
12FreeBSD Journal • March/April 2020

FreeBSD 13.0 marks a significant milestone in the evolution of the FreeBSD tool chain: the com-
pletion of a decade-long migration to using a modern, permissively licensed compiler, linker, de-
bugger, and miscellaneous binary utilities for all of FreeBSD’s supported architectures.

From the beginning, FreeBSD relied on the GNU tool chain, including the GCC compiler,
Binutils linker and binary utilities, and the GDB debugger. These tools were kept current with
regular updates by a group of developers, both volunteer and paid. This continued until 2007
when the GNU project changed the license on these tools to version 3 of the GNU Public Li-
cense (GPLv3), and they were not updated again.

A few years later, about twenty, developers met for a developer summit session at BSDCan
2010 to plan the future of the tool chain, with a goal of moving to a modern, permissively li-
censed tool chain. License considerations were only one part of the rationale. New technolo-
gy, the ability to implement new and bespoke functionality, and promoting competition in OSS
tools also factored into the team’s goals.

At the same time, a number of tool-chain projects were firming up, both external to and
within the FreeBSD project. Summit attendees noted
that LLVM and Clang were maturing rapidly and gaining
interest in the compiler research community. A BSD-li-
censed ELF tool-chain project was in progress, as well as
a number of debugger projects.

The team set a goal of collaborating with these tool-
chain projects and migrating to the new components.
Individual components were added to FreeBSD as they
became usable, often installed alongside the existing
tool, but disabled by default. After testing and valida-
tion, they became default, sometimes on an architec-
ture-by-architecture basis. Eventually, the new tool was
enabled across all supported architectures and the old
tool was removed. Aside from a small caveat with the debugger, this is now complete for all
tool-chain components and all supported architectures. Read on for the full details.

Compiler
The compiler is one of the most important components in the tool chain and was the first

major component that we migrated. The Clang compiler had its initial release in 2007 and was
maturing quickly. Roman Divacky imported a version into FreeBSD’s contrib software tree in

BY ED MASTE

1 of 5

FreeBSD 13.0
Tool Chain

From the beginning, FreeBSD

relied on the GNU tool chain,

including the GCC compiler,

Binutils linker and binary utilities,

and the GDB debugger.

13FreeBSD Journal • March/April 2020

June 2010, and we provided it (as /usr/bin/clang) in FreeBSD 9.0 for only the x86 and powerpc
architectures.

With substantial effort on the part of the Clang developers and integration effort from Ro-
man, Ed Schouten, Dimitry Andric, and others, we enabled Clang as the default compiler (/usr/
bin/cc) for i386 and amd64 in 2012. This shipped with FreeBSD 10.0.

In 2014, Clang was ready to be the default compiler for little-endian Arm. It was also provid-
ed on PowerPC, but not as the default compiler. This is the configuration shipped in FreeBSD
11.0. FreeBSD 11.0 also introduced 64-bit arm (AArch64) support, with Clang as the only avail-
able compiler.

Compiler updates continued in the lead up to FreeBSD 12.0, but architecture support re-
mained the same. 2019 and 2020 saw significant upstream Clang/LLVM architecture improve-
ments, and remaining architectures including RISC-V and MIPS switched to Clang by default.
Sparc64 was the sole remaining architecture relying on the obsolete in-tree GCC version. When
FreeBSD/sparc64 was retired, there was no need to keep GCC in the tree, and it was removed
in early 2020.

Tool chains typically include an assembler. As of
FreeBSD 13.0 we use Clang’s integrated assembler (IAS)
to assemble parts of the FreeBSD base system and no
longer provide a standalone /usr/bin/as.

Using Clang as FreeBSD’s standard compiler has
made it a compelling system for full-system research.
The University of Cambridge’s Temporally Enhanced Se-
curity Logic Assertions (TESLA) and Capability Hardware
Enhanced RISC Instructions (CHERI) research projects
build on Clang/LLVM and benefit from the availability of
a full, Clang-built operating system kernel and userland.

Linker
A linker combines object files and libraries into an executable or shared library. When the

tool chain project started, no alternative linker with a clear path to viability existed. The MCLin-
ker project demonstrated some early momentum, but ultimately did not support many features
required by the FreeBSD build.

By 2015, LLVM’s lld was making good progress, and we imported a snapshot in 2016. We
started with it built by default but installed with a non-default filename. It was available via a
compiler switch, -fuse-ld=lld.

By FreeBSD 12.1 lld was built for all architectures except sparc64 and riscv64 and was the
default linker for 32- and 64-bit arm and x86. With the development of riscv64 support up-
stream in lld and sparc64’s retirement, lld became the sole linker for all architectures in FreeBSD
13.0.

Binary Utilities
A tool chain includes a number of small tools for examining or processing object, library and

executable files—ELF objects in the case of FreeBSD. This includes tools like size, strings, and
readelf for examining files, objcopy for converting or processing objects, and ar for creating and
extracting library archives. This category also includes libraries used by other tools to parse ob-
jects—for example, libelf and libdwarf.

In older FreeBSD versions, most of these tools were obtained from GNU binutils with a few

2 of 5

Compiler updates continued

in the lead up to FreeBSD 12.0,

but architecture support

remained the same.

14FreeBSD Journal • March/April 2020

exceptions--for example, the archive manager was a bespoke tool based on libarchive. FreeBSD
also implemented versions of libelf and libdwarf starting in 2006.

The ELF Tool Chain project began as a standalone effort in 2008, led by Joseph Koshy. The
project imported some existing FreeBSD tools and libraries, and additional contributors joined
the project. Kai Wang implemented many of the missing tools, including elfcopy/objcopy and
readelf.

By 2015, the ELF Tool Chain versions of addr2line, elfcopy/objcopy, nm, size and strings were
sufficiently functional that we switched to them by default and shipped them in FreeBSD 11.0.

This work did not address the assembler or linker; work began on both tools within ELF Tool
Chain, but neither is functional at present. We addressed the assembler by relying on Clang’s
integrated assembler instead and switched to LLVM’s lld for the linker for almost all architec-
tures. Sparc64 was the sole architecture relying on the in-tree GNU ld. With the retirement of
sparc64 support we were able to remove binutils from the FreeBSD tree prior to FreeBSD 13.0.

The migration from binutils also left FreeBSD without objdump in the base system. Much
of the information provided by objdump is also available (in a slightly different format) from
readelf, and LLVM provides an llvm-objdump that is largely compatible. It is not yet installed by
default in the base system but will likely be enabled in a future version. Of course, GNU obj-
dump is also available by installing the binutils port or package.

Source Level Debugger
The remaining tool chain component is the debugger, and LLVM provided a path forward

here as well. LLDB is LLVM’s debugger, described in detail in previous FreeBSD Journal articles. It
builds on LLVM components for disassembly, uses Clang as the expression parser, and is script-
able via Python and Lua.

We added LLDB to the build as an experimental fea-
ture in 2013, prior to FreeBSD 10.0, and enabled it by
default for amd64 and arm64 in 2015, for FreeBSD
11.0. In 2017, Karnajit Wangkhem submitted a patch
adding support for i386 to the JIT expression engine,
and we enabled it by default in FreeBSD 12.0.

LLDB includes FreeBSD target support for 32-bit Arm,
as well as PowerPC and MIPS, although it is not well
tested. Builds may be enabled by default after suffi-
cient testing and integration. LLDB is now a functional
FreeBSD userland debugger, but currently lacks kernel
debugging support.

With FreeBSD Foundation sponsorship, Moritz Sys-
tems recently fixed many outstanding bugs, improved
arm64 target support, added an initial follow-fork
mode, and is improving userland core file debugging. Projects to implement live kernel debug-
ging and post-mortem kernel coredump support are under discussion. We also need to imple-
ment RISC-V target support.

CTF Tools
FreeBSD’s DTrace support makes use of the Compact C Type Format (CTF), which provides

the minimum required debug information to make C language types available to DTrace scripts.
This currently uses three tools released under the Common Development and Distribution Li-

3 of 5

LLDB includes FreeBSD target

support for 32-bit Arm, as well

as PowerPC and MIPS.

15FreeBSD Journal • March/April 2020

cense (CDDL). They implement CTF version 2 and are largely unchanged since the import of
DTrace from OpenSolaris in 2008.

There are a number of alternative CTF tool implementations available. Contemporary binutils
includes libctf, a library to parse and edit CTF data. The CTF format has also been extended to
version 3 and more recently to version 4. Also, OpenBSD’s Martin Pieuchot has implemented a
minimal set of permissively licensed CTF tools. Future FreeBSD tool chain work will be needed
to determine where we take the CTF tooling.

Diagnostic Tools
Valgrind is part of a set of tools for memory access and leak debugging and checking oth-

er aspects of program behavior. FreeBSD support for Valgrind has been maintained outside of
the main Valgrind tree for almost two decades, and a
patched Valgrind is available from the ports tree and
packages collection. Many different developers have
maintained and updated the FreeBSD Valgrind port over
the years; most recently Paul Floyd has updated it to the
latest released version 3.17.0 and is working to commit
the FreeBSD changes upstream.

Clang includes built-in support for various sanitiz-
ers that provide debugging and diagnostic information.
AddressSanitizer detects memory errors such as out-
of-bounds accesses or use-after-free and is available via
the -fsanitize=address command line flag (using Clang
in the base system). A related tool, MemorySanitizer,
detects reads of uninitialized variables. ThreadSanitiz-
er detects data races, and UndefinedBehaviourSanitizer catches undefined C behavior (such as
signed integer overflow) at runtime. Additional sanitizers exist and will need more work to en-
able them on FreeBSD.

Clang also includes a static analyzer invoked via the scan-build front end. It is available with
Clang installed from an LLVM package, not the base-system Clang. The static analyzer serves a
purpose broadly similar to compiler warnings, but at a much higher level.

For code coverage analysis, LLVM provides llvm-cov. It is also installed as gcov and oper-
ates in a GNU, gcov-compatible mode when invoked via the alias. When a program is com-
piled with –coverage, it emits a .gcov file when it exits, and gcov uses that to display execution
counts for each line (or basic block) of the source. Performance profiling is available via bespoke
BSD licensed code: hwpmc kernel support and the pmcstat userland tool.

Future Work
With the transition to Clang/LLVM complete, the tool chain team is investigating enhance-

ments we can build on this foundation. One of these is Link Time Optimization (LTO), inter-
modular optimization performed during the link stage. Essentially LTO uses object files and li-
braries containing LLVM intermediate representation (IR) instead of target binary ELF objects.
This allows these to be combined at link time and have the LLVM optimization passes operate
on the entire binary as a whole and not just individual compilation units. One caveat with LTO
is that the nm and ar tools need to be able to parse LLVM IR symbol tables, and the ELF Tool
Chain versions used by the base system do not have this capability. We will need to either ex-
tend ELF Tool Chain nm and ar or switch to the LLVM versions of these tools.

4 of 5

 FreeBSD support for Valgrind

has been maintained outside

of the main Valgrind tree for

almost two decades

16FreeBSD Journal • March/April 2020

Another tool chain feature provided by Clang is Control Flow Integrity (CFI). CFI broadly re-
fers to techniques used by the compiler to avoid run-time attempts to subvert a program’s in-
tended operation (control flow) by some malware that manages to gain execution. Clang’s CFI
support requires LTO and includes a number of individual checks to detect various cases of bad
casts and invalid indirect calls.

The CHERI project presents another opportunity for future work in the FreeBSD tool chain.
CheriBSD is a derivative of FreeBSD that implements CHERI memory protection and software
compartmentalization and is maintained in an external repository. CHERI also includes an LL-
VM-based tool chain with support for a number of CHERI-enhanced ISAs.

ED MASTE manages project development for the FreeBSD Foundation. He is also a member of
the elected FreeBSD Core Team. Aside from FreeBSD, he has contributed to a number of oth-
er open-source projects, including LLVM, ELF Tool Chain, QEMU, and Open vSwitch. He lives in
Kitchener-Waterloo, Canada, with his wife, Anna, and children, Pieter and Daniel.

5 of 5

Transport Layer Security, or TLS, makes ecommerce and online
banking possible. It protects your passwords and your privacy.
Let’s Encrypt transformed TLS from an expensive tool to a free
one. TLS understanding and debugging is an essential sysadmin
skill you must have.

TLS Mastery teaches what you must know.

Stop fighting with certificates and start using them. Give them
enough attention that you can automate and ignore them.

Learn TLS. Because we’re sysadmins and lies do not become us.

TLS Mastery by Michael W Lucas
https://mwl.io

“ ”
Security.
 You keep using that word.
 I do not think it means
 what you think it means.

