
March/April 2021

FreeBSD 13
n Looking to the Future
n Tool Chain
n Boot Loader
n TCP Cubic
n Zstd in ZFS

Also:
Vendor Summit Report
Practical Ports

LETTER
from the Foundation

FreeBSD Journal (ISBN: 978-0-615-88479-0) is published 6 times
a year (January/February, March/April, May/June, July/August,

September/October, November/December).
Published by the FreeBSD Foundation,

3980 Broadway St. STE #103-107, Boulder, CO 80304
ph: 720/207-5142 • fax: 720/222-2350
email: info@freebsdfoundation.org

Copyright © 2021 by FreeBSD Foundation. All rights reserved. This magazine may not be
reproduced in whole or in part without written permission from the publisher.

Publisher •

Editor-at-Large •

Design & Production •
Advertising Sales •

Walter Andrzejewski
walter@freebsdjournal.com

James Maurer
jmaurer@freebsdjournal.com

Reuter & Associates

Walter Andrzejewski
walter@freebsdjournal.com
Call 888/290-9469

P O B O X 4 0 8 , B E L F A S T , M A I N E 0 4 9 1 5

John Baldwin •

Justin Gibbs •

Daichi Goto •

Dru Lavigne •

Michael W Lucas •
Ed Maste •

Kirk McKusick •

George V. Neville-Neil •

Philip Paeps •

Kristof Provost •

Hiroki Sato •

Benedict Reuschling •

Robert N. M. Watson •

J O U R N A L

E d i t o r i a l B o a r d

®

S&W PUBLISHING LLC

FreeBSD Developer and Chair of
FreeBSD Journal Editorial Board.

Founder of the FreeBSD Foundation,
President of the FreeBSD Foundation,
and a Software Engineer at Facebook.

Director at BSD Consulting Inc.
(Tokyo).

Tom Jones • FreeBSD Developer, Internet Engineer
and Researcher at the University of
Aberdeen.
Author of BSD Hacks and
The Best of FreeBSD Basics.

Author of Absolute FreeBSD.

Director of Project Development,
FreeBSD Foundation and Member
of the FreeBSD Core Team.

Treasurer of the FreeBSD Foundation
Board, and lead author of The Design
and Implementation book series.

Director of the FreeBSD Foundation Board,
Member of the FreeBSD Core Team, and
co-author of The Design and Implementation
of the FreeBSD Operating System.

Secretary of the FreeBSD Foundation
Board, FreeBSD Committer, and
Independent Consultant.

Treasurer of the EuroBSDCon
Foundation, FreeBSD Committer,
and Independent Consultant.

Director of the FreeBSD
Foundation Board, Chair of Asia
BSDCon, Member of the FreeBSD
Core Team, and Assistant
Professor at Tokyo Institute of
Technology.

Vice President of the FreeBSD Foundation
Board and a FreeBSD Documentation
Committer.

Director of the FreeBSD Foundation
Board, Founder of the TrustedBSD
Project, and University Senior Lecturer
at the University of Cambridge.

Mariusz Zaborski • FreeBSD Developer, Manager at
Fudo Security.

3FreeBSD Journal • March/April 2021

Welcome to the 13.0 Release issue!
Like you, we are excited to see the hard

work from the last two years come together
in a single release. Results from many Foundation-
funded projects are evident in the latest release. They
include help with the transition from SVN to Git,
contracting with Moritz Systems to update LLDB in
FreeBSD to fully replace GDB as a modern debugger,
and funding improvements to Linuxulator including
stabilizing the code base and making it easier to get
started using it. The Foundation also funded work on
ZFS compression and other OpenZFS improvements
as well as wifi and graphics improvements.

Thank you to those whose donations permitted
the Foundation to continue to support FreeBSD and
especially to everyone whose tireless efforts helped
make the 13.0 release such a resounding success.

We hope you’ll enjoy this special issue of the
FreeBSD Journal and that you will share it with your
friends and colleagues!

On behalf of the FreeBSD Foundation,
Deb Goodkin
FreeBSD Foundation Executive Director

4FreeBSD Journal • March/April 2021

Developer and vendor summits are at the heart of the FreeBSD community.
They provide a much-needed avenue for face-to-face discussions, group
decision making and all-important bug fixing. The FreeBSD Summit organizers,
including members of the FreeBSD Foundation, quickly realized that a 2020 in-person
event was not going to happen. With that in mind, the organizers began working on
the first-ever, online, 2020 FreeBSD Vendor Summit. Taking place November 11–13, 2020, the
Summit consisted of 3 half-day sessions with both vendor talks and discussion topics. FreeBSD
Journal Editorial Board President, John Baldwin, emceed the event. In addition to being re-
corded, the sessions were live streamed on YouTube. Wednesday, November 11, began with a
welcome from John, followed by an update from FreeBSD Foundation Executive Director, Deb
Goodkin. The rest of the program included vendor talks from Heiko Wilke of Beckhoff, Mu-
hammad Ahmad of Seagate and Andrew Wafaa of ARM. Next up, Ed Maste led the first dis-
cussion session of the day on the ARM64 roadmap including moving the platform to Tier 1.
Day one concluded with a discussion on bhyve led by Peter Grehan and John Baldwin.

Day 2 began with John Baldwin welcoming everyone back and introducing the program.
First to speak was Axel Kloth of Axiado, followed by Jonathan Eastgate of SimPRO, and Allan
Jude and Sabina Anaja of Klara Systems. The day concluded with the FreeBSD Foundation’s Di-
rector of Technology and Core Team Member, Ed Maste joining fellow Core Team Member,
Warner Losh to head up a lively discussion about the Project’s transition to Git and what that
would look like for Vendors. Folks were able to participate in the discussion sessions and Q&A
sessions of the vendor talks via the event channel, Summit slack channel, or within the YouTube
live stream.

Day 3 began much like Day 2 with a brief welcome and introduction of the program. First
up was Alexander Sideropoulos of NetApp. His talk was followed by the always productive
13.0 Planning Session led by Ed Maste, John Baldwin and FreeBSD Foundation Board and Core
Team Member Geroge Neville-Neil. After a short break, another fruitful discussion session was
centered around planning for the 14.0 release. Luca Pizzamiglio wrapped up the technical part
of the summit with a talk on “A container-based service mesh on FreeBSD.” Following the last
talk of the day, attendees were invited to join a separate social hour providing a greater oppor-
tunity to network with other attendees.

Individual videos, notes, and recordings of the entire live stream are available on the Novem-
ber 2020 FreeBSD Vendor Summit wiki page. The next online FreeBSD Developer Summit is
scheduled to take place on June 9–11, 2021, registration is now open.

ANNE DICKISON is the Marketing Director, FreeBSD Foundation.

FreeBSD
Vendor Summit
2020

1 of 1

BY ANNE DICKISON

https://wiki.freebsd.org/DevSummit/202011
https://www.eventbrite.com/e/june-2021-freebsd-developer-summit-tickets-151547652107

Oh! Incorruptible Single Source of Truth,

FreeBSD 13 tears me between lust and loathing.
I need the improvements, but I have this
superstitious fear that number 13 is unlucky. I know
it’s irrational, but that superstition couldn’t have
endured for centuries without there being some
truth to it, could it?

Tell me everything will be okay.

 —Hesitant Upgrader Geek

HUG,
What? Sorry, I was thinking of something else.
Don’t feel insulted. You’re not special. It’s what I do. Think of other things, that is. Not apol-

ogize. Saying “sorry” isn’t an apology, it’s a statement that I am vaguely aware that you might
get all emotional at me and the annoying screech of your tantrum would interfere with my di-
gestion. An apology includes a recapitulation of your actions, an acknowledgement those ac-
tions harmed others, a statement of regret, and a query as to how you can compensate others
for the damage you’ve inflicted. All four long-time readers of this column immediately compre-
hend that’s all far too much work for me.

If you want an apology, you’ll need to make it yourself.
And isn’t that why we work with machines? The machine has no feelings and doesn’t care

about yours. Those 32-bit timers roll over and crash the system without regard for your spouse
giving birth or the new Star Trek’s release date or you giving birth. The machine treats us with
undifferentiated indifference. So many sysadmins want to treat other humans with that same
indifference, but all too often devolve into thoughtless, reflexive contempt.

You aren’t equipped for indifference. The chunk of electrified fat occupying your skull called
“you” (whatever that means) evolved for caring. Indifference got eaten off the evolutionary tree.

The machine is glorious in its indifference.
Best of all, the machine is ultimately logical.
The CPU is nothing but a collection of logic gates. The video card is so stuffed with logic

gates that we don’t even call it a video card anymore, it’s a Graphics Processing Unit and it’s
most valuable as a ScamCoin Environmental Destruction Node. All those chips and circuits and
ports on the motherboard are nothing but carefully intertwined wires charged with carefully
regulated electricity.

1 of 3

5FreeBSD Journal • March/April 2021

by Michael W Lucas

freebsdjournal.org

Okay, the electricity has some quantum in it. Electrons can’t help the quantum—our uni-
verse defines them that way. Don’t blame anyone for how they’re made, blame them for their
choices and actions. (Like writing letters to advice columnists. That was certainly a choice.)

Quantum aside, at the macro-but-still-microscopic level? The whole machine is ultimately
knowable.

If only there wasn’t so much of it.
Think about what happens when you try to watch a conference video. You move the mouse

over the play button. That mechanical mouse motion is transformed into electrical signals,
which get dumped into some sort of operating-system-level interpreter, deciphered, and trans-
formed into pointer motion on the screen. This is all operating system level work, originally de-
veloped by people from a previous generation. We consider these functions well-tested, even if
the overwhelming majority of computer “experts” have no idea how it really works. Our prede-
cessors wrote this code, and it basically works, so other than a few hard-core operating system
developers we trust that the pointer will move.

The click goes through the same process, for the same reason.
The video is where things get really hinky.
Writing individualized instructions for each of the billions of transistors inside the hardware

is so much work that, like apologizing, we refuse to do it. Propose writing a video player in
pure assembler and any programmer capable of the task would either deride your parentage
or charge enough up front to live comfortably in a non-extradition country. Even if you black-
mailed a competent programmer into accomplishing such a task, they wouldn’t really be ad-
dressing individual transistors. Primordial assembly, the sort that Kernighan and Ritchie wrote C
to escape from, doesn’t represent modern hardware. Assembly is closer to the logic gates than
any other language, and it runs on top of processor microcode.

So, you add an abstraction, like C.
C lets us craft miraculous programs, like device drivers and text editors and segmentation

faults. Some programmers can deftly hand-twiddle a “stack” that’s a representation of com-
puter memory in the 1970s. Forget mastering C; achieving journeyman C programmer status
requires a certain species of electrified skull-fat, ample time, and either dedication or stub-
bornness.

Of those qualities, I possess only stubbornness. I do have laziness, which leads directly to
Perl. Perl is written in C.

Let’s say your video player is written in Perl. (You laugh, but I learned decades ago to nev-
er underestimate Perl programmers. A Perl programmer can achieve anything in the name of
avoiding work.) Your code is an abstraction, running on an abstraction, running on an abstrac-
tion, running on a representation of hardware that was obsolete before Richard Nixon resigned.
Every one of these abstractions has bugs.

By any reasonable logic, computers should not work. At all.
And yet, we’ve managed to make them work.
Realistically, your video player isn’t written in Perl. It’s in a web browser. The web browser is

written using some sort of programming language or application toolset like Javascript or Go or
Fortran or Haskell. Whatever. I don’t know the real details and neither, unless you are extremely
unfortunate, do you.

That’s only the main engine of your web browser. It probably has add-on components writ-
ten in Forth or Pascal or, Beastie help you, C++.

So, we don’t have abstractions on abstractions. We have multiple piles of interlinked abstrac-

2 of 3

6FreeBSD Journal • March/April 2021

tions, all simultaneously affecting and rewriting one another as they co-operatively re-architect
the contents of the machine’s processor and memory. Yes, we’ve added “protections” to a
bunch of these, but they’re afterthoughts. Afterthought Security is not a thing.

Oh, I remember what I was thinking about!
Humanity’s greatest invention? No, not the wheel. Or fire. Or even gelato.
It’s bureaucracy.
A society is a machine made out of meat. We all have places in it. We’re all continuously

re-architecting its contents. Each of us can see only a tiny part of the machine. No one person
can see the entirety of the machine; we can only truly see our little bit of it. We have opinions
on the part of the meat machine that’s most frustrating at the moment, because we’re sure we
wholly understand the issue even though others have spent years or decades maintaining it.

We sysadmins, we think we understand the machine when in reality we understand only a
tiny slice of one of the many abstractions. A person who writes scripting languages thinks they
have a good handle on memory management when what they really understand is the ab-
straction that the layer beneath provides to them. Repeat this for every single abstraction.

A modern computer is a giant bureaucracy. You understand, at most, an office. You could
devote your life to comprehending the logic of one of these systems—but understanding the
whole is nearly impossible. Evolving languages, evolving standards, evolving hardware mean
that even if you achieve Buddha-level enlightenment, the machine will leave you behind.

Declaring a language “safe”? Read that as “We’ve done our best to isolate our mistakes
from the other departments.” I appreciate the effort even as I know failure is both inevitable
and inexorable.

We march on a bridge of shifting sand across a bottomless chasm with no far end.
“Tell you everything will be fine?” No. Nothing will be fine. FreeBSD 13 is no different from

any other operating system in that respect. It’s merely the most honestly numbered release in
history.

And it will never, ever apologize for it.

Have a question for Michael?
Send it to letters@freebsdjournal.org

MICHAEL W LUCAS The latest books to emerge from society’s Michael W Lucas Abstrac-
tion Layer are TLS Mastery, Only Footnotes, and the imminent $git sync murder. Thirty years
in systems administration have purged him of bitterness, cynicism, and sarcasm. Learn more at
https://mwl.io.

3 of 3

7FreeBSD Journal • March/April 2021

freebsdjournal.org

https://mwl.io

Thank you!
The FreesBSD Foundation would like to
acknowledge the following companies for
their continued support of the Project.
Because of generous donations such as
these we are able to continue moving the
Project forward.

Uranium

Iridium

Silver

Please check out the full list of generous community investors at
freebsdfoundation.org/donors/

Are you a fan of FreeBSD? Help us give back to the
Project and donate today! freebsdfoundation.org/donate/

TM

TM

Platinum

Gold

Koum Family Foundation

Write
For Us!
Write

For Us!
Contact Jim Maurer

with your article ideas.
(jmaurer@freebsdjournal.com)

9FreeBSD Journal • March/April 2020

FreeBSD’s 13.0 release delivers new features to users and refines the workflow for new contri-
butions. FreeBSD contributors have been busy fixing bugs and adding new features since 12.0’s
release in December of 2018. In addition, FreeBSD developers have refined their vision to focus
on FreeBSD’s future users. An abbreviated list of some of the changes in 13.0 is given below. A
more detailed list can be found in the release notes.

Shifting Tools
Not all of the changes in the FreeBSD Project over the last two years have taken the form

of patches. Some of the largest changes have been made in the tools used to contribute to
FreeBSD. The first major change is that FreeBSD has
switched from Subversion to Git for storing source code,
documentation, and ports. Git is widely used in the
software industry and is more familiar to new contribu-
tors than Subversion. Git’s distributed nature also more
easily facilitates contributions from individuals who are
not committers. FreeBSD had been providing Git mir-
rors of the Subversion repositories for several years, and
many developers had used Git to manage in-progress
patches. The Git mirrors have now become the offi-
cial repositories and changes are now pushed directly
to Git instead of Subversion. FreeBSD 13.0 is the first
release whose sources are only available via Git rather
than Subversion. The first phase of this process focused
on adapting the Project’s existing workflows and tools
(such as Phabricator and Bugzilla) to work with the new
Git repositories. The next phase will allow us to explore additional tools such as pre-commit
testing and continuous integration.

A second major change is the adoption of AsciiDoc for the source format of FreeBSD’s docu-
mentation and website. FreeBSD’s documentation consists of three broad groups: manual pag-
es, books and articles (such as the FreeBSD Handbook), and the project website. Books and
articles were previously written in an SGML markup language called DocBook, and the website
was written directly in HTML. While DocBook is very expressive and provides support for many
features such as callouts, footnotes, and indices, it is a verbose format. Since the original design
of DocBook, lighter-weight markup languages such as MarkDown have become prevalent. As-

BY JOHN BALDWIN

1 of 3

Looking
to the Future

Not all of the changes in the

FreeBSD Project over the last

two years have taken the form

of patches.

https://www.freebsd.org/releases/13.0R/relnotes/

10FreeBSD Journal • March/April 2020

ciiDoc is a lighter-weight markup language similar to MarkDown that retains the expressiveness
of DocBook. The FreeBSD documentation team recently converted all of the books, articles,
and website to AsciiDoc. This provides a simpler and easier to read format that will make it eas-
ier for new folks to contribute documentation.

Manual pages continue to be written in a dialect of troff known as mdoc.

Planning for Future Systems
One of the changes in FreeBSD’s focus over the past few years has been to emphasize sup-

port for systems that users will be using in the future over support for older systems used by
a decreasing number of users. This does not mean abandoning support for all systems which
are not brand new. However, as some older systems recede further into history, the benefit of
maintaining support for those systems in the tree no longer justifies the cost. FreeBSD 13.0 re-
moves support for older 32-bit ARM systems as well as the UltraSparc platform. Device drivers
for some older devices that are no longer commonly used have also been removed. In addition,
in recognition of the dominance of 64-bit x86 systems,
the 32-bit x86 architecture has been demoted to a Tier
2 architecture.

Streamlining our focus has allowed the Project to de-
vote more resources to other architectures and drivers
whose use will grow in the future. ARM, PowerPC, and
RISC-V have all received substantial changes including
support for new drivers and improved performance. The
64-bit x86 architecture now supports Hygon Dhyana
processors as well as support for 57-bit user virtual ad-
dresses on newer Intel processors. Finally, all of the ar-
chitectures in 13.0 are supported by the in-tree LLVM
toolchain including the clang compiler and lld linker. By
no longer maintaining compatibility with legacy GPLv2
toolchains, FreeBSD can now adopt modern language
and toolchain features. (For more on this, see Ed Mas-
te’s article, FBSD 13 Tool Chain also in this issue.) Along with changes to replace or retire other
GPL-licensed components in the base system, this also means that FreeBSD 13.0 ships with only
two GPL utilities and one LGPL library in the base system.

OpenZFS
FreeBSD has included ZFS in the base system for over a decade. FreeBSD’s ZFS support was

originally ported from OpenSolaris and for a long time tracked the ZFS support in the public
OpenSolaris (later illumos) repository. Over the past few years, active development of ZFS has
moved out of the illumos repository into the cross-platform OpenZFS project. FreeBSD 13.0 re-
places the illumos-derived ZFS support with code from OpenZFS. This brings in several new fea-
tures including encrypted datasets and ZSTD compression. (See also Allan Jude’s article, Zstan-
dard Compression in OpenZFS also in this issue)

Networking
13.0 includes several networking changes. Kernel TLS offload enables a single web server

to transmit hundreds of gigabits of HTTPS traffic (see John Baldwin’s article, TLS Offload in the
Kernel). The NFS client and server now support NFSv4.2. This includes a new system call to per-

2 of 3

A second major change is

the adoption of AsciiDoc for

the source format of FreeBSD’s

documentation and website.

11FreeBSD Journal • March/April 2020

mit optimized server-side file copies. The NFS client and server also support NFS over TLS via
kernel TLS offload.

Security
FreeBSD 13.0’s kernel contains several improvements to the kernel cryptography framework

used for geli(8), ZFS, IPsec, and kernel TLS. 64-bit ARM systems will now make use of acceler-
ated software cryptography for the AES-GCM and AES-XTS ciphers out of the box via the arm-
v8crypto(4) driver. Both 32-bit and 64-bit x86 systems also include support for accelerated soft-
ware cryptography in the default kernel via the aesni(4) driver.

Boot Loader
The per-kernel boot loader includes several changes. First, when booting from UEFI, the de-

fault install now installs the full boot loader to the EFI system partition. Previously, a small boot
loader in the EFI system partition was used to locate and boot the full boot loader. This two-
stage process proved unwieldy and the firmware now
loads the full boot loader directly. Secondly, on x86
systems the boot loader now uses a graphical display
on the video console both when booting via UEFI and
when booting via BIOS. This graphical console is then
handed off to the kernel for use as a framebuffer by the
vt(4) driver.

Virtualization
FreeBSD 13.0 includes several virtualization improve-

ments both as a guest and a host. The VirtIO suite
of device drivers in the kernel now support version 1
of the VirtIO specification. This improves compatibili-
ty with hypervisors, emulators, and simulation models
which provide VirtIO devices. The bhyve(8) hypervisor
includes several changes including improved VNC sup-
port (including compatibility with the built-in “Screen
Sharing” VNC client in macOS), VirtIO 9p filesystem sharing, and initial support for virtual
machine snapshots.

Conclusion
FreeBSD 13.0 is the product of contributions from the Project’s community over the past two

years. Thank you to everyone who has contributed to this release by testing snapshots, report-
ing bugs, submitting patches, working with users on social media, and countless other tasks.
We hope you enjoy FreeBSD 13.0. Join us for the next adventure developing FreeBSD 14!

JOHN BALDWIN is a systems software developer. He has directly committed changes to the
FreeBSD operating system for 20 years across various parts of the kernel (including x86 plat-
form support, SMP, various device drivers, and the virtual memory subsystem) and userspace
programs. In addition to writing code, John has served on the FreeBSD core and release en-
gineering teams. He has also contributed to the GDB debugger and LLVM. John lives in Con-
cord, California, with his wife, Kimberly, and three children: Janelle, Evan, and Bella.

3 of 3

We hope you enjoy

FreeBSD 13.0.

Join us for the next adventure

developing FreeBSD 14!

12FreeBSD Journal • March/April 2020

FreeBSD 13.0 marks a significant milestone in the evolution of the FreeBSD tool chain: the com-
pletion of a decade-long migration to using a modern, permissively licensed compiler, linker, de-
bugger, and miscellaneous binary utilities for all of FreeBSD’s supported architectures.

From the beginning, FreeBSD relied on the GNU tool chain, including the GCC compiler,
Binutils linker and binary utilities, and the GDB debugger. These tools were kept current with
regular updates by a group of developers, both volunteer and paid. This continued until 2007
when the GNU project changed the license on these tools to version 3 of the GNU Public Li-
cense (GPLv3), and they were not updated again.

A few years later, about twenty, developers met for a developer summit session at BSDCan
2010 to plan the future of the tool chain, with a goal of moving to a modern, permissively li-
censed tool chain. License considerations were only one part of the rationale. New technolo-
gy, the ability to implement new and bespoke functionality, and promoting competition in OSS
tools also factored into the team’s goals.

At the same time, a number of tool-chain projects were firming up, both external to and
within the FreeBSD project. Summit attendees noted
that LLVM and Clang were maturing rapidly and gaining
interest in the compiler research community. A BSD-li-
censed ELF tool-chain project was in progress, as well as
a number of debugger projects.

The team set a goal of collaborating with these tool-
chain projects and migrating to the new components.
Individual components were added to FreeBSD as they
became usable, often installed alongside the existing
tool, but disabled by default. After testing and valida-
tion, they became default, sometimes on an architec-
ture-by-architecture basis. Eventually, the new tool was
enabled across all supported architectures and the old
tool was removed. Aside from a small caveat with the debugger, this is now complete for all
tool-chain components and all supported architectures. Read on for the full details.

Compiler
The compiler is one of the most important components in the tool chain and was the first

major component that we migrated. The Clang compiler had its initial release in 2007 and was
maturing quickly. Roman Divacky imported a version into FreeBSD’s contrib software tree in

BY ED MASTE

1 of 5

FreeBSD 13.0
Tool Chain

From the beginning, FreeBSD

relied on the GNU tool chain,

including the GCC compiler,

Binutils linker and binary utilities,

and the GDB debugger.

13FreeBSD Journal • March/April 2020

June 2010, and we provided it (as /usr/bin/clang) in FreeBSD 9.0 for only the x86 and powerpc
architectures.

With substantial effort on the part of the Clang developers and integration effort from Ro-
man, Ed Schouten, Dimitry Andric, and others, we enabled Clang as the default compiler (/usr/
bin/cc) for i386 and amd64 in 2012. This shipped with FreeBSD 10.0.

In 2014, Clang was ready to be the default compiler for little-endian Arm. It was also provid-
ed on PowerPC, but not as the default compiler. This is the configuration shipped in FreeBSD
11.0. FreeBSD 11.0 also introduced 64-bit arm (AArch64) support, with Clang as the only avail-
able compiler.

Compiler updates continued in the lead up to FreeBSD 12.0, but architecture support re-
mained the same. 2019 and 2020 saw significant upstream Clang/LLVM architecture improve-
ments, and remaining architectures including RISC-V and MIPS switched to Clang by default.
Sparc64 was the sole remaining architecture relying on the obsolete in-tree GCC version. When
FreeBSD/sparc64 was retired, there was no need to keep GCC in the tree, and it was removed
in early 2020.

Tool chains typically include an assembler. As of
FreeBSD 13.0 we use Clang’s integrated assembler (IAS)
to assemble parts of the FreeBSD base system and no
longer provide a standalone /usr/bin/as.

Using Clang as FreeBSD’s standard compiler has
made it a compelling system for full-system research.
The University of Cambridge’s Temporally Enhanced Se-
curity Logic Assertions (TESLA) and Capability Hardware
Enhanced RISC Instructions (CHERI) research projects
build on Clang/LLVM and benefit from the availability of
a full, Clang-built operating system kernel and userland.

Linker
A linker combines object files and libraries into an executable or shared library. When the

tool chain project started, no alternative linker with a clear path to viability existed. The MCLin-
ker project demonstrated some early momentum, but ultimately did not support many features
required by the FreeBSD build.

By 2015, LLVM’s lld was making good progress, and we imported a snapshot in 2016. We
started with it built by default but installed with a non-default filename. It was available via a
compiler switch, -fuse-ld=lld.

By FreeBSD 12.1 lld was built for all architectures except sparc64 and riscv64 and was the
default linker for 32- and 64-bit arm and x86. With the development of riscv64 support up-
stream in lld and sparc64’s retirement, lld became the sole linker for all architectures in FreeBSD
13.0.

Binary Utilities
A tool chain includes a number of small tools for examining or processing object, library and

executable files—ELF objects in the case of FreeBSD. This includes tools like size, strings, and
readelf for examining files, objcopy for converting or processing objects, and ar for creating and
extracting library archives. This category also includes libraries used by other tools to parse ob-
jects—for example, libelf and libdwarf.

In older FreeBSD versions, most of these tools were obtained from GNU binutils with a few

2 of 5

Compiler updates continued

in the lead up to FreeBSD 12.0,

but architecture support

remained the same.

14FreeBSD Journal • March/April 2020

exceptions--for example, the archive manager was a bespoke tool based on libarchive. FreeBSD
also implemented versions of libelf and libdwarf starting in 2006.

The ELF Tool Chain project began as a standalone effort in 2008, led by Joseph Koshy. The
project imported some existing FreeBSD tools and libraries, and additional contributors joined
the project. Kai Wang implemented many of the missing tools, including elfcopy/objcopy and
readelf.

By 2015, the ELF Tool Chain versions of addr2line, elfcopy/objcopy, nm, size and strings were
sufficiently functional that we switched to them by default and shipped them in FreeBSD 11.0.

This work did not address the assembler or linker; work began on both tools within ELF Tool
Chain, but neither is functional at present. We addressed the assembler by relying on Clang’s
integrated assembler instead and switched to LLVM’s lld for the linker for almost all architec-
tures. Sparc64 was the sole architecture relying on the in-tree GNU ld. With the retirement of
sparc64 support we were able to remove binutils from the FreeBSD tree prior to FreeBSD 13.0.

The migration from binutils also left FreeBSD without objdump in the base system. Much
of the information provided by objdump is also available (in a slightly different format) from
readelf, and LLVM provides an llvm-objdump that is largely compatible. It is not yet installed by
default in the base system but will likely be enabled in a future version. Of course, GNU obj-
dump is also available by installing the binutils port or package.

Source Level Debugger
The remaining tool chain component is the debugger, and LLVM provided a path forward

here as well. LLDB is LLVM’s debugger, described in detail in previous FreeBSD Journal articles. It
builds on LLVM components for disassembly, uses Clang as the expression parser, and is script-
able via Python and Lua.

We added LLDB to the build as an experimental fea-
ture in 2013, prior to FreeBSD 10.0, and enabled it by
default for amd64 and arm64 in 2015, for FreeBSD
11.0. In 2017, Karnajit Wangkhem submitted a patch
adding support for i386 to the JIT expression engine,
and we enabled it by default in FreeBSD 12.0.

LLDB includes FreeBSD target support for 32-bit Arm,
as well as PowerPC and MIPS, although it is not well
tested. Builds may be enabled by default after suffi-
cient testing and integration. LLDB is now a functional
FreeBSD userland debugger, but currently lacks kernel
debugging support.

With FreeBSD Foundation sponsorship, Moritz Sys-
tems recently fixed many outstanding bugs, improved
arm64 target support, added an initial follow-fork
mode, and is improving userland core file debugging. Projects to implement live kernel debug-
ging and post-mortem kernel coredump support are under discussion. We also need to imple-
ment RISC-V target support.

CTF Tools
FreeBSD’s DTrace support makes use of the Compact C Type Format (CTF), which provides

the minimum required debug information to make C language types available to DTrace scripts.
This currently uses three tools released under the Common Development and Distribution Li-

3 of 5

LLDB includes FreeBSD target

support for 32-bit Arm, as well

as PowerPC and MIPS.

15FreeBSD Journal • March/April 2020

cense (CDDL). They implement CTF version 2 and are largely unchanged since the import of
DTrace from OpenSolaris in 2008.

There are a number of alternative CTF tool implementations available. Contemporary binutils
includes libctf, a library to parse and edit CTF data. The CTF format has also been extended to
version 3 and more recently to version 4. Also, OpenBSD’s Martin Pieuchot has implemented a
minimal set of permissively licensed CTF tools. Future FreeBSD tool chain work will be needed
to determine where we take the CTF tooling.

Diagnostic Tools
Valgrind is part of a set of tools for memory access and leak debugging and checking oth-

er aspects of program behavior. FreeBSD support for Valgrind has been maintained outside of
the main Valgrind tree for almost two decades, and a
patched Valgrind is available from the ports tree and
packages collection. Many different developers have
maintained and updated the FreeBSD Valgrind port over
the years; most recently Paul Floyd has updated it to the
latest released version 3.17.0 and is working to commit
the FreeBSD changes upstream.

Clang includes built-in support for various sanitiz-
ers that provide debugging and diagnostic information.
AddressSanitizer detects memory errors such as out-
of-bounds accesses or use-after-free and is available via
the -fsanitize=address command line flag (using Clang
in the base system). A related tool, MemorySanitizer,
detects reads of uninitialized variables. ThreadSanitiz-
er detects data races, and UndefinedBehaviourSanitizer catches undefined C behavior (such as
signed integer overflow) at runtime. Additional sanitizers exist and will need more work to en-
able them on FreeBSD.

Clang also includes a static analyzer invoked via the scan-build front end. It is available with
Clang installed from an LLVM package, not the base-system Clang. The static analyzer serves a
purpose broadly similar to compiler warnings, but at a much higher level.

For code coverage analysis, LLVM provides llvm-cov. It is also installed as gcov and oper-
ates in a GNU, gcov-compatible mode when invoked via the alias. When a program is com-
piled with –coverage, it emits a .gcov file when it exits, and gcov uses that to display execution
counts for each line (or basic block) of the source. Performance profiling is available via bespoke
BSD licensed code: hwpmc kernel support and the pmcstat userland tool.

Future Work
With the transition to Clang/LLVM complete, the tool chain team is investigating enhance-

ments we can build on this foundation. One of these is Link Time Optimization (LTO), inter-
modular optimization performed during the link stage. Essentially LTO uses object files and li-
braries containing LLVM intermediate representation (IR) instead of target binary ELF objects.
This allows these to be combined at link time and have the LLVM optimization passes operate
on the entire binary as a whole and not just individual compilation units. One caveat with LTO
is that the nm and ar tools need to be able to parse LLVM IR symbol tables, and the ELF Tool
Chain versions used by the base system do not have this capability. We will need to either ex-
tend ELF Tool Chain nm and ar or switch to the LLVM versions of these tools.

4 of 5

 FreeBSD support for Valgrind

has been maintained outside

of the main Valgrind tree for

almost two decades

16FreeBSD Journal • March/April 2020

Another tool chain feature provided by Clang is Control Flow Integrity (CFI). CFI broadly re-
fers to techniques used by the compiler to avoid run-time attempts to subvert a program’s in-
tended operation (control flow) by some malware that manages to gain execution. Clang’s CFI
support requires LTO and includes a number of individual checks to detect various cases of bad
casts and invalid indirect calls.

The CHERI project presents another opportunity for future work in the FreeBSD tool chain.
CheriBSD is a derivative of FreeBSD that implements CHERI memory protection and software
compartmentalization and is maintained in an external repository. CHERI also includes an LL-
VM-based tool chain with support for a number of CHERI-enhanced ISAs.

ED MASTE manages project development for the FreeBSD Foundation. He is also a member of
the elected FreeBSD Core Team. Aside from FreeBSD, he has contributed to a number of oth-
er open-source projects, including LLVM, ELF Tool Chain, QEMU, and Open vSwitch. He lives in
Kitchener-Waterloo, Canada, with his wife, Anna, and children, Pieter and Daniel.

5 of 5

Transport Layer Security, or TLS, makes ecommerce and online
banking possible. It protects your passwords and your privacy.
Let’s Encrypt transformed TLS from an expensive tool to a free
one. TLS understanding and debugging is an essential sysadmin
skill you must have.

TLS Mastery teaches what you must know.

Stop fighting with certificates and start using them. Give them
enough attention that you can automate and ignore them.

Learn TLS. Because we’re sysadmins and lies do not become us.

TLS Mastery by Michael W Lucas
https://mwl.io

“ ”
Security.
 You keep using that word.
 I do not think it means
 what you think it means.

17FreeBSD Journal • March/April 2020

The short answer is “no, it is still the same good old loader.” But we are trying to make it more
friendly and support more features.

I started working with boot loaders that were not on FreeBSD but on illumos. At that time,
illumos was using old grub 0.96 and supported only the BIOS boot. UEFI systems were already
around at that time and illumos really needed to support UEFI systems. My initial work was to
investigate newer grub. It was feature-rich, widely used but hard to manage, and its licensing is
not friendly when you need to support features specific to file systems like zfs or to add operat-
ing-system specific features. This led me to the FreeBSD boot loader and contributing to its de-
velopment.

When I started porting the FreeBSD boot loader to illumos, illumos supported a serial con-
sole and VGA text mode console only. To support UEFI, I had to implement support for the
UEFI framebuffer-based console for the illumos kernel. Once implemented, a logical step was to
add the same feature for the loader, and when there is an option to draw the console on the
UEFI framebuffer, then re-using the same code to draw on the Vesa BIOS Extensions (VBE) lin-
ear framebuffer is just another logical step in development. Once done, we got public postings
like this https://omnios.org/setup/fb:

Figure 1 Loader with ascii art.

BY TOOMAS SOOME

1 of 4

Is There a
New Loader in
FreeBSD 13.0?

https://omnios.org/setup/fb

18FreeBSD Journal • March/April 2020

Figure 2 Loader with images.

Back to the FreeBSD Boot Loader
But enough about illumos, let’s get back to FreeBSD and see what we have managed to do

there. Please note, most of the work I have done has involved flowing from Freebsd to illumos
or vice versa.

OpenZFS
As FreeBSD 13.0 is now using OpenZFS, we support most OpenZFS features for booting.

The encrypted datasets and draid are still in the todo list, however.

Console
Literally, the most visible change is the graphical console for the loader. While the current

implementation is not perfect and can be improved, I hope most users will enjoy the updated
look.

The loader console terminal emulator is teken from the kernel tree. From there, we have the
first two tunables we can set:

teken.fg_color
teken.bg_color

The acceptable values are ansi color names or numeric values 0 – 7.
The UEFI loader uses the framebuffer console by default unless the serial console is configured.
The BIOS loader defaults to use text mode at this time. For the BIOS loader, the console can

be controlled by setting:

screen.textmode=”0”

2 of 4

19FreeBSD Journal • March/April 2020

This will cause the loader to set up VBE framebuffer mode and to use a display-preferred
resolution when EDID information is available. The default fall back resolution is 800x600.

Both UEFI and BIOS loaders allow setting the screen resolution via the following tunables:

efi_max_resolution
vbe_max_resolution

Having vbe_max_resolution set will also cause the loader to switch to use VBE framebuffer
mode.

The framebuffer mode can also be set, queried and support modes listed by platform specif-
ic commands.

Command gop allows a user to get, set and list resolutions in the UEFI loader. Command
gop off will switch the loader from drawing the console to the UEFI built-in terminal output
method—Simple Text Output Protocol.

Command vbe allows the user to get, set and list resolutions in the BIOS loader. Command
vbe on will switch the loader to use VBE framebuffer and vbe off will switch the loader to
use VGA text mode.

If a user has switched the BIOS loader to use the VBE framebuffer but is booting an older
kernel that does not provide a VT vbefb driver, then the loader will switch the console to VGA
text mode just before starting the loaded kernel.

Fonts
At this time, we are providing terminus family console fonts, installed into the /boot/fonts di-

rectory. The loader has a built-in 8x16 font, but to save space, the built-in font only provides an
ASCII set.

After the loader starts and initializes and it has obtained access to disks and determined the
boot device and a boot file system, the loader will search for /boot/fonts directory and INDEX.
fonts file. If present, the loader will get the list of available fonts and will build an internal, in-
dexed list of available fonts. The INDEX.fonts file is used because we need to support tftp file
transport, but tftp protocol does not implement reading directory listings.

Once we have a list of available fonts, we load a preferred font based on the resolution used
on the console display. If the default selection is not working well for a user, there are two
methods for changing defaults:

First, the environment variable screen.font appears and permits changing a used font. An at-
tempt to use a bad value or to unset the value will cause the list of currently available fonts to
be printed on the console.

Second, the command loadfont allows a user to load a custom font file such as /boot/
fonts/gallant.fnt. The font needs to be prepared with the vtfontcvt(8) tool.

The font indexing in the loader assumes unique font sizes. When there is an already-regis-
tered font file for font size 8x16, an attempt to load a different font file providing the same font
size will cause the previously loaded file to be replaced by a new file.

The font currently used by the loader will be passed to the loaded kernel. By doing so, we
preserve the look and feel and achieve a consistent transition from the boot loader to the run-
ning operating system.

3 of 4

20FreeBSD Journal • March/April 2020

Figure 3 FreeBSD 13.0 Boot loader

Images
To build better looking screens, the loader supports display of PNG-formatted image files. At

this time, we require TrueColor with an alpha channel, and we support image scaling. Examples
of how to use images in a logo or brand components of the bootloader menu can be found
from drawer.lua and gfx-orb.lua files.

Drawbacks
Some systems experience a slow console when the framebuffer console is used. With the

VBE framebuffer, one possible workaround is to use smaller color depth—default is 32-bit col-
ors. With both VBE and UEFI, it may be possible to use smaller resolution and to configure bet-
ter resolution once the KMS driver is running. And, of course, in some cases the only reason-
able option may be to use a text console.

Summary
So again, no, there is not a new boot loader in FreeBSD, but we are trying to make sure it

does what it should do—which is support loading and booting the FreeBSD operating system,
provide features people might need for the task, and look reasonably good.

TOOMAS SOOME Born in Estonia. Toomas has been a UNIX admin since 1993, working
mainly with Solaris. He is also an infrastructure architect, illumos developer and a FreeBSD src
committer. Toomas is not afraid of boot loaders and can read and write Forth.

4 of 4

Nov/Dec 2019 57

2021 Editorial Calendar
• Case Studies (January-February)

• FreeBSD 13 (March-April)

• Security (May-June)

• Desktop/Wireless/Graphics (July-August)

• Cloud (September-October)

• Embedded (November December)

22FreeBSD Journal • March/April 2020

With FreeBSD 13.0, numerous improvements were made to the cc_cubic loadable congestion
control module. TCP Cubic was originally implemented by Lawrence Stewart during his time at
Swinburne University of Technology, Center for Advanced Internet Architectures based on an
early draft of what eventually became RFC8312. TCP Cubic has become the de-facto standard
congestion control mechanism in use today.

TCP Cubic
The default TCP congestion control in use by FreeBSD for the longest time is name NewRe-

no—a variant of the Reno congestion control mechanism with improved loss recovery. The job
of a congestion control algorithm is to detect and prevent an overload situation of the network
where more data is injected than can be transported or
delivered. NewReno used to be the gold standard in this
space but does suffer a few restrictions.

While Van Jacobson has shown that any AIMD (addi-
tive increase, multiplicative decrease) scheme exhibits a
stable operation for controlling the traffic, with modern
high-speed links, the time it takes NewReno to ramp up
the effective transmission speed is lackluster. If an over-
load situation is detected--typically using an explicit sig-
nal like a packet loss or specific bits in the TCP/IP head-
ers—NewReno will reduce the effective transmission
speed—and I use this term loosely, to not get bogged
down on details like available data to transmit, con-
gestion window and burst behavior, and timing when
the application is ready to send more data—to 50% of the speed at the time the overload oc-
curred. With a sufficient amount of data to transmit, provided by the local application at a suf-
ficiently high speed, NewReno will then ramp up the transmission speed by roughly 1 full-sized
packet every round-trip time (RTT).

BY RICHARD SCHEFFENEGGER

1 of 3

TCP Cubic
Is Ready
to Take Flight

The job of a congestion control

algorithm is to detect and

prevent an overload situation of

the network.

23FreeBSD Journal • March/April 2020

But running these numbers using modern networking technology, e.g. 10G links across the
country with a latency of 100ms, it may take a singular NewReno session up to (5 Gbps / (1500
* 8)) * 0.1 sec RTT ~= 10 hours to ramp back up to utilize all the available bandwidth—provid-
ed no other packet drops (as indication of congestion) happen.

Low average
Bandwidth

Fast recovery

time

da
ta

 in
 fl

ig
ht

Co
ng

es
tio

n a
vo

ida
nc

e
(lin

ea
r)Throughput

reduction
by 50%

• Brittle loss response, non-scalable growth
• Non-scalable linear growth:
 Needs 1000x more time to reach 1000x higher bandwidth
• To fully utilize a 10G, 100ms path, requires >1 hr between losses
 Loss rate <0.0000000002 (<2•10-10)

Default TCP Mechanism for over 20 years
Reno

Background
load rem

oved

While TCP—when sending unlimited amounts of data—is designed to probe and eventually
exceed the maximum bandwidth of the network, slow ramp-up is detrimental to this goal.

TCP Cubic addresses these limitations with two major changes. The first one is to reduce the
speed only to 70% (80% in early drafts) of the transmission speed at time of overload. The
second is to ramp up afterwards using a cube function which is scaled in such a way as to lin-
ger around the previous limit for a good time, but ramping up to that limit quickly--and if the
available bandwidth of the network is no longer as restricted, to ramp up faster and faster, ef-
fectively matching the exponential bandwidth growth during TCP slow start.

High average
BandwidthCongestion

avoidance

Fast recovery

Background
load rem

oved

time

da
ta

 in
 fl

ig
ht

(c
ub

ic
)

Throughput
reduction
by 20%

• Higher average bandwidth and speedier ramp up may expose latent
 problems in the network
 • Monitor Retransmissions and Retransmission Timeouts, if degraded
 performance is reported.

• Growth following cubic (x3) function
 Needs 10x more time to reach 1000x higher bandwidth -> 100x more agression

• Majority of environments will see better performance.

• To fully utilize a 10G, 100ms path, requires >40 sec between losses
 Loss rate <0.0000000003 (<3•10-8)

Modern TCP Mechanism – current Industry Standart
Cubic

While all these foundations were implemented—including a fast integer approximation for
calculating the cube-root--some of the parameters did change between the cubic draft of 2007
and ultimate RFC8312. Thus, some work was necessary to being the existing code in-line with
the RFC.

2 of 3

24FreeBSD Journal • March/April 2020

In the meantime, most other major OSs adopted Cubic as their default congestion mecha-
nism, as in a direct competition between NewReno and Cubic, a flow using NewReno will get
less share of the bandwidth available. Fortunately, Cubic was designed in a way to not fully
starve out other congestion control mechanisms.

The existing code also assumed some implicit limits in the cubic code, which do not always
hold with general purpose traffic patterns. A number of edge cases were not fully addressed.
For example, nowadays, application-limited sessions are the norm. This is when TCP basically
runs out of data to send, and all the state engines driven by processing more data have a dis-
continuation in time. As Cubic uses wall clock time rather than the passing of data over the ses-
sion…<== rather than D23655 (cubic and slot start interaction) <== slow start…this has creat-
ed some undesirable effects. (Author—is this change correct or did we misunderstand?)

While starting to run Cubic as a general-purpose congestion control on FreeBSD, the follow-
ing issues were addressed without any claim of this being a complete list. Some general issues
with the TCP base stack also showed up and were fixed while working on Cubic.

D26181 (editorial nit)
D26060 (adjust cwnd continuously, not only once per window – leading to massive traffic
bursts)
D25976 (treat ECN like packet loss for Cubic)
D25746 (properly time the start of a cubic epoch with slowstart)
D25133 (cubic and RTO interaction)
D25065 (cubic and application limited)
D24657 (editorial)
D23655 (cubic and slot start interaction)
D23353 (cubic and ECN)
D19118 (deal with overflows during cubic math)
D18982 (prepare for good cubic math)
D18954 (cubic and After-Idle)

Overall, the foundation of cubic that has been available since FreeBSD 8.0 has been a sol-
id foundation of the basic functionality and algorithms. A lack of production deployment left a
number of corner cases and boundary conditions—e.g. for very long running TCP sessions--un-
checked.

With the above improvements done, exercising the TCP Cubic variant in FreeBSD 13.0 should
allow for slightly better throughput, especially across the public internet with high latency ses-
sions. Nevertheless, additional exposure to peculiar traffic patterns may still show some short-
comings, even though the code is now in a more robust state to deal with most scenarios.

Not only was Lawrence Stewart very helpful in this improvement effort, but much of the
heavy lifting was performed by Cheng Cui, especially doing regression and unit testing as well
as finding all these edge cases and providing code improvements. There have also been many
productive discussions on the bi-weekly FreeBSD Transport group calls.

RICHARD SCHEFFENEGGER is Consulting Solution Architect at NetApp.

3 of 3

25FreeBSD Journal • March/April 2020

ZFS is a highly advanced filesystem with integrated volume manager that was added to
FreeBSD in 2007 and has since become a major part of the operating system. ZFS includes a
transparent and adjustable compression feature that can seamlessly compress data before stor-
ing it and decompress it before returning it for the application’s use. Because the compression
is managed by ZFS, applications need not be aware of it. Filesystem compression not only saves
space, but in many circumstances, can even lower read and write latency by reducing the total
volume of data that needs to be stored or retrieved.

Originally ZFS supported a small number of compression algorithms: LZJB (an improved Lem-
pel–Ziv variant created by Jeff Bonwick, one of the co-creators of ZFS, it is moderately fast but
only offers low compression ratios), ZLE (Zero Length
Encoding, which only compresses runs of zeros), and
the nine levels of gzip (the familiar slow, but moderately
high-compression algorithm). Users could thus choose
between no compression, fast but modest compression,
or slow but higher compression. Unsurprisingly, these
same users often went to great lengths to separate out
data that should be compressed from data that was
already compressed in order to avoid ZFS trying to re-
compress it and wasting time to no benefit. For various
historical reasons, compression still defaults to “off” in
newly created ZFS storage pools.

In 2013, ZFS added a new compression algorithm,
LZ4, which offered both higher speed and better compression ratios than LZJB. In 2015, it re-
placed LZJB as the default when users enable compression without specifying an algorithm.
With this new high-speed compressor, combined with an existing feature called “early abort,”
it became feasible to simply turn on compression globally, since incompressible data would be
detected and skipped quickly enough to avoid impacting performance. The early abort fea-
ture works by limiting the size of the output buffer given to the compression algorithm to one-
eighth smaller than the input buffer size. If the compression algorithm cannot fit the output
into that smaller buffer, it fails and returns an error. As a result, the algorithm can preemptively
disengage if it is not going to provide sufficient gains, in which case the data is stored uncom-
pressed to avoid the overhead of decompressing a block that was barely compressed. In fact,
enabling LZ4 compression on everything is so low impact that this set-and-forget configuration
is very common and has even been the default in FreeNAS for many years.

BY ALLAN JUDE

1 of 6

Zstandard
Compression
in OpenZFS

In 2015, LZ4 replaced LZJB as

the default when users enable

compression without specifying

an algorithm.

26FreeBSD Journal • March/April 2020

The Project Begins
The project started in the fall of 2016 after the author had to miss the OpenZFS Developer

Summit due to a scheduling conflict with EuroBSDCon. The goal was to integrate a recently an-
nounced new compression algorithm into OpenZFS. Zstandard (Zstd for short) was created by
Yann Collet, the original author of LZ4. The purpose of the new algorithm was to provide com-
pression ratios similar to gzip (with even greater flexibility, offering more than twenty levels to
gzip’s nine!) but with speeds comparable to those seen with LZ4.

As the project began, we immediately ran into issues with stack size since Zstd was written
as a userspace program and had a penchant for large stack variables. This was a problem for
integrating Zstd into the kernel, where the stack was limited to 16 KB, and had to support all of
the other layers of the operating system before and after the compression integrated into the
filesystem. We temporarily sidestepped this problem by just increasing the stack size in our de-
velopment kernel and got the first version of ZFS with Zstd compression working after a few
weeks of work. Then we set about modifying Zstd to instead use heap memory returned by
the kernel malloc framework to reduce stack usage. This was difficult as there were often mul-
tiple exit paths from functions where the allocated memory needed to be freed. After only lim-
ited success, the project was set aside for a while, knowing when we came back to it, it was
likely to be even worse, as all of the local patches would need to be rebased forward to a new-
er version of Zstd.

Luckily, when it came time to return to the project, Zstd version 1.3 had been released, with
greatly reduced stack usage, while also allowing the caller to manage their own memory allo-
cation. With these welcome improvements, Zstd would no longer require extensive modifica-
tions for kernel integration. In the end, only superficial changes were required, and Zstd could
be used largely unmodified.

By the fall of 2017 and the next OpenZFS Developers Summit, we had a working prototype
to demo at the conference. The summit provided an invaluable opportunity to talk to experts
and much more experienced developers about remaining challenges. One of these was how to
have the user provide the compression type (Zstd) and the level (1-19) in a way that would not
result in fatal confusion should a user later change the compression type to gzip, where a lev-
el like “19” might be invalid. This issue was mentioned during the talk, and afterwards Robert
Mustacchi came up and suggested a remarkably elegant solution: only expose the compression
type to the user offering the different levels of Zstd but store them internally in ZFS as separate
values. While that whole conversation took less than two minutes of his time, it saved many
weeks of work. During the breaks, we also talked to a few people about any ideas they might
have to solve other issues, and what uses they might have for Zstd.

We presented our progress at BSDCan 2018 and there was a good deal of interest. Though
there was still much to be done before it could be committed, the prototype showed how
much benefit Zstd could provide to ZFS and FreeBSD.

Beyond the Prototype
After getting the initial functionality working, there were larger integration issues to address.

How will this all integrate into ZFS? In the ZFS on-disk format, the compression type is stored
in an 8-bit field in each block pointer. The top bit had already been borrowed to represent em-
bedded block pointers, for the case where a block compresses so well (112 bytes), that it can
be stored directly in the block pointer in place of the disk addresses and checksum, and there-
fore does not require its own allocation on disk. This means that no more than 127 compres-

2 of 6

27FreeBSD Journal • March/April 2020

sion algorithms are possible, and another bit may need to be borrowed in the same way in the
future. A number of slots are already used: The value 0 does not actually mean no compres-
sion, it indicates that compression is inherited from the parent object. With levels for on, off,
lzjb, empty (a whole block consisting entirely of zeros), gzip 1 through 9, ZLE, and LZ4, the first
15 values are already used. In the end, this Zstd patch introduced 41 additional compression
levels (1-19, “fast” 1-9, “fast” 10-100 in increments of 10, “fast-500” and “fast-1000”), which
could lead to very few possibilities left in the compression field in the on-disk format. After ex-
amining how the compression field in the block pointer is used, it became clear that the on-
disk format only needs to map the compression setting to the correct decompression function,
which is the same for all Zstd levels. At the time, it did not seem like it would be necessary to
store the specific level of Zstd a block was compressed with.

After further work, it was discovered that sometimes we actually do need to know what
level a block was compressed with. Namely, in the (presumably infrequent) case where the
compressed ARC feature is disabled, the L2ARC would
consistently fail with checksum errors. The L2ARC is
a second-level cache that copies data at risk of being
evicted from the primary ARC. By design, the L2ARC
avoids the overhead of keeping its own copy of the
checksum of each block, and instead refers to the
checksum in the original block pointer. This means each
block must be recompressed with the exact same set-
tings before being written into the L2ARC. When read-
ing back from the L2ARC, the block is checksummed
and compared to the on-disk block and the original
checksum. With the previous compression algorithms,
there were no additional parameters to consider, but
with Zstd, recompression at the default level would
most likely generate a different output, and therefore
mismatched checksums.

To solve this, we extended an existing concept used
in LZ4, where the first 4 bytes of a compressed block
on disk are used to store the compressed length of the
block. Since allocations on disk will always be whole sectors, this allows LZ4 to avoid reading
and attempting to decompress the random data in the slack space between the end of the
compressed data and the end of the sector. Zstd compressed blocks use a larger header and
store the version of Zstd and the level of compression in addition to the size. We decided to
store the version of Zstd used to make it easier to upgrade the version of Zstd in the future, giv-
ing us the possibility to include multiple versions of the Zstd compression functions, so that a
block could always be recreated if required. This is most likely to come in handy for the “NOP-
write” feature: when a block is to be overwritten, ZFS can compare the checksum of the new
block, and if it is the same as the old block, it does not need to rewrite the data. This type of
operation is very common with Oracle databases and may also happen with certain types of
backup software. If the original block is compressed with an older version of Zstd but now re-
compressed with a newer version, this could lead to a loss of this optimization. If ZFS is able to
detect this situation, and attempt compression with the older version of Zstd, it can avoid the
unexpected growth of snapshots of an Oracle database.

3 of 6

After further work, it was

discovered that sometimes

we actually do need to

know what level a block was

compressed with.

28FreeBSD Journal • March/April 2020

Where Zstd Shines
Zstandard provides a large selection of compression levels, allowing the storage administra-

tor relatively fine-grained control over balancing performance and compression ratio. One of
the main advantages of Zstd is that the decompression speed is independent of the compres-
sion level. For data that is written once but read many times, Zstd allows the use of the high-
est compression levels without a performance penalty. When writing large amounts of data,
ZFS compresses each record individually, so it is able to take advantage of the many processor
cores available on modern systems. Even when data is updated frequently, there are often per-
formance gains that come from enabling compression. One of the biggest advantages comes
from the compressed ARC feature--itself a recent improvement in ZFS. ZFS’s Adaptive Replace-
ment Cache (ARC) now caches the compressed version of the data in RAM and decompresses
it each time it is requested. This allows the same amount of cache to store more (often much
more) logical data and metadata, increasing the cache hit ratio, and improving performance for
the most frequently and most recently accessed data. If upgrading from LZ4 to Zstd increas-
es the on-disk compression ratio, those gains directly multiply the efficacy of every byte in the
compressed ARC.

In the chart below, we compare storing a large uncompressed tarball of FreeBSD source
code on ZFS using a variety of compression algorithms and levels. The test system used four
striped SATA SSDs, the read speed without compression was limited by the available through-
put of the underlying storage devices to around 1.5 GB/s, however, as the compression ratio of
the data goes up, the read speed generally increases as well, since the limiting factor is still how
fast the compressed data can be brought in from the underlying storage. Compared to gzip,
Zstd decompresses much faster, and wastes few of these gains as it does not generally require
more CPU time in decompression.

4000

4.0

3.0

2.0

2000

4887

zstd-1

2508

gzip-1

4541

zstdfast-1

4090

Iz4

3792

zstdfast
-10

2460

zstdfast
-50

zstdfast
-1000

Mbytes/sec

Decompression Speed vs Compression Ration (128k Records, SSD)

Compression Ratio Baseline

1547

off zstd-3

2857

gzip-9

4760

zstd-5

4975

zstd-7

5084

zstd-9

4719

zstd-15

4651

zstd-19

4841

1630

Compression Algorithm

4 of 6

29FreeBSD Journal • March/April 2020

Interestingly, using a larger ZFS “record size” allows even greater ratios. The reason for this
is ZFS compresses each record independently, so record size has a large impact on the possible
compression gains; the larger the record, the more optimal the compression dictionary. gzip-
9 sees the compression ratio increase from 4.3x to 4.7x, it only gains a modest 8% additional
throughput, while Zstd-9 boots its ratio from 4.9x to 5.5x and gains 28% more performance,
reaching more than four times the throughput the hardware is capable of.

4000

5.0

6.0

4.0

3.0

2.0

2000

6000
6270

zstd-1

2662

gzip-1

5770

zstdfast-1

4508

Iz4

4049

zstdfast
-10

2561

zstdfast
-50

zstdfast
-1000

Mbytes/sec

Decompression Speed vs Compression Ration (1024k Records, SSD)

Compression Ratio Baseline

1547

off zstd-3

5884

gzip-9

5819

zstd-5

6283

zstd-7

6532

zstd-9

6660

zstd-15

6294

zstd-19

3093

1639

Compression Algorithm

One thing to be aware of is that ZFS will not store a block compressed if the savings from
compression do not result in the savings of at least one disk sector. For example, on a typi-
cal database filesystem, with a recordsize of 16 KB, if the compression ratio is 1.32x, resulting
in the final block being 12.1 KB, it will still require the same four 4 KB sectors to be stored, so
it will be less work to just store the data uncompressed. However, if the compression ratio is
1.34x, requiring 11.9 KB of storage space, this can be achieved with just three 4 KB sectors, so
ZFS will use the compressed version. The compressionratio property of a dataset returns the av-
erage of all the records.

What’s Next?
The integration of Zstd into ZFS has just begun and the future undoubtedly holds many im-

provements. Already, we have thoughts along these lines. For example, we expect using the
advanced Zstd API to provide more hints about the maximum size of the input data could re-
duce memory usage and improve Zstd’s ability to take advantage of “early abort,” which we
spoke of early in the article. There are likely a number of opportunities to optimize the way ZFS
sets up and tears down Zstd compression contexts and to increase the reuse of these contexts
with the Zstd reset API, which one would expect to significantly improve compression perfor-
mance with small blocks.

Aside from continuing to optimize Zstd for ZFS, the next obvious evolution is to remove the

5 of 6

30FreeBSD Journal • March/April 2020

need for the user to decide what Zstd level is best (there are 40 options to choose from after
all). Instead, we envision a user simply setting compress=zstd-auto and ZFS dynamically adapts
in some sensible way. When using Zstd from the command line, to compress a stream being
sent over the network, the user can specify—adapt=min=3,max=10 and Zstd will vary the
compression level based on how quickly the network buffer is emptied. This ensures that the
compression is not a bottleneck by lowering the compression level if the network has available
bandwidth, or conversely, by increasing the time spent on compression if the network is not
able to keep up with the current compression level.

In ZFS, this would likely be modelled on the amount of “dirty” data (data waiting to be
compressed and written to disk). When new data is written to ZFS, it will be compressed with
the maximum compression level. If the rate of incoming writes is too high for ZFS to keep up
with the requested level of compression, which results in the amount of dirty data steadily in-
creasing, the compression level would lower incrementally, ideally settling on the maximum lev-
el that does not limit throughput. As always, the ZFS
philosophy is to make sensible use of system resources
while minimizing the need for adjustment and tweaking
by the user.

Conclusion
Zstd support shipped as part of the recently released

OpenZFS 2.0, which is available as replacement for the
base ZFS in FreeBSD 12.2 via the sysutils/openzfs pack-
age and is integrated into the FreeBSD 13.0 develop-
ment branch.

I want to give a special thanks to everyone at the
FreeBSD Foundation for the grant that made it pos-
sible to get this long-running project finished and
merged in time for OpenZFS 2.0. Thanks also to Sebas-
tian Gottschall, Kjeld Schouten-Lebbing, and Michael
Niewöhner who did the Linux port, including the addi-
tional kmem compatibility code, and creating most of
the tests included in the final patch. I also want to thank
the team that worked to integrate FreeBSD support into the upstream OpenZFS repo, and ev-
eryone at the OpenZFS project. Lastly, my thanks also go out to everyone who tested and re-
viewed the many versions of the patches over the years until it was finally committed.

ALLAN JUDE is VP of Engineering at Klara Inc., a global FreeBSD Professional Services and
Support company. He also hosts the premier weekly BSD podcast, BSDNow.tv and served on
the FreeBSD Core team from 2016 to 2020. He is the co-author of “FreeBSD Mastery: ZFS” and
“FreeBSD Mastery: Advanced ZFS” with Michael W. Lucas.

5 of 6

When new data is written to

ZFS, it will be compressed with

the maximum compression level.

31FreeBSD Journal • March/April 2021

Y
ou may be aware that FreeBSD 13.0 is the first major release cut from Git instead of
Subversion. This has long been in the making with a lot of careful handling of the
source that makes FreeBSD so valuable. I clearly remember a certain FreeBSD devsum-
mit in Maarsen, Netherlands many years ago, where the FreeBSD project decided to

finally jump on the Subversion bandwagon. Coming from CVS (and probably rcs before that,
ask the people who’ve been around longer than
I...), switching version control systems is certainly
not easy. Especially when you have a history go-
ing back to the very first days at UC Berkeley, every
single change is precious. You never know when
you’ll need to dig up some obscure historical fact
because a device driver misbehaves, or a developer
needs to know why an interface was implement-
ed in a certain way. But switching version control
systems is not just a technical task, it’s a social one,
too. It comes with requirements for convincing and
bringing onboard the people who will use it after
the switch has been done. There is plenty of controversy about Git and how it behaves. Re-
learning some of the concepts of version control systems and how Git does it is probably the
best way to deal with it, along with an open-minded approach, of course.

Certainly, Git was around the ports collection before the switch happened and many a de-
veloper has used it for years for their own personal projects or at work (sometimes without
having a choice). People missing the “central-source-of-truth” approach from Subversion et al.
can set up a Gitlab system using www/gitlab-ce. There are plenty of extra ports to keep you

BY BENEDICT REUSCHLING

Can’t Git Enough?
PRACTICAL

This column covers ports and packages for FreeBSD that are useful
in some way, peculiar, or otherwise good to know about. Ports
extend the base OS functionality and make sure you get something
done or, simply, put a smile on your face. Come along for the ride,
maybe you’ll find something new.

There is plenty of
controversy about Git
and how it behaves.

1 of 3

PRACTICAL

32FreeBSD Journal • March/April 2021

busy setting it up on a rainy, lockdown day. The graphical user interface hides many of the per-
ceived warts of Git behind a user-friendly interface. From replacing files by uploading a changed
version that turns it into a commit and push to reading the version history, all is done without
needing to know a single Git command. This and other similar UIs like www/gitea, devel/cgit,
devel/git-cola, make it easy for non-developers to keep track of documents in an office setting,
no matter if it is IT-related or not. The little “time machine for files” is useful to pretty much
anyone needing an old version of a file the way it was before your cat managed to not only
walk across the keyboard, but also save the document in the process. Extra points for the ro-
dent hunter when you were in vi at the time.

Software development never seems to be an easy task, so all the help one can get is wel-
come. I’ve always wondered how developers start: do they think of a name for their software
first or start to hack on it right away? If you can’t think of a good name and asdf, qwerty, and
similar are already taken (we won’t discuss them here, I promise), how about doing the old re-
verse-y thing? This must have inspired the author of devel/tig who wrote an ncurses-based ter-
minal interface for Git. Because why not? Browsing your version-controlled tree is quick this
way and staging your next change, looking at the history, writing that bad, one-word commit
message is all possible (the latter is discouraged though--give the historians a bit more informa-
tion about why you made that change at 4:20 in
the morning).

More than once in my Unix class, I have told
students that the Unix developers were lazy, but
the good kind of laziness. What I mean is that they
sat down, figured out how their colleague’s com-
puter could do the work much better and put a
lot of effort into it. Once it was done, they could
be lazy because the silicon was doing all the hard
work. It is not lazy for the sake of laziness, which
is probably the highest form of procrastination. But
whatever it may be, if you are in the same camp,
take a look at devel/lazygit. A terminal UI in Go
which starts with a nice rant on its project page:

“Rant time: You’ve heard it before, Git is powerful, but what good is that power when ev-
erything is so damn hard to do? Interactive rebasing requires you to edit a damn TODO file in
your editor? Are you kidding me? To stage part of a file, you need to use a command line pro-
gram to step through each hunk, and if a hunk can’t be split down any further and contains
code you don’t want to stage, you have to edit an arcane patch file by hand? Are you KIDDING
me?! Sometimes you get asked to stash your changes when switching branches only to realize
that after you switch and un-stash, there weren’t even any conflicts, and it would have been
fine to just check out the branch directly? YOU HAVE GOT TO BE KIDDING ME!”

But after the ranting, the developer sat down and made life better for everyone. See, every-
one can do it. The UI is certainly nice enough to give it a try. Another such tool for command
line aficionados is devel/glab. Written for Gitlab, it lets you leave the familiar territories of the
web UI and stay in the terminal where the real fun is happening.

2 of 3

Software development
never seems to be an
easy task, so all the help
one can get is welcome.

PRACTICAL

33FreeBSD Journal • March/April 2021

More often than not, source code involves collaboration with others. My code certainly got
better when another set of eyes took a look at it. After rolling them back from the top of their
heads, people were not shy to point out where I could do better, sharing their wisdom along
the way. The occasional praise was also there, so I did not start my new career as a salami
smuggler. Reviewing on Github (where not only the cool kids hang out these days, but pretty
much anyone needing a repo for their files) is often done using the Gerrit code review tool. If
you spend a lot of time there, consider installing devel/git-review to support your coding work-
flow and review with others.

Beginners can take a look at devel/easygit to make the experience a little less painful or
overwhelming. For those who have used it for a long time and want to brag about how many
lines of code were changed just because they commit early and often, devel/gitinspector might
help. Just decorate your own office—and not the cafeteria—with the resulting stats, or people
will quickly remind you that it is quality not the quantity that counts.

Git is not the only version control game in town, there have been and always will be oth-
ers. Its popularity certainly can’t be overlooked and it must have come from a feature or two
that people were missing. What’s the easiest thing I can think of if you want version control but
don’t want Git? Keep multiple drafts in your email, attach the files you were working with or
paste the content in the message body. It is even distributed if you pick up your work from an-
other computer by going into your webmail. Surely that has its downsides, as it will be a secu-
rity nightmare if you give people access to your “repo.” But maybe that experience will haunt
you enough to give Git a first, second, or third chance. Pick up a book, do one of the many
online tutorials. The old “learning by doing” is also very effective. There can never be enough
people contributing to open-source projects after all. Commit yourself to it and don’t forget to
pick the cherries along the way.

BENEDICT REUSCHLING is a documentation committer in the FreeBSD project and member
of the documentation engineering team. He serves on the board of directors of the FreeBSD
Foundation as vice president. In the past, he served on the FreeBSD core team for two terms.
He administers a big data cluster at the University of Applied Sciences, Darmstadt, Germa-
ny. He’s also teaching a course “Unix for Developers” for undergraduates. Together with Allan
Jude, he is host of the weekly bsdnow.tv podcast.

3 of 3

Donate to the Foundation!

Support
 FreeBSD

You already know that FreeBSD is an internationally
recognized leader in providing a high-performance,
secure, and stable operating system. It�s because of
you. Your donations have a direct impact on the Project.

Please consider making a gift to support FreeBSD for the
coming year. It�s only with your help that we can continue
and increase our support to make FreeBSD the high-
performance, secure, and reliable OS you know and love!

Your investment will help:

Funding Projects to Advance FreeBSD

Increasing Our FreeBSD Advocacy and

Providing Additional Conference
Resources and Travel Grants

Continued Development of the FreeBSD
Journal

Protecting FreeBSD IP and Providing
Legal Support to the Project

Purchasing Hardware to Build and
Improve FreeBSD Project Infrastructure

Making a donation is quick and easy.
freebsdfoundation.org/donate

®

®

BSD Events taking place through September 2021
BY ANNE DICKISON

USENIX LISA21
June 1–3, 2021
VIRTUAL

LISA is the premier conference for operations professionals, where we share real-world knowledge
about designing, building, securing, and maintaining the critical systems of our interconnected
world. The Foundation is pleased to again be an Industry Partner for this event.

Please send details of any FreeBSD related events or events that are of interest for FreeBSD
users which are not listed here to freebsd-doc@FreeBSD.org.

Users with organizational software that uses the iCalendar format can subscribe to the FreeBSD
events calendar which contains all of the events listed here.

FreeBSD Fridays
https://freebsdfoundation.org/freebsd-fridays/
FreeBSD Fridays will begin again in May.
Past FreeBSD Fridays sessions are available at: https://freebsdfoundation.org/freebsd-fridays/

FreeBSD Office Hours
https://wiki.freebsd.org/OfficeHours
Join members of the FreeBSD community for FreeBSD Office Hours. From general Q&A to
topic-based demos and tutorials, Office Hours is a great way to get answers to your FreeBSD-
related questions.

Past episodes can be found at the FreeBSD YouTube Channel.

EuroBSDcon 2021
September 16–19, 2021
Vienna, Austria

EuroBSDcon is the European annual technical conference gathering users and developers working
on and with 4.4BSD (Berkeley Software Distribution) based operating systems family and related
projects. The CFP is now open. Submit your FreeBSD talks by May 26, 2021.

35FreeBSD Journal • March/April 2021

June 2021 FreeBSD Developer Summit
June 9–11, 2021
VIRTUAL

Join us for the 2021 FreeBSD Developer Summit. The online event will consist of half-day
sessions, taking place June 9–11, 2021. It’s free to attend, but we ask that you register with the
eventbrite system to gain access to the meeting room. In addition to vendor talks, we will also
have discussion sessions. More information can be found on the wiki.

https://www.usenix.org/conference/lisa21
https://www.usenix.org/conference/lisa21
mailto:freebsd-doc@FreeBSD.org
https://www.freebsd.org/events/events.ics
https://www.freebsd.org/events/events.ics
https://freebsdfoundation.org/freebsd-fridays/
https://freebsdfoundation.org/freebsd-fridays/
https://wiki.freebsd.org/OfficeHours
https://www.youtube.com/c/FreeBSDProject
https://2021.eurobsdcon.org/
https://2021.eurobsdcon.org/
https://wiki.freebsd.org/DevSummit/202106
https://wiki.freebsd.org/DevSummit/202106
https://www.eventbrite.com/e/june-2021-freebsd-developer-summit-tickets-151547652107
https://wiki.freebsd.org/DevSummit/202106

