, with these tools, we’d like to adapt some existing programs to use them. I was tasked

with adapting to Capsicum the version-control system Game of Trees, or Got for short. It’s be-
ing developed by and for OpenBSD developers, but the FreeBSD project is considering adding
Got to the base system. So as part of this effort, it was my job to figure out how to tweak Got
to be more amenable to Capsicum, without drastically changing anything: Ideally, we would
make structural changes clean enough to incorporate into the upstream version of Got, so that
the FreeBSD Capsicum version of Got is as similar to it as possible.

Capsicumizing Got
On a high level, a common pattern for Capsicumized programs has the program be separat-

ed into two parts. In the first part, the program acquires the resources it needs; in the second,
the program does its ‘work’ of reading from and writing to those resources. The program en-
ters capability mode right after the first part. Since the program is stuck in capability mode af-
ter this, its power is limited in the dangerous second part, in which it works with the external
and untrustworthy resources it acquired in the first.

Many programs are not separated in this way. Often, they acquire resources wherever it’s
convenient, resulting in the two parts being delicately interleaved. Before Got, I dealt with this
issue in the program sort(). In these situations, helper libraries like Casper are invaluable, as
they exist to solve common Capsicumization problems that would otherwise take a lot of set-
up work to fix. You can see an simple example of the interleaving issue in Case studies of sand-
boxing base system with Capsicum, by Mariusz Zaborski (EuroBSDcon 2017) on Youtube, part
of which describes the process of Capsicumizing the program bspatch().

Fortunately for me, Got is structured in how it gets its files. Got works with two main direc-
tories: a repository and a worktree. If you know Git, these are quite similar to Git repositories
and worktrees5. Got then has the functions got_repository_open() and got_worktree_
open(), responsible for looking for the repository/worktree and returning a struct — struct
got_repo and struct got_worktree respectively — containing information about the two
directories6.

After this point, Got exclusively works within these two directories (and /tmp), which means
that it never tries to acquire anything ‘new’. This avoids the interleaving problem discussed ear-
lier, but Got still uses the global file system namespace to actually open new files — for ex-
ample, the got_repo struct contains the absolute path to its associated repository, and so Got
would open the directory using that path whenever it needs to. This is not compatible with ca-

2 of 6

35FreeBSD Journal • May/June 2021

pability mode.
In that case, must I pre-open every single file inside the two directories, so that I can use

them in capability mode? Thankfully not. When you open() file, you get its file decriptor. For
non-directory files, its descriptor lets you access just that file. However, a directory’s file descrip-
tor allows you to access everything inside that directory.

For this purpose, FreeBSD, by way of POSIX, provides the *at()-family of system calls.
Where the normal calls take in absolute paths, the *at() calls take in a file descriptor and a rel-
ative path. If I wish to open the file “/dir/subdir/a”, and I have a file descriptor fd for dir, I
can call openat(fd, “subdir/a”). This form of access is allowed in capability mode, barring
some exceptions7, since we are no longer searching through the global namespace of all files.

It’s easy to see how this helps us with Got, as we know that Got will always work within
two specific directories! If we pre-open the repository and worktree directories and store their
file descriptors inside the got_repo and got_worktree structs, we can later use those descrip-
tors to open files inside those directories, even in capability mode. In Got, functions that oper-
ate on files inside the repository or worktree will take in a got_repository or got_worktree
as a parameter, meaning that the file descriptor we added will be easily accessible there.

static const struct got_error
update_blob(struct got_worktree *worktree,
 struct got_fileindex *fileindex, struct got_fileindex_entry *ie,
 struct got_tree_entry *te, const char *path,
 struct got_repository *repo, got_worktree_checkout_cb progress_cb,
 void *progress_arg)
{
 const struct got_error *err = NULL;
 struct got_blob_object *blob = NULL;
 char *ondisk_path;
 unsigned char status = GOT_STATUS_NO_CHANGE;

 truct stat sb;
 if (asprintf(&ondisk_path, “%s/%s”, worktree->root_path, path) == -1)
 return got_error_from_errno(“asprintf”);

 // example of usage
 int opened_file_fd = open(ondisk_path, 0);

The above snippet of Got’s code shows a function that takes in a got_worktree struct,
and uses it to construct a path to a file in that directory. I’ve added an example of how the
function would typically use the new path.

Below is the same code, converted to use our new file descriptor strategy.

static const struct got_error
update_blob(struct got_worktree *worktree,
 struct got_fileindex *fileindex, struct got_fileindex_entry *ie,
 struct got_tree_entry *te, const char *path,
 struct got_repository *repo, got_worktree_checkout_cb progress_cb,

3 of 6

36FreeBSD Journal • May/June 2021

 void *progress_arg)
{
 const struct got_error *err = NULL;
 struct got_blob_object *blob = NULL;
 char *ondisk_path;
 unsigned char status = GOT_STATUS_NO_CHANGE;

 struct stat sb;
 int path_fd_part = worktree->root_fd;
 char *path_relative_part = path;

 // example of usage
 int opened_file_fd = openat(path_fd_part, path_relative_part, 0)

It’s quite simple! Simpler than the first one, even, since the asprintf() call is no longer need-
ed. In these types of situations, adapting Got to support Capsicum is easy.

Some functions don’t take in these structs, but instead take in an absolute path that they
operate on. Adapting these functions to be Capsicum-compatible takes more work, as we
must change their parameters from an absolute path to a pair of (relative path, directory file
descriptor), in order for the function to be able to access the file in capability mode.

In practice, this is usually only a small problem. The absolute path the function takes in
doesn’t come from nowhere — it must have been created by using the got_repo or got_
worktree structs, and therefore the file descriptor we need won’t be far away. Below is a
function whose parameters needed to be changed as a part of Capsicumization:

const struct got_error *
got_fileindex_entry_update(struct got_fileindex_entry *ie,
- const char *ondisk_path, uint8_t *blob_sha1, uint8_t *commit_sha1,
- int update_timestamps)
+ int wt_fd, const char *ondisk_path, uint8_t *blob_sha1,
+ uint8_t *commit_sha1, int update_timestamps)
{
 struct stat sb;
- if (lstat(ondisk_path, &sb) != 0) {
+ if (fstatat(wt_fd, ondisk_path, &sb, AT_SYMLINK_NOFOLLOW) != 0) {
 if (!((ie->flags & GOT_FILEIDX_F_NO_FILE_ON_DISK) &&
 errno == ENOENT))
- return got_error_from_errno2(“lstat”, ondisk_path);
+ return got_error_from_errno2(“fstatat”, ondisk_path);
 sb.st_mode = GOT_DEFAULT_FILE_MODE;
 } else {
...

Since the parameters of the function changed, we also need to alter all the places where
it was called. In some places, the calling function created the path, using the got_worktree

4 of 6

37FreeBSD Journal • May/June 2021

struct, that it passes into got_fileindex_entry_update(); for these, we already have the
necessary file descriptor, and so adapting to the new parameters is easy:

...
 * Preserve the working file and change the deleted blob’s
 * entry into a schedule-add entry.
 */
- err = got_fileindex_entry_update(ie, ondisk_path, NULL, NULL,
- 0);
+ err = got_fileindex_entry_update(ie, worktree->root_fd,
+ ie->path, NULL, NULL, 0);
 } else {
...

Some calling functions took in the path as a parameter as well, simply passing it through to
got_fileindex_entry_update(). For these, we must similarly change the calling function’s
parameters:

 static const struct got_error *
-sync_timestamps(char *ondisk_path, unsigned char status,
+sync_timestamps(int wt_fd, const char *path, unsigned char status,
 struct got_fileindex_entry *ie, struct stat *sb)
 {
 if (status == GOT_STATUS_NO_CHANGE && stat_info_differs(ie, sb))
- return got_fileindex_entry_update(ie, ondisk_path,
+ return got_fileindex_entry_update(ie, wt_fd, path,
 ie->blob_sha1, ie->commit_sha1, 1);
...

Ultimately, the path must originate from a function that has access to got_worktree, and so
the file descriptor can always be threaded through the calls. It’s certainly not a clean solution,
especially if the thread gets long, but I’ve yet to find a thread longer than two calls.

Wrap-up
I hope you’ve been convinced at this point that making Got work with capability mode is

simple. While I’ve only committed to Got the very beginnings of the work needed, I suspect
that most of the necessary changes will be similar to what you’ve seen.

Of course, not every program is so amenable to Capsicum. Fundamentally, capability mode
works well with programs that deliberately manage their resources. Got makes its main re-
sources — the worktree and repository directories — into structs in the code. If a function
wants to operate on one of these resources, it needs the struct to do so.

In this way, the code is explicitly saying: “This function will need this resource”. Additional-
ly, since Got works with few other resources, the code is saying “This function will need this
resource only”. This explicitness is opposite to ambient authority, and is exactly what capability
mode wants! The rest of the work lies in just enforcing these limitations.

5 of 6

38FreeBSD Journal • May/June 2021

1. ...Along with other frameworks, with similar goals but different designs, such as seccomp for Linux and
pledge/unveil for OpenBSD. Much has already been written comparing these frameworks; Jonathan Ander-
son’s “A comparison of Unix sandboxing techniques” takes a detailed look.
2. You can find a comprehensive list in “Capsicum: practical capabilities for UNIX” by Robert N.M. Watson
et. al.
3. “Capability Myths Demolished” by Mark S. Miller et. al. gives a clear description of ambient authority.
4. Practically, you’ll be using the ‘Capsicum helpers’ and calling caph_enter(), but it’s essentially the same
thing.
5. In fact, Got can be used with normal Git repositories, hence the similar name.
6. One of the big mistakes I made here was that I tried to enter capability mode before the got_worktree_
open and got_repo_open functions — It did work after a lot of hacking, but it left a huge mess, and later
the lead developer of Got helpfully told me that those functions weren’t doing anything dangerous anyway
so it’s okay to call them before entering capability mode; From this I realized that it’s very important to un-
derstand the code before trying to apply Capsicum. It sounds obvious, but I learned it the hard way.
7. The path can’t be absolute, the path can’t use “..” components to ‘escape’ out of the directory, and the
file descriptor can’t be AT_FDCWD.

YANG ZHONG is studying Computer Science at the University of Waterloo. He worked as an
intern with the FreeBSD Foundation for the Fall 2020 term as part of the University’s co-opera-
tive education program and returned for the Spring 2021 term. In his spare time he enjoys writ-
ing for mathNEWS, the University of Waterloo math faculty’s student publication.

6 of 6

Thank you!
The FreesBSD Foundation would like to
acknowledge the following companies for
their continued support of the Project.
Because of generous donations such as
these we are able to continue moving the
Project forward.

Uranium

Iridium

Silver

Please check out the full list of generous community investors at
freebsdfoundation.org/donors/

Are you a fan of FreeBSD? Help us give back to the
Project and donate today! freebsdfoundation.org/donate/

TM

TM

Platinum

Gold

Koum Family Foundation

39FreeBSD Journal • May/June 2021

I
n this installment, I stray a bit from presenting a bouquet of ports and just focus on a single
one: security/lynis.

Lynis is a tool for security auditing, hardening, and compliance testing. What lynis does dif-
ferently from other security scanners is that it tries to detect available components on a sys-

tem such as a webserver or database. Once it finds them, it checks them further for vulnerabil-
ities, missing patches, etc. This way, the scans are
different on each system based on the configured
software and purpose. For example, your firewall
host may receive different examinations than your
backup server. Plugins extend lynis’s functionality to
cover specific software. A comprehensive security
report is generated at the end, eliciting either a pat
on the back from your security-minded superiors or
your next security sensitivity training.

Available as open source as well as a commer-
cial enterprise tool, it scans a range of operating
systems for security anomalies. Sysadmins as well
as penetration testers, developers, and auditors can
use it to assess if there are any vulnerabilities, not only in installed software but also in their
configurations. Since this includes the operating system as well as third-party software, running
it on a FreeBSD jail should prove to be an interesting experiment.

For this purpose, I created an iocage jail from a freshly updated FreeBSD 13.0 host. Note that
you can use any other jail management framework or build a jail by hand to repeat this exper-
iment yourself. Entering the console, I run “pkg install lynis” and nothing else (not even my fa-
vorite shell), just a plain vanilla jail. This way, we can see what lynis detects in a default installa-

BY BENEDICT REUSCHLING

Security Scanning a Jail
PRACTICAL

This column covers ports and packages for FreeBSD that are useful
in some way, peculiar, or otherwise good to know about. Ports
extend the base OS functionality and make sure you get something
done or, simply, put a smile on your face. Come along for the ride,
maybe you’ll find something new.

Available as open
source as well as a
commercial enterprise
tool, lynis scans a range
of operating systems for
security anomalies.

1 of 3

PRACTICAL

40FreeBSD Journal • May/June 2021

tion. If something comes up before any to-be-jailed software is installed, this is something every
FreeBSD 13.0 installation (and possibly versions before that) is concerned about—inside or out-
side a jail.

Before I ran the scan, I looked at the current settings using “lynis show settings”. Don’t wor-
ry about the license-key line, the software works just fine without any limitations in the open-
source version. Without further ado, I start the scan by issuing “lynis audit system”.

After some initialization, my correctly-detected OS version and hardware platform (amd64)
are echoed to the screen. No big surprise there, but it gets interesting further on. The “Boot
and Services” section found that by default,
10 services are running (“service -e” will dis-
play them in a standard FreeBSD system). Eight
modules, including the kernel itself, are loaded,
which was actually detected from the host run-
ning the jail and forwarded into it. But still, all green so far, until we get to the “Users, Groups

and Authentication” section, where the
first red warnings are issued. Administrator
accounts, unique UIDs, and login shells all
seem to be a problem for lynis.

The shells section lists unsecured con-
sole TTYs. Note that I only list the offenders
here, the rest is either OK-ish or simply not
active yet due to missing software. Check-
ing and re-checking the scan after installing
additional software for any changes that
may have opened an attack vector is good
practice.

Lynis not only scolds you for things you
should have done better, but it also suggests things like checking /tmp and /var mount points
in the “File systems” section. Don’t be discouraged if a first scan finds a bunch of issues. Con-
sider it as an overview and a general guideline for improvement. Some of these things are trivial
to fix, which subsequent audits should identify as such. If you set up another host in the future,
you can already check for these to avoid re-
peating that mistake.

Many sections in the lynis report are
empty simply because we did not yet in-
stall anything. If there would have been some software prone to be a typical attack target, lynis
would scan that more thoroughly and add additional results to the report. Overall, this FreeBSD
jail does not appear to have many issues. Looking at what was found, one problem seems to
be the ownership of home directories. I’m not worried yet since there are at present no users
other than root itself on this jail. I do make a note to myself to re-check this, though.

In the “Kernel Hardening” section, there is a list of TCP/IP related sysctl settings that should
have a different setting than the default. This means that i.e. net.inet.icmp.drop_redirect is set
to 0 by default, but should have been set to 1 (active). There is probably a reason other than
“oversight” why this is not set. Perhaps the reason is to make FreeBSD work by default in as

2 of 3

PRACTICAL

41FreeBSD Journal • May/June 2021

many networking environments as possible,
where this option might prevent or cause prob-
lems. Since the whole list is presented, one can
easily set each of those to the recommended val-
ue and see if networking still runs normally. If it
does, keeping this option on is a good idea.

At the end of the scan, the report lists 4 warn-
ings and 15 suggestions. The easiest warning to
fix is the last one, running pkg audit -F to fetch
the latest security vulnerability database for ports.
The link provided at each suggestion and warn-
ing gives further details about the issues and their
impacts. Not all of these are of the we’ll-lose-our-
customer-database-if-we-don’t-fix-this-at-once
type. Some of them are good sysadmin practices
like “avoid /tmp running full”, so don’t just ignore
them as non-security related. Often, security incidents happen not because of a single issue,
but because a malicious person was able to combine several unrelated problems into a bigger
nightmare.

For me, exploring items like “Umask in /etc/login.conf could be stricter like 027” is worth
some time. Who knows, maybe that will become the new default in an upcoming FreeBSD re-
lease (better than part of a security advisory) once secteam has had time to review it.

Remember that this small experiment only covered the operating system and may reveal
more once the jail is doing what it was set up to do. As additional software and services are
run and exposed to the internet or even to users on the local network, it will mean that addi-
tional scans are advised. Check out the other modes that lynis provides, including the penetra-
tion testing mode, as it may reveal additional items for your security to-do list.

Lynis is not the only tool out there. Wise security-minded folks are known to use multiple
tools to cover a wider range of possible issues to find (or confirm) another tools suspicion. Tools
like portsentry, nmap, nessus, snort, as well as the not-yet-ported terrascan and openvas-scan-
ner, are all fine tools to detect and help close potential security problems before it is too late.
Always be suspicious of these tools not finding everything or not finding the latest incidents.
Running them regularly is not an excuse to not check security bulletins for the software you run
and subscribe to their notifications.

Oh, I just realized that I did mention more than a single tool here. But who am I to keep
these to myself?

BENEDICT REUSCHLING is a documentation committer in the FreeBSD project and member
of the documentation engineering team. He serves on the board of directors of the FreeBSD
Foundation as vice president. In the past, he served on the FreeBSD core team for two terms.
He administers a big data cluster at the University of Applied Sciences, Darmstadt, Germa-
ny. He’s also teaching a course “Unix for Developers” for undergraduates. Together with Allan
Jude, he is host of the weekly bsdnow.tv podcast.

3 of 3

Donate to the Foundation!

Support
 FreeBSD

You already know that FreeBSD is an internationally
recognized leader in providing a high-performance,
secure, and stable operating system. It�s because of
you. Your donations have a direct impact on the Project.

Please consider making a gift to support FreeBSD for the
coming year. It�s only with your help that we can continue
and increase our support to make FreeBSD the high-
performance, secure, and reliable OS you know and love!

Your investment will help:

Funding Projects to Advance FreeBSD

Increasing Our FreeBSD Advocacy and

Providing Additional Conference
Resources and Travel Grants

Continued Development of the FreeBSD
Journal

Protecting FreeBSD IP and Providing
Legal Support to the Project

Purchasing Hardware to Build and
Improve FreeBSD Project Infrastructure

Making a donation is quick and easy.
freebsdfoundation.org/donate

®

®

BSD Events taking place through September 2021
BY ANNE DICKISON

Please send details of any FreeBSD related events or events that are of interest for FreeBSD
users which are not listed here to freebsd-doc@FreeBSD.org.

FreeBSD Fridays
https://freebsdfoundation.org/freebsd-fridays/
FreeBSD Fridays will begin again in July.
Past FreeBSD Fridays sessions are available at: https://freebsdfoundation.org/freebsd-fridays/

FreeBSD Office Hours
https://wiki.freebsd.org/OfficeHours
Join members of the FreeBSD community for FreeBSD Office Hours. From general Q&A to
topic-based demos and tutorials, Office Hours is a great way to get answers to your FreeBSD-
related questions.

Past episodes can be found at the FreeBSD YouTube Channel.

USENIX ATC ‘21
July 14-16, 2021
VIRTUAL

43FreeBSD Journal • May/June 2021

 The 2021 USENIX Annual Technical Conference will take place as a vir-
tual event on July 14–16, 2021. USENIX ATC brings together leading sys-
tems researchers for the presentation of cutting-edge systems research
and the opportunity to gain insight into a wealth of must-know topics,
including virtualization, system and network management and trouble-
shooting, cloud and edge computing, security, privacy, and more. Check
out the technical sessions program. USENIX ATC ’21 is co-located with
the 15th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI ’21). Register for one, and get access to both!

The 15th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI ’21) will take place as a virtual event on July 14–16, 2021.
Join us from wherever you are at the premier forum for discussing the
design, implementation, and implications of systems software. The sym-
posium emphasizes innovative research as well as quantified or insightful
experiences in systems design and implementation. View the technical ses-
sions program. This year, OSDI is co-located with the 2021 USENIX Annual
Technical Conference. Register for one, and get access to both!

USENIX OSDI ‘21
July 14-16, 2021
VIRTUAL

EuroBSDcon is the European annual technical conference gathering users
and developers working on and with 4.4BSD (Berkeley Software Distribu-
tion) based operating systems family and related projects.

EuroBSDcon 2021
September 16–19, 2021
Vienna, Austria

mailto:freebsd-doc@FreeBSD.org
https://freebsdfoundation.org/freebsd-fridays/
https://freebsdfoundation.org/freebsd-fridays/
https://wiki.freebsd.org/OfficeHours
https://www.youtube.com/c/FreeBSDProject
https://www.usenix.org/atc21/freebsd
https://www.usenix.org/osdi21/freebsd
https://2021.eurobsdcon.org/
https://2021.eurobsdcon.org/

