
November/December 2020

• FreeBSD mini-Git Primer
• Kernel Fuzzing with syzkaller
• FreeBSD Foundation

Year-end Update
• Tips for Running an

Online Conference
• Network Monitoring

on the Console

LETTER
from the Foundation

FreeBSD Journal (ISBN: 978-0-615-88479-0) is published 6 times
a year (January/February, March/April, May/June, July/August,

September/October, November/December).
Published by the FreeBSD Foundation,

3980 Broadway St. STE #103-107, Boulder, CO 80304
ph: 720/207-5142 • fax: 720/222-2350
email: info@freebsdfoundation.org

Copyright © 2020 by FreeBSD Foundation. All rights reserved. This magazine may not be
reproduced in whole or in part without written permission from the publisher.

Publisher •

Editor-at-Large •

Design & Production •
Advertising Sales •

Walter Andrzejewski
walter@freebsdjournal.com

James Maurer
jmaurer@freebsdjournal.com

Reuter & Associates

Walter Andrzejewski
walter@freebsdjournal.com
Call 888/290-9469

P O B O X 4 0 8 , B E L F A S T , M A I N E 0 4 9 1 5

John Baldwin •

Justin Gibbs •

Daichi Goto •

Dru Lavigne •

Michael W Lucas •
Ed Maste •

Kirk McKusick •

George V. Neville-Neil •

Philip Paeps •

Kristof Provost •

Hiroki Sato •

Benedict Reuschling •

Robert N. M. Watson •

J O U R N A L

E d i t o r i a l B o a r d

®

S&W PUBLISHING LLC

FreeBSD Developer and Chair of
FreeBSD Journal Editorial Board.

Founder of the FreeBSD Foundation,
President of the FreeBSD Foundation,
and a Software Engineer at Facebook.

Director at BSD Consulting Inc.
(Tokyo).

Tom Jones • FreeBSD Developer, Internet Engineer
and Researcher at the University of
Aberdeen.
Author of BSD Hacks and
The Best of FreeBSD Basics.

Author of Absolute FreeBSD.

Director of Project Development,
FreeBSD Foundation and Member
of the FreeBSD Core Team.

Treasurer of the FreeBSD Foundation
Board, and lead author of The Design
and Implementation book series.

Director of the FreeBSD Foundation Board,
Member of the FreeBSD Core Team, and
co-author of The Design and Implementation
of the FreeBSD Operating System.

Secretary of the FreeBSD Foundation
Board, FreeBSD Committer, and
Independent Consultant.

Treasurer of the EuroBSDCon
Foundation, FreeBSD Committer,
and Independent Consultant.

Director of the FreeBSD
Foundation Board, Chair of Asia
BSDCon, Member of the FreeBSD
Core Team, and Assistant
Professor at Tokyo Institute of
Technology.

Vice President of the FreeBSD Foundation
Board and a FreeBSD Documentation
Committer.

Director of the FreeBSD Foundation
Board, Founder of the TrustedBSD
Project, and University Senior Lecturer
at the University of Cambridge.

Mariusz Zaborski • FreeBSD Developer, Manager at
Fudo Security.

Dear Readers,
We send you all

the very best wishes
for a happy year ahead.

FreeBSD Foundation
®

3FreeBSD Journal • November/December 2020

November/December 2020

 3 Foundation Letter
Foundation Letter Happy New Year! By Deb Goodkin

 5 We Get Letters
Dear Sick of Unreasonable Requests. By Michael W Lucas

 32 Book Review
Mastering Vim Quickly by Jovica Ilic
reviewed by Benedict Reuschling

 33 Conferences
Tips for Running an Online Conference By Dan Langille

 36 Practical Ports
Network Monitoring on the Console By Benedict Reuschling

40 Events Calendar
By Anne Dickison

 8 FreeBSD mini-Git Primer
By Warner Losh

16 Kernel Fuzzing with syzkaller
By Mark Johnston

29 FreeBSD Foundation
Year-end Update
By Deb Goodkin

4FreeBSD Journal • November/December 2020

Dear Last Desperate Chance,
I’ve been round and round with the boss,

explaining over and over that systems
administration is an art as much as a craft and I can’t
write a complete procedure for every last thing I
do. He’s got a copy of the Policies and Procedures
manual from his previous job at the StarBux Coffee
Hole and says that figuring out bad ARP caches
can’t be nearly as bad as being a barista, and that’s
documented down to exactly how to make the
foam in the top look like the corporate logo and
how covering up the cup’s copyright notice is a
termination offense. I’ve tried everything else, so
now I’m trying you. Please, give me an Argument
From Authority that declares documenting systems
administration is doomed to fail.
 —Sick of Unreasonable Requests

Dear SOUR,
“Documenting systems administration is doomed to fail.” See, I can lie with the best of them.
You did quite well in waiting to contact me until the very end. Unfortunately, you desecrat-

ed that immaculate record by contacting me. It’s this failure your coworkers, family, and the
random strangers reading this column will remember you for. But today, it’s either correct your
ignorance or finish writing up the apology letter my settlement with the Avocado Liberation
Front demands, so I’ll give it a stab.

I’m fairly certain that you don’t even know what your job is. Yes, you received a farcical doc-
ument when you started that said things like “install the software” and “debug PHPython” and
that oh so precious “other duties as events warrant” meaning that the boss can drop a moun-
tain of what he’s been told is web server load balancer droppings on your desk and tell you to
“grope” it for salvageable SMPT headers. You’ll probably react by declaring to those entities
unlucky enough to live with you that your boss is an idiot who doesn’t even know how to spell
SMTP rather than the far more productive process of determining exactly who on the network
team dared displease you and how to best demonstrate the distinctly discomforting conse-
quences of doing so upon them and anyone within smelling distance of their cubicle.

1 of 3

5FreeBSD Journal • November/December 2020

by Michael W Lucas

freebsdjournal.org

None of this is your job, mind you. It’s simply a prerequisite to doing your job. Your job?
Your real job? The thing you’re paid to do? It has nothing to do with system administration.

Your job is to make your boss happy.
Not your employer. Not the company.
Your boss. Your immediate supervisor.
That’s it. That’s the whole job. You were hired to make him happy--in a computery way.
Sure, he’ll disguise it behind fancy lingo like stockholder value and delight customers and

FIPS compliance, but it’s all about making him happy. He exists to make his boss happy, and so
on. A business is a tree of boot-kissing, like a TLS Chain of Trust but even more malignant.

Your boss doesn’t truly want a manual on how to use ls(1). If he insists he does, make him
get out his crowbar and pry open his wallet to pay for a copy of Nemeth’s Unix and Linux Sys-
tem Administration Handbook. What he wants is a great big teddy binder that he can cuddle
and show off to his boss. He exists to make his boss happy, after all.

So, give him what he wants, not what he asked for.
Start with a wiki. You young punks like wikis. I don’t know why you can’t be bothered to

learn Docbook and SGML and just pretend to be a competent worthwhile person, but if I con-
cern myself with your lack of character, this column will go on far too long, and if I don’t get
that inane apology letter in the post, the judge will hold me in contempt again. My attorney
insists that reaching an even dozen citations will not make me go up a level when that’s clearly
untrue.

So. A wiki. Or a Markdown. One of them.
Pick the most tedious task you perform—say, installing software on a server. The first time

you make a server reach across the Internet and grab software and install it all on its own you
might feel a frisson of wonder, but as a professional sysadmin, you’re too aware of all the times
a simple install plunged you into the infernal abyss. Today you type pkg install fubar and watch
as the package tools update the repository and search for incompatibilities and meticulously
trash your LDAP database. Cast back your mind to the days when you cared about your job—
yes, I know it’s difficult to dig that far back, and recalling that chipper youth who was going to
change the world threatens your carefully maintained shell of indifference, but that brittle shell
needs substantial reinforcement and you won’t develop such without fierce practice. It won’t
be sufficiently robust until anyone who dares poke it by asking you an innocent question gets
drenched in bitter torrents of bile.

If you cared, you’d back up the host before installing anything on it. Maybe not the whole
host. User home directories can burn and die, of course, because the peasantry has been told
not to trust computers with anything important, but the software configuration files and data
files and all those things that you’re responsible for, sure, they should get backed up. Or snap-
shotted, or tarsnapped, or microengraved onto mysterious three-sided steel monoliths and
erected in the Utah desert as a monument to all the disaster recovery plans that never got act-
ed on because the hurricanes and avalanches were so inconsiderate as to skip the party.

So, scribble “backup” on a piece of scrap paper.
Not legibly, mind you. Just clear enough that the sight of the scrawl makes you think back-

up, but not plainly enough to make the housekeeper emptying your trash bin think you’re con-
sidering backups. Let’s say that’s all you can think of. Thinking is a skill like any other, and you
can improve if you keep practicing.

2 of 3

6FreeBSD Journal • November/December 2020

Maybe all the backup you need is a boot environment. Boot environments are free so long
as you don’t churn your data. Everybody likes free. So, write on your wiki.
Installing Software

1. Create a boot environment
2. Run pkg install whatever
Now comes the selfish bit. Your job is to make your boss happy, but that’s not your goal.

The true goal of system administration is to minimize sysadmin suffering (Sysadmin Rule #5).
Minimizing sysadmin suffering demands consistency. Consistency means scripting. Sysadmins
like to script.

So, write a script for installing software the way you want it installed.
Add a note at the bottom of your wiki that says, This procedure is implemented as breakev-

erything.sh.
As you slog through the muck of making your boss happy and crafting an unusual web

page that will have amusing affects on the load balancer and give the network folks their due
cardiac tremors, maybe you’ll hit a problem that leads to a troublesome library on a host. Was
that library there last week, before you ran the software install? You trudge through boot en-
vironments and find out. A list of what software was installed on a host before you installed
a package would reduce your suffering, though. Add that to your procedure, and your script.
Yes, this bears a suspicious resemblance to programmers having to document their code. Proce-
dures are programs.

The next time your boss brings up the documentation thing, print out your wiki and hand
it to him.

You need more procedures? Well, what other scripts have you written to make your life easier?
Bleed out documentation quickly enough to content the boss, but not so quickly as to

make him jaded. He’ll be happiest if he sincerely believes you work really hard on the tasks
he assigns.

Keep it up long enough, and you’ll be able to hand your job to some optimistic newcom-
er and get a new job, where you get an entire team of people who don’t yet understand that
their job is to make you happy.

Have a question for Michael?
Send it to letters@freebsdjournal.org

MICHAEL W LUCAS’s most recent books include SNMP Mastery, Cash Flow for Creators, and
Drinking Heavy Water, plus a bunch more at https://mwl.io. Under no circumstances is he al-
lowed near users.

3 of 3

7FreeBSD Journal • November/December 2020

freebsdjournal.org

https://mwl.io

8FreeBSD Journal • November/December 2020

The FreeBSD project has begun its transition from Subversion to Git. This move has been over a
year in the planning and reprensets the next step in FreeBSD’s continuing efforts to improve its
workflow. The project hopes that the larger ecosystem for Git will help it improve its continu-
ous integration (CI) efforts; make it easier to submit patches; and generally increase the quality
of the project.

This article is aimed at the FreeBSD user who downloads sources, has local changes and
sometimes contributes them back to the project. It will provide an introduction to the FreeBSD’s
use of Git for an audience already generally familiar with the basics of Git. Where possible, a
pointer to a more in-depth treatment of Git will be provided. There are many primers for Git on
the web, but the Git Book provides one of the better treatments.

Keeping Current With FreeBSD src Tree
First step: cloning a tree. This downloads the entire tree. There are two ways to download.
Most people will want to do a deep clone of the repo. However, there are times that you may
wish to do a shallow clone.

Branch Names
The branch names in the new Git repo are similar to the old names. For the stable branches,

they are stable/X where X is the major release (like 11 or 12). The main branch in the new repo
is main. The main branch in the old GitHub mirror is master. Both reflect the defaults of Git
at the time they were created. The main/master branch is the default branch if you omit the
-b branch or --branch branch options below.

Repositories
At the moment, there are two repositories. The hashes are different between them. The old

GitHub repo is similar to the new cgit repo. However, there are a large number of mistakes in
the GitHub repo that required us to regenerate the export when we migrated to having a Git
repo be the source of truth for the project.

The GitHub repo is at https://github.com/freebsd/freebsd.git The new production repo is
at either https://git.freebsd.org/src.git or ssh://anonssh@git.freebsd.org/src.git depending on
which transport you wish to use. These will be $URL in the commands below.

Note: The project doesn’t use submodules as they are a poor fit for our workflows and de-
velopment model. How we track changes in third-party applications is discussed elsewhere and
generally of little concern to the casual user.

BY WARNER LOSH

1 of 8

FreeBSD
mini-Git Primer

https://git-scm.com/book/en/v2
https://github.com/freebsd/freebsd.git
https://git.freebsd.org/src.git
ssh://anonssh@git.freebsd.org/src.git

9FreeBSD Journal • November/December 2020

Deep Clone
A deep clone pulls in the entire tree, as well as all the history and branches. It’s the easiest to

do. It also allows you to use Git’s worktree feature to have all your active branches checked out
into separate directories but with only one copy of the repository.

% git clone -o freebsd $URL -b branch [dir]

is how you make a deep clone. branch should be one of the branches listed in the previous
section. It is optional if it is the main/master branch. dir is an optional directory to place it in
(the default will be the name of the repo you are cloning (freebsd or src)).

You’ll want a deep clone if you are interested in the history, plan on making local changes,
or plan on working on more than one branch. It’s the easiest to keep up to date as well. If you
are interested in the history, but are working with only one branch and are short on space, you
can also use --single-branch to only download the one branch (though some merge com-
mits will not reference the merged-from branch which may be important for some users who
are interested in detailed versions of history).

Shallow Clone
A shallow clone copies just the most current code, but none or little of the history. This can be

useful when you need to build a specific revision of FreeBSD, or when you are just starting out
and plan to track the tree more fully. You can also use it to limit history to only so many revisions.

% git clone -o freebsd -b branch --depth 1 $URL [dir]

This clones the repository, but only has the most recent version in the repository. The rest
of the history is not downloaded. Should you change your mind later, you can do git fetch
--unshallow to get the old history.

Building
Once you’ve downloaded, building is done as described in the handbook, eg:

% cd src
% make buildworld
% make buildkernel
% make installkernel
% make installworld

so that won’t be covered in depth here.

Updating
To update both types of trees uses the same commands. This pulls in all the revisions since

your last update.

% git pull --ff-only

will update the tree. In Git, a fast forward merge is one that only needs to set a new branch
pointer and doesn’t need to re-create the commits. By always doing a fast forward merge/

2 of 8

10FreeBSD Journal • November/December 2020

pull, you’ll ensure that you have an identical copy of the FreeBSD tree. This will be important if
you want to maintain local patches.

See below for how to manage local changes. The simplest is to use --autostash on the
git pull command, but more sophisticated options are available.

Selecting a Specific Version
In Git, the git checkout checks out both branches and specific versions. Git’s versions are the
long hashes rather than a sequential number.

When you checkout a specific version, just specify the hash you want on the command line
(the Git Log command can help you decide which hash you might want):

% git checkout 08b8197a74

and you have that checked out. You’ll be greeted with a message similar to the following:

Note: checking out ‘08b8197a742a96964d2924391bf9fdfeb788865d’.

You are in ‘detached HEAD’ state. You can look around, make experimental chang-
es and commit them, and you can discard any commits you make in this state without
impacting any branches by performing another checkout.

If you want to create a new branch to retain commits you create, you may do so
(now or later) by using -b with the checkout command again. Example:

git checkout -b

HEAD is now at 08b8197a742a hook gpiokeys.4 to the build

where the last line is generated from the hash you are checking out and the first line of the
commit message from that revision. The hash can be abbreviated to the shortest unique length.
Git itself is inconsistent about how many digits it displays.

Bisecting
Sometimes, things go wrong. The last version worked, but the one you just updated to does

not. A developer may ask to bisect the problem to track down which commit caused the re-
gression.

If you’ve read the last section, you may be thinking to yourself “How the heck do I bisect
with crazy version numbers like that?” then this section is for you. It’s also for you if you didn’t
think that, but also want to bisect.

Fortunately, one uses the git bisect command. Here’s a brief outline of how to use it. For
more information, I’d suggest https://www.metaltoad.com/blog/beginners-guide-git-bisect-pro-
cess-elimination or https://git-scm.com/docs/git-bisect for more details. The man page is good
at describing what can go wrong, what to do when versions won’t build, when you want to
use terms other than good and bad, etc., none of which will be covered here.

git bisect start will start the bisection process. Next, you need to tell a range to go
through. git bisect good XXXXXX will tell it the working version and git bisect bad

3 of 8

https://www.metaltoad.com/blog/beginners-guide-git-bisect-process-elimination
https://www.metaltoad.com/blog/beginners-guide-git-bisect-process-elimination
https://git-scm.com/docs/git-bisect

11FreeBSD Journal • November/December 2020

XXXXX will tell it the bad version. The bad version will almost always be HEAD (a special tag for
what you have checked out). The good version will be the last one you checked out.

A quick aside: if you want to know the last version you checked out, you should use git
reflog:

5ef0bd68b515 (HEAD -> master, freebsd/master, freebsd/HEAD) HEAD@{0}:
pull --ff-only: Fast-forward
a8163e165c5b (upstream/master) HEAD@{1}: checkout: moving from b6fb97efb682994f59b-
21fe4efb3fcfc0e5b9eeb to master

shows me moving the working tree to the master branch (a816...) and then updating from
upstream (to 5ef0...). In this case, bad would be HEAD (or 5rf0bd68) and good would be
a8163e165. As you can see from the output, HEAD@{1} also often works, but isn’t foolproof
if you’ve done other things to your git tree after updating, but before you discover the need
to bisect.

Back to git bisect. Set the good version first, then set the bad (though the order doesn’t
matter). When you set the bad version, it will give you some statistics on the process:

% git bisect start
% git bisect good a8163e165c5b
% git bisect bad HEAD
Bisecting: 1722 revisions left to test after this (roughly 11 steps)
[c427b3158fd8225f6afc09e7e6f62326f9e4de7e] Fixup r361997 by balancing parens. Duh.

You’d then build/install that version. If it’s good you’d type git bisect good otherwise
git bisect bad. You’ll get a similar message to the above each step. When you are done,
report the bad version to the developer (or fix the bug yourself and send a patch). git bisect
reset will end the process and return you back to where you started (usually tip of main).
Again, the git-bisect manual (linked above) is a good resource for when things go wrong or for
unusual cases.

Ports Considerations
The ports tree operates the same way. The branch names are different and the repos are in dif-
ferent locations.

The GitHub mirror is at https://github.com/freebsd/freebsd-ports.git. The cgit mirror is
https://cgit-beta.freebsd.org/ports.git for now. The production Git repo will be https://git.
freebsd.org/ports.git or ssh://anonsshgit.freebsd.org/ports.git when the time comes. The plan is
to switch the ports repository from Subversion to Git at the end of Q1 2021.

As with ports, the current branches are master and main respectively. The quarterly
branches are named the same as in FreeBSD’s svn repo. Due to bugs in the converter, there will
likely be a hash respin when the ports svn repo migrates to git, just like the src and doc repos.

Coping with Local Changes
This section addresses tracking local changes. If you have no local changes, you can stop read-
ing now (it’s the last section and OK to skip).

4 of 8

https://github.com/freebsd/freebsd-ports.git
https://cgit-beta.freebsd.org/ports.git
https://git.freebsd.org/ports.git
https://git.freebsd.org/ports.git
ssh://anonsshgit.freebsd.org/ports.git

12FreeBSD Journal • November/December 2020

One item that’s important for all of them: all changes are local until pushed. Unlike svn, Git
uses a distributed model. For users, for most things, there’s very little difference. However, if you
have local changes, you can use the same tool to manage them as you use to pull in changes
from FreeBSD. All changes that you’ve not pushed are local and can easily be modified (git re-
base, discussed below, does this).

Keeping Local Changes
The simplest way to keep local changes (especially trivial ones) is to use git stash. In its

simples form, you use git stash to record the changes (which pushes them onto the stash
stack). Most people use this to save changes before updating the tree as described above. They
then use git stash apply to re-apply them to the tree. The stash is a stack of changes that
can be examined with git stash list. The git-stash man page (https://git-scm.com/docs/git-
stash) has all the details.

This method is suitable when you have tiny tweaks to the tree. When you have anything
non trivial, you’ll likely be better off keeping a local branch and rebasing. Stashing is also inte-
grated with the Git pull command: just add --autostash to the command line.

Keeping a Local Branch
It’s much easier to keep a local branch with Git than Subversion. In Subversion you need to

merge the commit, and resolve the conflicts. This is manageable, but can lead to a convoluted
history that’s hard to upstream should that ever be necessary, or hard to replicate if you need
to do so. Git also allows one to merge, along with the same problems. That’s one way to man-
age the branch, but it’s the least flexible.

In addition to merging, Git supports the concept of rebasing which avoids these issues.
The git rebase command replays all the commits of a branch at a newer location on the par-
ent branch. We’ll cover the most common scenarios that arise using it.

Create a Branch
Let’s say you want to make a hack to FreeBSD’s ls command to never, ever do color. There

are many reasons to do this, but this example will use that as a baseline. The FreeBSD ls com-
mand changes from time to time, and you’ll need to cope with those changes. Fortunately,
with git rebase it usually is automatic.

% cd src
% git checkout main
% git checkout -b no-color-ls
% cd bin/ls
% vi ls.c # hack the changes in
% git diff # check the changes
diff --git a/bin/ls/ls.c b/bin/ls/ls.c
index 7378268867ef..cfc3f4342531 100644
--- a/bin/ls/ls.c
+++ b/bin/ls/ls.c
@@ -66,6 +66,7 @@ __FBSDID(“$FreeBSD$”);
 #include <stdlib.h>
 #include <string.h>
 #include <unistd.h>

5 of 8

https://git-scm.com/docs/git-stash
https://git-scm.com/docs/git-stash

13FreeBSD Journal • November/December 2020

+#undef COLORLS
 #ifdef COLORLS
 #include <termcap.h>
 #include <signal.h>
% # these look good, make the commit...
% git commit ls.c

The commit will pop you into an editor to describe what you’ve done. Once you enter that,
you have your own local branch in the Git repo. Build and install it like you normally would, fol-
lowing the directions in the handbook. Git differs from other version control systems in that
you have to tell it explicitly which files to use. I’ve opted to do it on the commit command line,
but you can also do it with git add which many of the more in depth tutorials cover.

Time to Update
When it’s time to bring in a new version, it’s almost the same as w/o the branches. You

would update like you would above, but there’s one extra command before you update, and
one after. The following assumes you are starting with an unmodified tree. It’s important to
start rebasing operations with a clean tree (Git usually requires this).

% git checkout main
% git pull --no-ff
% git rebase -i main no-color-ls

This will bring up an editor that lists all the commits in it. For this example, don’t change it at
all. This is typically what you are doing while updating the baseline (though you also use the git
rebase command to curate the commits you have in the branch).

Once you’re done with the above, you’ve move the commits to ls.c forward from the old
version of FreeBSD to the newer one.

Sometimes there’s merge conflicts. That’s OK. Don’t panic. You’d handle them the same as
you would any other merge conflicts. To keep it simple, I’ll just describe a common issue you
might see. A pointer to a more complete treatment can be found at the end of this section.

Let’s say the merge includes changes upstream in a radical shift to terminfo as well as a
name change for the option. When you updated, you might see something like this:

Auto-merging bin/ls/ls.c
CONFLICT (content): Merge conflict in bin/ls/ls.c
error: could not apply 646e0f9cda11... no color ls
Resolve all conflicts manually, mark them as resolved with
“git add/rm <conflicted_files>”, then run “git rebase --continue”.
You can instead skip this commit: run “git rebase --skip”.
To abort and get back to the state before “git rebase”, run “git rebase --abort”.
Could not apply 646e0f9cda11... no color ls

which looks scary. If you bring up an editor, you’ll see it’s a typical 3-way merge conflict reso-
lution that you may be familiar with from other source code systems (the rest of ls.c has been
omitted):

6 of 8

14FreeBSD Journal • November/December 2020

<<<<<<< HEAD
#ifdef COLORLS_NEW
#include <terminfo.h>
=======
#undef COLORLS
#ifdef COLORLS
#include <termcap.h>
>>>>>>> 646e0f9cda11... no color ls

The new code is first, and your code is second. The right fix here is to just add a #undef
COLORLS_NEW before #ifdef and then delete the old changes:

#undef COLORLS_NEW
#ifdef COLORLS_NEW
#include <terminfo.h>

save the file. The rebase was interrupted, so you have to complete it:

% git add ls.c
% git rebase --continue

which tells Git that ls.c has changed and to continue the rebase operation. Since there was
a conflict, you’ll get kicked into the editor to update the commit message if necessary. If the
commit message is still accurate, just exit the editor.

If you get stuck during the rebase, don’t panic. git rebase --abort will take you back to
a clean slate. It’s important, though, to start with an unmodified tree.

For more on this topic, https://www.freecodecamp.org/news/the-ultimate-guide-to-git-
merge-and-git-rebase/ provides a rather extensive treatment. It is a good resource for issues
that arrise occasionally but are too obscure for this guide.

Switching to a Different FreeBSD Branch
If you wish to shift from stable/12 to the current branch and if you have a deep clone, the

following will suffice:

% git checkout main
% # build and install here...

If you have a local branch, though, there are one or two caveats. First, rebase will rewrite
history, so you’ll likely want to do something to save it. Second, jumping branches tends to
encounter more conflicts. If we pretend the example above was relative to stable/12, then to
move to main, I’d suggest the following:

% git checkout no-color-ls
% git checkout -b no-color-ls-stable-12 # create another name for this branch
% git rebase -i stable/12 no-color-ls --onto main

7 of 8

https://www.freecodecamp.org/news/the-ultimate-guide-to-git-merge-and-git-rebase/
https://www.freecodecamp.org/news/the-ultimate-guide-to-git-merge-and-git-rebase/

15FreeBSD Journal • November/December 2020

What the above does is checkout no-color-ls. Then create a new name for it (no-col-
or-ls-stable-12) in case you need to get back to it. Then you rebase onto the main branch.
This will find all the commits to the current no-color-ls branch (back to where it meets up with
the stable/12 branch) and then it will replay them onto the main branch creating a new no-
color-ls branch there (which is why I had you create a place holder name).

Migrating from an Existing Git Clone
If you have work based on a previous Git conversion or a locally running git-svn conversion,

migrating to new repository can encounter problems because Git has no knowledge about the
connection between the two.

If do not have a lot of local changes, the easiest way would be to cherry-pick your changes
to the new base:

% git checkout main
% git cherry-pick old_branch..your_branch

Or alternatively, you can do the same thing with rebase:

% git rebase --onto main master your_branch

If you do have a lot of changes, you would probably want to perform a merge instead. The
idea is to create a merge point that consolidates the history of the old_branch, and the new
source of truth (main).

We intend to publish a set of pairs of SHA1s for this, but if you are running a local conver-
sion, you can find out by looking up the same commit that are found on both parents:

% git show old_branch

You will see a commit message, now search for that in the new branch:

% git log --grep=”commit message on old_branch” freebsd/main

You would get a SHA1 on the new main branch, create a helper branch (in the example we
call it stage) from that SHA1:

% git checkout -b stage SHA1_found_from_git_log
Then perform a merge of the old branch:
% git merge -s ours -m “Mark old branch as merged” old_branch

With that, it’s possible to merge your work branch or the main branch in any order without

problem. Eventually, when you are ready to commit your work back to main, you can perform
a rebase to main or do a squash commit by combining everything into one commit.

WARNER LOSH is a Senior Software Engineer at Netflix and has been a FreeBSD contributor
for over 20 years. Warner has improved a number of systems—for example, the boot loader—
in FreeBSD. Prior to Netflix, he produced flash drives and measured atomic clocks for accuracy.
His code still measures some of the clocks that create UTC!

8 of 8

 <+41>:
 lock cmp

xchg %ecx,
0x54(%rbx)

 <+46>:
 setne %

r15b

 <+50>:
 sete %

sil

 <+54>:
 xor %

edi,%edi

 <+56>:
 callq 0

xffffffff8
1167ea0 <_

_sanitizer
_cov_trace

_const_cmp
1>

 <+61>:
 test %

r15b,%r15b

 <+64>:
 jne 0

xffffffff8
15b78f9 <v

m_page_rem
ove+73>

 <+66>:
 callq 0

xffffffff8
1167dc0 <_

_sanitizer
_cov_trace

_pc>

 <+71>:
 jmp 0

xffffffff8
15b790d <v

m_page_rem
ove+93>

 <+73>:
 callq 0

xffffffff8
1167dc0 <_

_sanitizer
_cov_trace

_pc>

 <+78>:
 movl $

0x1,0x54(%
rbx)

 <+85>:
 mov %

rbx,%rdi

 <+88>:
 callq 0

xffffffff8
1107950 <w

akeup>

 <+93>:
 mov %

r14d,%eax

 <+96>:
 add $

0x8,%rsp

 <+100>:
 pop %

rbx

 <+101>:
 pop %

r14

16FreeBSD Journal • November/December 2020

If you have ever been unlucky enough to fall victim to a FreeBSD kernel panic, you would be
well-justified in asking just how those sloppy kernel programmers test their code. The kernel is
the backbone of the entire system and changes to it should of course have been meticulously
tested before users can boot up the latest and greatest build. In our defense, however, kernel
programmers work in a harsh, inhospitable environment. The FreeBSD kernel is written in C,
a programming language infamous for its subtle pitfalls and lack of amenities. The kernel also
has to deal with several adversaries: first, it executes and provides services to all sorts of soft-
ware, some of which may have malicious goals; second, it interacts with the computer’s hard-
ware and all of its associated warts, convoluted designs and outright bugs. Many kernel devel-
opers have spent sleepless nights debugging memory corruption that ultimately was the result
of buggy device firmware that overwrites system memory when prodded a certain way. Finally,
like any modern OS kernel, FreeBSD’s makes use of all of the CPUs available in the computer,
and kernel developers have to grapple with all of the intrinsic complexity of writing efficient,
scalable and correct software for multi-core systems. In short, it’s a tricky problem.

FreeBSD’s developers put a great deal of effort into shipping stable, well-tested releases. It
is worth thinking for a while about how one might test, say, a change to an existing system
call, or a new system call. System calls are in a sense the front-end of the kernel: they provide
the low-level abstractions used by all programs, and the invocation of a single system call may
cause the kernel to execute thousands of lines of code on the invoker’s behalf. A developer
adding a new system call will certainly write some test programs to verify that it behaves ac-
cording to its specification, but generally it is not possible to exhaustively test all possible inputs
to a lone system call. Furthermore, test programs cannot prove the absence of a bug; even if
the system call produced a correct result, a bug may have corrupted a piece of kernel memory
in a way that is not detectable for a long time after the fact. System calls may also interact with
each other: a multi-threaded program will often execute multiple system calls simultaneous-
ly, each updating some kernel state, so our hypothetical kernel developer must think carefully
about the synchronization of these calls and how the hundreds of existing system calls might
interact with the one in question.

These kinds of problems are not specific to kernel programming and we have many concep-
tual and technological tools that let us attack the stark complexity of writing bug-free kernel
code, and deliver stable FreeBSD releases with confidence. Over the past several years a new
such tool, syzkaller, has been extraordinarily successful at finding severe bugs in all major oper-
ating systems, including FreeBSD.

BY MARK JOHNSTON

1 of 12

Kernel Fuzzing
with syzkaller

17FreeBSD Journal • November/December 2020

Coverage-guided Fuzzing
One important testing method for software that accepts untrusted input is fuzzing. Roughly

speaking, fuzzing is the technique of programmatically generating inputs for the software un-
der test, feeding that input to the software, and monitoring for unexpected results or side ef-
fects. This is an effective technique for finding bugs in the code that handles input validation,
and has become an indispensable software testing tool. For instance your PDF reader, which
you presumably use to open files found on the world wide web, will hopefully have been test-
ed using a fuzzer among other things: the PDF specification is rather complicated and the code
which parses it will be correspondingly so, making PDFs an attractive vector for malware au-
thors. Indeed, fuzzers are often used by security researchers and malware authors to find secu-
rity holes.

Fuzzing is one technique of many used to test software. One of its significant limitations is
that it cannot generally verify that software is behaving correctly, only that it is not misbehaving
according to some set of criteria. For instance, a fuzzer for a language parser would try to find
input that causes the parser to crash, but the absence of a crash for a given input does not im-
ply that the input was handled correctly according to the parser’s specification. Fuzzers instead
excel at finding corner cases and rarely executed code paths overlooked by other software test-
ing methods and which are therefore quite likely to contain bugs. To maximize effectiveness,
the software under test should use assertions and other forms of runtime checking to detect
invalid states as early as possible.

Fuzzers vary in their level of sophistication. A naive fuzzer might generate purely random
data and feed it directly to the software under test. While this approach may yield some fruit, it
is unlikely to find anything other than very basic input validation bugs while consuming a large
amount of computing resources. Consider a compiler fuzzer which simply generates random
ASCII strings: most such strings are not valid programs and so will be rejected very quickly by
the compiler’s parser, and as a result many components of the compiler, such as optimization
and code generation logic, will not be exercised. Intelligent fuzzers have some knowledge of
the input format so that they can generate valid-looking inputs that pass basic verification log-
ic. For instance, a fuzzer which aims to test an IPv6 packet processor would ensure that inputs
at least start with the 4-bit version number that begins all valid IPv6 packet headers. It could
achieve this by using a corpus of valid IPv6 packets as a starting point, or with some built-in
knowledge of the IPv6 packet header layout, or likely some combination of the two.

A second effective optimization involves providing feedback to the fuzzer. A naive fuzzer
would, in a loop, generate an input, feed it to the software under test, and wait for either a
crash or graceful termination of the program. It has no general way to determine whether a
given input helped improve test coverage of the software or not, and so cannot focus on “in-
teresting” inputs. Consider a fuzzer target which performs input validation in two stages:

Input
Fuzzer Stage 1

verifier
Stage 2
verifier

Stage 1 might simply verify that various components of the input have the correct length,
while stage 2 verifies that the individual components contain valid values. If most input fails
stage 1 validation, then stage 2 validation is left largely untested. However, if the fuzzer can

2 of 12

18FreeBSD Journal • November/December 2020

dynamically learn which inputs pass stage 1 validation, it can improve its coverage of stage 2
validation by prioritizing inputs known to pass stage 1.

There are multiple ways for a fuzzer to obtain feedback. For instance, it might measure the
amount of time taken to process a given input and use a heuristic which discards inputs that
are processed very quickly, under the assumption that such inputs are failing basic validity tests.
Another technique, used by state-of-the-art fuzzing frameworks such as libFuzzer, AFL and
syzkaller, measures code coverage. By leveraging software instrumentation facilities, a cover-
age-guided fuzzer can “trace” the code paths executed when processing a given input, and
use that information to try and generate inputs which uncover previously unexecuted code.
Fuzzers use this technique to achieve high levels of test coverage very efficiently, and indeed,
the aforementioned fuzzers have been used to find thousands of severe bugs in all sorts of
software projects, even those considered mature and well-tested.

syzkaller
Operating system kernels handle input from a variety of untrusted sources: unprivileged pro-

cesses will invoke system calls and may be trying to take control over the computer; a system
connected to the internet processes network packets from untrusted sources; the kernel may
be asked to mount a file system with invalid contents; a computer may support pluggable pe-
ripheral devices which can communicate directly with the kernel. In short, a useful kernel pres-
ents a massive attack surface, and years of high-profile kernel security holes show that there is
much room for improvement among popular operatings systems. yzkaller seeks to improve this
state of affairs.

syzkaller is an open-source coverage-guided kernel fuzzer by Dmitry Vyukov. It originally tar-
geted Linux but has since expanded to support nearly a dozen other operating systems. syz-
kaller is sometimes described as a system call fuzzer but is flexible enough to target other oper-
ating system interfaces; for example, it has been used to fuzz Linux’s USB stack and has found
dozens of bugs in the USB subsystem alone. The details are complicated but the idea is simple:
generate a program which invokes one or more system calls (or injects a packet into the net-
work, etc.), run it, and check to see if the system diagnosed an error (for example by panick-
ing). If not, collect kernel code coverage information and decide whether to try iterating upon
the previous test program, or start anew. If so, collect information about the crash and try to
discover a minimal test case that triggers the crash.

syzkaller is written mostly in Go and consists of a dozen or so loosely-coupled programs, all
prefixed with syz-, that together provide a self-contained system to do all of the following:

• Start and run a set of operating system instances, typically in virtual machines.
• Monitor those virtual machines for crashes or other diagnostic reports, typically by monitor-

ing console output.
• Generate programs to run under the target operating system, using coverage information

to drive decisions about what to try next, and run them.
• Maintain a database of observed crashes and diagnostic reports, to try and classify distinct

bugs found.
• Provide a web dashboard displaying statistics, code coverage information, and observed

crashes and their reproducers if any.
• Periodically update itself and the operating system under test without any manual interven-

tion.
• Attempt to bisect new crashes down to the commit introducing the bug.

3 of 12

https://github.com/google/syzkaller/
https://github.com/google/syzkaller/blob/master/docs/linux/found_bugs_usb.md

19FreeBSD Journal • November/December 2020

The high-level components of this system as it might run on FreeBSD are depicted here:

syz-manager

syz-ci

syz-fuzzer

netdumpd

syz-executor
/dev/kcov

buildkernel

gmake

syz-prog2c

VMs
SSH, SCP

bhyve,
ZFS

corpus,
crash reports

:80

.c files

vmcoressyscalls

Thanks to Google, the syzkaller developers provide numerous public syzkaller instances run-
ning in continuous integration mode, wherein syzkaller updates itself and the target operating
system regularly. These “syzbot” instances find bugs in the latest builds of their targets, so re-
gressions are reported quickly and completely automatically. The FreeBSD instances have found
numerous bugs and reproducers, enabling developers to both diagnose and fix bugs quickly
and to provide higher-quality releases.

kcov(4)
syzkaller is not the first kernel fuzzer but is undoubtedly the most prominent. Newsgroup

posts from the early 1990s describe programs which bombard UNIX kernels with random sys-
tem calls to great effect. Peter Holm’s stress2 test suite for FreeBSD performs some target-
ed fuzzing of certain system calls (among many other things). However, syzkaller introduces a
key innovation in its use of code coverage to drive test case generation. This makes use of the
kcov(4) kernel subsystem, written also by Dmitry Vyukov for Linux but later ported to other
operating systems by their respective developers. While syzkaller does not strictly require code
coverage information, it is much more effective with this extra feedback from the kernel.

In FreeBSD, kcov(4) is a wrapper for LLVM’s SanitizerCoverage. Sanitizers are compiler fea-
tures which inject bits of code enabling certain types of introspection into the compiled result.
For example, LLVM’s AddressSanitizer inserts special function calls before every single memory
access by the generated machine code; the calls can be used to determine whether the memory
access is somehow invalid, for example because it corresponds to a use-after-free. This provides
powerful bug-detection facilities similar to Valgrind but using different mechanisms: Valgrind
works by running the unmodified target program in a software virtual machine which can inter-
cept memory accesses and perform validation, whereas sanitizers are implemented by the com-
piler itself and require special compilation flags. Sanitizers and Valgrind both introduce significant
performance overhead and are generally used only in testing scenarios. Sanitizers have the add-
ed benefit that they can sometimes be used to validate a kernel, while Valgrind cannot.

SanitizerCoverage inserts function calls according to the control flow of the generated code.
Most CPU instructions do not modify control flow: once the instruction is completed, the CPU
fetches and executes the subsequent instruction from RAM. Control flow instructions cause

4 of 12

https://syzkaller.appspot.com/freebsd
https://clang.llvm.org/docs/SanitizerCoverage.html

20FreeBSD Journal • November/December 2020

the CPU to jump to a different address and begin execution there instead. This is how basic
programming language constructs like if-statements, loops and goto work under the hood. A
compiled program can thus be broken down into a set of “basic blocks,” where a basic block
is a sequence of non-control flow instructions. Following the end of each basic block is a con-
trol flow instruction. Then, if the goal is to figure out which pieces of code get executed in re-
sponse to a given input, it suffices to trace out which basic blocks get executed.

SanitizerCoverage, roughly speaking, inserts function calls in between each basic block, as in
this machine code for the FreeBSD kernel function vm_page_remove():

 <+0>: push %rbp
 <+1>: mov %rsp,%rbp
 <+4>: push %r15
 <+6>: push %r14
 <+8>: push %rbx
 <+9>: push %rax
 <+10>: mov %rdi,%rbx
 <+13>: callq 0xffffffff81167dc0 <__sanitizer_cov_trace_pc>
 <+18>: mov %rbx,%rdi
 <+21>: callq 0xffffffff815b7c50 <vm_page_remove_xbusy>
 <+26>: mov %eax,%r14d
 <+29>: mov $0x1,%ecx
 <+34>: xor %esi,%esi
 <+36>: mov $0x2,%eax
 <+41>: lock cmpxchg %ecx,0x54(%rbx)
 <+46>: setne %r15b
 <+50>: sete %sil
 <+54>: xor %edi,%edi
 <+56>: callq 0xffffffff81167ea0 <__sanitizer_cov_trace_const_cmp1>
 <+61>: test %r15b,%r15b
 <+64>: jne 0xffffffff815b78f9 <vm_page_remove+73>
 <+66>: callq 0xffffffff81167dc0 <__sanitizer_cov_trace_pc>
 <+71>: jmp 0xffffffff815b790d <vm_page_remove+93>
 <+73>: callq 0xffffffff81167dc0 <__sanitizer_cov_trace_pc>
 <+78>: movl $0x1,0x54(%rbx)
 <+85>: mov %rbx,%rdi
 <+88>: callq 0xffffffff81107950 <wakeup>
 <+93>: mov %r14d,%eax
 <+96>: add $0x8,%rsp
 <+100>: pop %rbx
 <+101>: pop %r14
 <+103>: pop %r15
 <+105>: pop %rbp
 <+106>: retq

Here the __sanitizer_cov_trace_* function calls are inserted by SanitizerCoverage and
can be implemented by the kernel. kcov(4) works by implementing these functions.

5 of 12

21FreeBSD Journal • November/December 2020

In typical usage, a user program allocates a buffer to store coverageinformation, opens /
dev/kcov and uses ioctl(2) to map the buffer into the kernel and to enable tracing of the
current thread. When the thread subsequently enters the kernel, perhaps to execute a system
call, the coverage tracing hooks log the address of each basic block into the buffer. When the
thread disables tracing, again using an ioctl(2) call, it can make use of the information provid-
ed in the buffer. For instance, the recorded addresses could be piped into the addr2line(1)
program to find the file and line number of the traced C code. The kcov(4) manual page con-
tains the details of this ioctl(2) interface as well as some example code.

syzlang
Earlier we pointed out that fuzzers work better when they have some knowledge of the

software’s input format, rather than treating it as a black box. While syzkaller could theoretically
invoke system calls without any knowledge of what they do or what parameters they take —
using only coverage information to try and “learn” which parameter values result in more code
execution — this is both inefficient and potentially counter-productive. Consider what happens
if a fuzzer invokes kill(-1, SIGKILL): the kernel will do what it was asked to do and immedi-
ately kill the fuzzer process.

Unfortunately, system call interfaces cannot be discovered programmatically. In other words,
there is generally no way to ask the kernel to describe the set of system calls that it implements.
Even a set of C function prototypes omits many important details. Consider read(2):

 read(int fd, void *buf, size_t nbytes);

First, fd is here represented by an integer, but really must be a valid file descriptor as well.
There are 4,294,967,295 possible values for fd and all but a tiny fraction of them are invalid.
Second, it is not clear what the kernel is expected to do with buf: is the kernel supposed to
read data from that address, or write to it, or both, or neither? Third, nbytes is supposed to
represent the size of the buffer buf but the prototype gives no indication that these two pa-
rameters are related; the C language is simply not expressive enough to do so. If you are famil-
iar with ioctl(2), think for a bit about how it makes a bad situation even worse.

To solve these problems, syzkaller introduces syzlang: a language for modeling the kernel’s
programming interfaces. It is flexible enough to define data layouts that are binary-compati-
ble with C types, and expressive enough to describe inter-related C parameters, among other
things. In syzlang, the read(2) prototype above becomes:

 read(fd fd, buf buffer[out], count len[buf])

Unlike C (but like Go), the parameter name comes first, followed by the type. Right away we
can see that this definition provides more information than the C prototype: there is an fd type,
to distinguish file descriptors from plain integers; buf is a pointer to a buffer mapped in the call-
er’s address space, and the [out] annotation signifies that it is an “out-parameter,” i.e., the ker-
nel is supposed to write data to the buffer; count is the length, in bytes, of the buffer buf.

The use of specialized types to represent file descriptors and other kernel resources is import-
ant for generating programs that do “interesting” things since many system calls take as input
the results of previous system calls. For example, to read data from a file a program might exe-
cute the following sequence of system calls:

6 of 12

https://github.com/google/syzkaller/blob/master/docs/syscall_descriptions_syntax.md

22FreeBSD Journal • November/December 2020

 const size_t len = 4096;
 void *buf = mmap(NULL, len, PROT_READ | PROT_WRITE, MAP_ANON, -1, 0);
 int fd = open(“/tmp/foo”, O_RDWR);
 read(fd, buf, len);
 close(fd);
 munmap(buf, len);

Note that the results of the mmap(2) and open(2) calls are used as input to subsequent
calls. Fuzzing munmap(2) and close(2) does not make much sense without earlier calls to
mmap(2) and open(2), so syzlang models the corresponding resources and syzkaller creates
chains of system calls using these relationships to guide its choices.

The use of mmap(2) also illustrates a need to define the set of valid values for “flag” param-
eters such as the third and fourth arguments. syzlang has a built-in flags type for this:

 mmap(addr vma, len len[addr], prot flags[mma_prot],
 flags flags[mmap_flags], fd fd, offset fileoff)

 mmap_prot = PROT_EXEC, PROT_READ, PROT_WRITE
 mmap_flags = MAP_SHARED, MAP_PRIVATE, MAP_ANON, ...

The fuzzer will chose zero or more flag values when creating an argument for a flag pa-
rameter.

syzlang can also use subtyping to more accurately model system call interfaces. Network
connections and open files are both represented by file descriptors in the system call interface,
but many system calls accept only certain types of file descriptors. For instance, one of
sendfile(2)’s parameters is a file descriptor corresponding to a network connection on which
to send a file’s data. Such descriptors are created using socket(2) or socketpair(2). Passing
a descriptor for a regular file here will fail, so to save the fuzzer time we can define a new sock-
et type. First we have the definition for fd:

 resource fd[int32]: 0xffffffffffffffff, AT_FDCWD

This derives fd from the built-in integer type int32 and defines a couple of special values:
-1, for system calls where a parameter of type fd is optional (such as mmap(2)), and AT_FDCWD,
used by openat(2) and similar system calls. Then we can define a derived resource type for
sockets:

 resource sock[fd]

 socket(...) sock
 sendfile(fd fd, s sock, ...)

A similar trick is used for system calls where layout of a parameter depends on the value of
another parameter. ioctl(2) is the prime example of this, but fcntl(2), setsockopt(2) and
bind(2) behave similarly. For example, pf(4) defines a large set of ioctl commands, but each
has its own argument type. We can describe them precisely in syzlang:

7 of 12

23FreeBSD Journal • November/December 2020

resource fd_pf[fd]
openat$pf(fd const[AT_FDCWD], file ptr[in, string[“/dev/pf”]], ...) fd_pf
ioctl$DIOCRADDTABLES(fd fd_pf, cmd const[DIOCRADDTABLES], arg ptr[in, pfioc_table])

Here we define a new fd type which corresponds to a file descriptor for /dev/pf. Then, spe-
cial “flavours” of openat(2) and ioctl(2) describe how the fuzzer can open a pf(4) device
and issue the DIOCRADDTABLES ioctl, used by pfctl(8) to define an address table.

syzlang definitions are compiled at build-time into tables used by syzkaller’s fuzzer. syzkaller
maintains its own internal representation of system calls and their parameters, and its repre-
sentation of a program is simply a list of calls and parameters. All fuzzing is performed using
these representations; when a reproducer for a kernel bug is found, it is finally translated into a
standalone C program. This can be done manually using syz-prog2c but this is typically han-
dled automatically.

New system call definitions are added frequently since in most cases syzkaller is still playing
catch-up: the existing kernel interfaces are massive and defining them in syzlang requires time
and effort. In particular, many components of FreeBSD are not yet described by syzlang and
therefore do not get tested by syzbot. Adding to the FreeBSD syzlang definitions is a great way
to start contributing to the syzkaller project and to help ensure that FreeBSD gets as much test
coverage as possible.

syz-manager
So far we have looked at the mechanisms by which syzkaller addresses the generic technical

problems faced by all fuzzers: obtaining feedback from the target software (via kcov(4)) and
describing kernel interfaces (with syzlang). Now we can look more at some of the machinery
required to fuzz an operating system kernel.

A fuzzer’s goal is to “exercise” the code being tested, so it needs an environment in which
to execute the code and provide input. Fuzzing a kernel poses some extra challenges: the fuzz-
er needs to run in the same system as the kernel being tested, so if it achieves its goal and trig-
gers a kernel panic, all of the fuzzer’s state will be lost. syzkaller’s solution is to run the target
kernel in a set of virtual machines which can be safely wiped without losing anything import-
ant. These VMs can run on the same host as syzkaller or in cloud environments such as Google
Compute Engine.

syz-manager is the main front-end program of syzkaller. It takes a configuration file as in-
put and starts a number of VMs according to the configuration. It automatically installs and
starts the fuzzer programs in each VM instance and communicates with them using an RPC
interface over SSH. syz-manager also monitors the VM consoles to detect crashes. When a
crash occurs, the VM is automatically re-created. VMs are restarted periodically even in the ab-
sence of a crash; one reason for this is to enable “corpus rotation.”

syz-manager also maintains the instance’s crash database. When a crash is discovered,
syz-manager adds an entry to the crash database. Crashes are identified by the panic message
printed by the kernel, and when a new crash is found, syz-manager dedicates a subset of the
VMs to spend time attempting to reproduce the crash. Programs that were executed leading
up to the crash are replayed, and if a crash can be reproduced, syzkaller also attempts to find
a minimal reproducible for the crash to add to the crash database. Finally, syzkaller attempts to
translate the crashing program into a standalone C program, making it easy for developers to
debug crashes without needing a syzkaller installation on hand.

8 of 12

24FreeBSD Journal • November/December 2020

Most of the work to set up syzkaller involves creating a VM image containing the target op-
erating system. The VM’s kernel should have kcov(4) enabled, and an SSH key for the root
user must be installed. The VM image is used as template; when syz-manager starts, it creates
a snapshot of the image before starting VMs, and each VM uses a local copy of the template.
When a VM is restarted, it gets a fresh copy of the template image, so any damage done by
the fuzzer is discarded.

syz-manager supports a number of different hypervisors and cloud APIs. On FreeBSD one
can use bhyve as the back-end hypervisor. To create a VM image template syz-manager uses
ZFS clones, since bhyve lacks support for creating disk image snapshots. Upon starting up
syz-manager also starts a web server, providing a dashboard containing statistics and code cov-
erage information, deduplicated crash reports, and crash reproducers. A sample syz-manager
configuration looks like this:

{
 “target”: “freebsd/amd64”,
 “http”: “0.0.0.0:8080”,
 “workdir”: “/data/syzkaller”,
 “image”: “/data/syzkaller/vm.raw”,
 “syzkaller”: “/home/markj/go/src/github.com/google/syzkaller”,
 “procs”: 4,
 “type”: “bhyve”,
 “ssh_user”: “root”,
 “sshkey”: “/data/syzkaller/id_rsa”,
 “kernel_obj”: “/usr/obj/usr/home/markj/src/freebsd/amd64.amd64/sys/SYZKALLER”,
 “kernel_src”: “/”,
 “vm”: {
 “bridge”: “bridge0”,
 “count”: 32,
 “cpu”: 2,
 “hostip”: “169.254.0.1”,
 “dataset”: “data/syzkaller”
 }
}

This configuration specifies 32 VM instances; in general, more VMs is better since each VM
runs test programs in parallel with the others. The “cpu” parameter defines the number of vir-
tual CPUs given to each VM, and the “procs” parameter defines the number of fuzzer process-
es that will run in each VM. Having multiple virtual CPUs and fuzzer processes improves the
odds of finding certain types of bugs, but over-subscribing the host may decrease the effective-
ness of fuzzing by making it hard to reproduce bugs. It is reasonable to configure one or two
virtual CPUs per host CPU, but more than that is probably too many.

See the FreeBSD/syzkaller documentation for details on how to build and configure your
own syzkaller setup. With a configuration file written, syzkaller can be started with:

 # syz-manager -config /path/to/config

When using bhyve, syzkaller needs to run as root in order to create virtual machines. It is pos-
sible to run syzkaller in a jail with some effort; some ongoing work aims to make this simpler.

9 of 12

https://github.com/google/syzkaller/blob/master/docs/freebsd/README.md

25FreeBSD Journal • November/December 2020

If you wish to run your own private syzkaller instance, do be prepared to be patient — now
that much of the low-hanging fruit has been fixed, it can take days for syzkaller to find a new
kernel bug.

Fuzzing the Kernel
Now that we have encountered most of the machinery that syzkaller uses to fuzz operating

system kernels, we are equipped to start looking at the brains of syzkaller.
Aside from the crash database, syzkaller’s main piece of persistent state consists of the cor-

pus: a representative set of programs whose execution generates coverage of the kernel. The
corpus — initially empty — is effectively a seed for the fuzzer: a new test program is generat-
ed by taking a program from the corpus, mutating it in some small way, and checking to see if
previously uncovered kernel code was covered by the new program. If so, the program may be
added to the corpus and subsequently used as the starting point for other programs. Algorith-
mically, the fuzzer does nothing except try to increase the size of the corpus. Many heuristics
are applied to try and make this more effective for syzkaller’s real purpose — finding bugs —
but the core idea is very simple.

Several types of program mutations are possible. The fuzzer might:
• splice several programs together
• insert a new system call
• remove an existing system call
• modify one of the parameters to a call in the program
If the corpus is empty, the fuzzer will create a new program by generating a random list of

system calls with randomly selected arguments. This is also done periodically even when the
corpus is non-empty.

Inside each VM managed by syzkaller runs a pair of programs, syz-fuzzer and
syz-executor, which communicate using a shared memory interface. As their names suggest,
syz-fuzzer generates test programs and syz-executor actually executes them. syz-fuzzer
and syz-manager coordinate using a simple RPC protocol; since syz-fuzzer generates pro-
grams which may crash the VM, it relies on syz-manager to store the corpus.

syz-fuzzer is started by syz-manager over SSH. When it begins, it establishes an RPC con-
nection with syz-manager and creates a number of work queues, each of which is managed
by a thread (really, a goroutine). The worker threads each spawn a syz-executor instance and
immediately begin fuzzing, yielding the following picture:

syz-manager

syz-fuzzer

syz-executor.1 syz-executor.2syz-executor.0

kernel

shmem

VM
RPC

workerworker worker

10 of 12

26FreeBSD Journal • November/December 2020

Worker threads perform most of the work of adding to the corpus: they generate new pro-
grams and mutate existing ones. They also handle special types of work:

• Triage: when a program appears to generate new coverage it is placed in the triage queue
for further refinement. The triage step tries to determine whether the program behaves
consistently (i.e., re-runs generate the same coverage info), and if so, tries to minimize the
size of the program while maintaining its coverage.

• Smashing: when a program has been triaged and appears worthy of being added to the
corpus, the worker spends extra time mutating it to look for new coverage.

• Candidate processing: syz-manager may send candidate programs to the fuzzers in some
cases. The worker executes them, potentially creating triage or smash work.

In steady-state operation, syz-fuzzer uses two RPCs to communicate with the manager:
Poll and NewInput.

Poll is invoked periodically to update the fuzzer’s snapshot of the corpus and global cover-
age information, and to collect candidate programs for fuzzing. It also serves to re-process the
existing corpus when syzkaller starts up; a typical syzkaller installation will periodically update
itself and the target kernel, and must subsequently restart. The saved corpus is immediately dis-
tributed among the fuzzers for execution and triage since the updated kernel may handle exist-
ing corpus items differently from when they were last evaluated.

NewInput is used to send triaged programs back to syz-manager as possible candidates
for the global corpus. syz-manager will reject new inputs in some cases, for instance to avoid
blowing up the size of the corpus, or if another fuzzer had already discovered a similar pro-
gram. If accepted, new corpus programs eventually become visible to other fuzzer instances
via Poll.

Unfortunately, code coverage is not an ideal metric: 100% code coverage of a program
does not preclude the existence of detectable bugs, especially in multi-threaded code such as a
modern operating system kernel. Optimizing for an imperfect metric tends to yield suboptimal
results — we (hopefully!) do not evaluate programmers based on the number of lines of code
they have written. In syzkaller’s case, valuable test programs may be discarded if they do not
add to the corpus’ code coverage. To try and alleviate this problem, syzkaller performs corpus
“rotation”: some system calls and corpus programs are hidden from individual fuzzers to force
them to find programs with equivalent coverage but hopefully new characteristics. This can re-
sult in duplicated effort but helps to ensure that the system does not become “stuck” by find-
ing local maxima.

Program Execution
To round off our examination of syzkaller a look at syz-executor is in order. syzkaller uses

an internal representation of system call programs for the purpose of fuzzing, but of course has
to actually run them somehow. syz-executor is the component of syzkaller that performs this
task; unlike the rest of syzkaller, it is written in C++.

The executor is spawned by syz-fuzzer worker threads and uses a simple shared memo-
ry interface to communicate with the worker. It first creates a pool of threads to actually exe-
cute system calls, and then opens /dev/kcov and uses ioctl(2) to enable collection of code
coverage information that is returned to the worker. Quite a lot of additional initialization may
happen at this point, depending on how syzkaller is configured. For instance, the executor
may enter a software sandbox in an attempt to limit the effects of the test program: a pro-
gram which sends signals to unsuspecting processes is likely to wedge the VM and trigger a

11 of 12

27FreeBSD Journal • November/December 2020

costly timeout and restart. It may also initialize devices or network facilities as part of a target-
ed fuzzing regime.

When it comes time to execute system calls, syz-executor iterates over the call list and as-
signs an idle thread to each one, waiting for threads to become free if necessary. Initially, the
main thread waits for a short period after each call is dispatched. Once the input program has
finished, it is executed a second time in “collision mode”: rather than waiting for a short period
after each call is dispatched, pairs of system calls are allowed to execute concurrently, helping to
trigger race conditions in the kernel that would otherwise be left unexercised.

Actual system call execution is achieved using the handy syscall(2) system call, a generic
system call which takes a system call number and variable list of parameters as arguments. In-
ternally the kernel uses the system call number to route the call to the requested handler. The
system call’s result is also recorded for use in prioritizing and triaging programs: a successful sys-
tem call is weighted more favorably than a failed system call.

Conclusion
If you managed to get this far, please don’t stop here! syzkaller is the subject of quite few

talks, articles and even research papers — check out syzkaller’s documentation for some cu-
rated links. This article only scratches the surface of syzkaller’s internals, and the sources are as
usual the authoritative reference on how syzkaller actually works.

Fuzzing is a fascinating subject and there is a certain thrill to watching a fuzzer in action
— particularly when it finds bugs in your favorite operating system. We encourage you to
give it a try.

MARK JOHNSTON is a contractor and FreeBSD src committer based in Toronto, Canada. He is
particularly interested in kernel debugging and in finding new ways to help improve the stabili-
ty of FreeBSD. In his spare time he enjoys cooking, playing Bach’s cello suites, and impeding his
productivity by experimenting with custom keyboard layouts.

12 of 12

Thank you!
The FreesBSD Foundation would like to
acknowledge the following companies for
their continued support of the Project.
Because of generous donations such as
these we are able to continue moving the
Project forward.

Uranium

Iridium

Silver

Please check out the full list of generous community investors at
freebsdfoundation.org/donors/

Are you a fan of FreeBSD? Help us give back to the
Project and donate today! freebsdfoundation.org/donate/

TM

TM

Platinum

Gold

Koum Family Foundation

https://github.com/google/syzkaller/tree/master/docs

Nov/Dec 2019 57

2021 Editorial Calendar
• Case Studies (January-February)

• FreeBSD 13 (March-April)

• Security (May-June)

• Desktop/Wireless/Graphics (July-August)

• Cloud (September-October)

• Embedded (November December)

29FreeBSD Journal • November/December 2020

The Foundation has faced some challenging years during my tenure,
but I’d say 2020 is hands down the winner. Running a non-prof-
it is challenging in itself. However, I can easily say, running a do-

nation-driven, non-profit whose sole purpose is to support a free and
open-source computer operating system, during a pandemic, is ex-
tremely difficult! That being said, I could not be prouder of what we’ve
accomplished this past year to help make FreeBSD the secure, reliable,
and high-performance operating system you rely on.

Although it’s been a rough year setting everyone up to work from
home (while remaining productive), dealing with childcare issues, and
worrying about how Covid-19 might affect

us, our family, and friends, we were still able to accomplish more
than we ever have in the past!

For over 20 years, we’ve been here to support the FreeBSD
community and Project around the globe. With the pandemic pre-
venting in-person events this year, we recognized the growing
need for us to step in and help connect the community. We know
that FreeBSD contributors thrive on meeting face-to-face and that
these opportunities are what drive so much work on the Project.
With that in mind, we set out to determine what we could do to
better help connect the community.

We pulled together as a team to provide more online/virtual op-
portunities for the community and beyond and to encourage more
people to engage with and join our community. This included:

• Producing the highly successful FreeBSD Fridays series, which provides introductory FreeBSD
talks and workshops on various areas of the operating system.

• Continuing to bring FreeBSD to new conferences and other venues such as podcasts and
webinars.

• Creating more educational content, including new and updated how-to guides, case stud-
ies to show how companies are using FreeBSD, and blog posts highlighting work going on
in the Project.

• Organizing and running the first ever virtual Vendor Summit that allowed more developers
and commercial users from around the world to engage with each other.

Meanwhile, we funded a record-breaking number of software projects. These included LLDB
backend improvement and target server, vulnerability mitigations and proactive security, Linuxu-

BY DEB GOODKIN

1 of 2

20
20FreeBSD Foundation

Year-end Update

For over 20 years,
we’ve been here
to support
the FreeBSD
community and
Project around
the globe.

30FreeBSD Journal • November/December 2020

lator application compatibility improvements, WiFi and graphics infrastructure improvements,
5x if_bridge performance increase, Git migration support, and pkgbase development.

But that’s not all! Our internal staff worked on code reviews, bug triage, 3rd-party CI inte-
gration, arm64 support, improvements and enhancements to many subsystems including the
x86 pmap layer, rtld and kernel ELF loader, threading library , RISC-V, Capsicum, build system,
tool chain and FreeBSD-update among others, security issues, vulnerability mitigations, Syzkaller
kernel code coverage, network stack stability, new kernel interfaces, machine-dependent opti-
mizations, docs and manpages, DTrace bug fixes, Valgrind port, and much more!

In 2021, we will continue to support software development work and online/virtual oppor-
tunities. In fact, if we meet our fundraising goal, we will be increasing our FreeBSD support by
growing our software developer team to make sure FreeBSD stays not only relevant over the
next few decades, but also serves as a leader in secure and trusted operating systems.

We know this is a difficult time for everyone. If you are able, please consider supporting our
efforts by giving a financial contribution. Your donation makes a direct impact on the FreeBSD
Project. Thank you to all of you who have already made a financial contribution this year. We
are grateful for your support.

DEB GOODKIN is the Executive Director of the FreeBSD Foundation. She’s thrilled to be in her
16th year at the Foundation and is proud of her hardworking and dedicated team. She spent
over 20 years in the data storage industry in engineering development, technical sales, and
technical marketing. When not working, you’ll find her on her road or mountain bike, running,
hiking with her dogs, skiing the slopes of Colorado, or reading a good book.

2 of 2

FreeBSD Foundation
Year-end Update20

20

Write
For Us!
Write

For Us!
Contact Jim Maurer

with your article ideas.
(jmaurer@freebsdjournal.com)

https://freebsdfoundation.org/donate/
https://freebsdfoundation.org/donate/

• Pawel: Not really. •

Sept/Oct 2019 23

FreeBSD is internationally recognized as an innovative
leader in providing a high-performance, secure, and stable
operating system.
Not only is FreeBSD easy to install, but it runs a huge number

full source code.

The FreeBSD Community is proudly supported by

T

Help Create the Future.
Join the FreeBSD Project!

The FreeBSD Project is looking for

Find out more by

Checking out our website

Downloading the Software

for people like you to help continue
developing this robust operating system.
Join us!

Already involved?

Don�t forget to check out the latest
grant opportunities at
freebsdfoundation.org

Jails ARE FBSD’S MOST LEGENDARY FEATURE:
KNOWN TO BE POWERFUL, TRICKY TO MASTER,
AND CLOAKED IN DECADES OF DUBIOUS LORE.

✱ Comfortably work within
the limits of jails

✱ Implement fine-grained
control of jail features

✱ Build virtual networks
✱ Deploy hierarchical jails
✱ Constrain jail resource

usage.
. . .And much, much more!

FreeBSD Mastery: Jails BY MICHAEL W LUCAS Available at All Bookstores

FreeBSD Mastery: Jails cuts through the
clutter to expose the inner mechanisms of jails

and unleash their power in your service.

Confine Your Software!

✱ Understand how jails achieve
lightweight virtualization

✱ Understand the base system’s
jail tools and the iocage toolkit

✱ Optimally configure hardware
✱ Manage jails from the host

and from within the jail
✱ Optimize disk space usage to

support thousands of jails

Confine Your Software!

32FreeBSD Journal • November/December 2020

It’s no secret that vi is the most common text editor on Unix. Omnipresent, yet difficult for be-
ginners who don’t understand the underlying philosophy. Vim (vi improved) is an enhancement
of vi with the basics still present in the editor but easier to approach. You’ve probably seen
someone doing amazing things in vim with just a few keypresses—and you
may wonder how that was done.

Jovica Ilic’s book was started because of that WTF feeling and it intends to
teach people do these OMG editor productivity skills. There are many books on
vim, but with roughly 140 pages, this one is the thinnest I’ve seen. But don’t
be fooled by its brevity, it is packed with tons of advice and examples on every
page! It is written precisely for those who have shied away from vim until now
or who only know some rudimentary tasks like opening, inserting, saving, and
(most important of all) exiting the editor. Within a few pages, you learn how
vim works and the concepts behind why it does things the way it does.

The author teaches you the “language” of vim to search within text, delete or add words
by just knowing a few reusable keywords. That already gives you an edge, but the good stuff
does not stop there. Common options for your .vimrc (the editors configuration file) are dis-
cussed and demonstrated. Much like a Michael W. Lucas book, it does not contain a single
screenshot, yet succeeds in explaining everything using text and examples. Self-published, the
book may contain the occasional typo, but that did not sour my reading experience at all. You
can put the contents into action right away with short examples given by the author. The quick
feedback loop paired with the occasional “I never knew vim could do that” moment make you
want to learn more with each new page. From Navigation, netrw (vim’s file browser), undo/
redo branches (why doesn’t every editor have that?), remote editing of files on other systems
using SSH, to buffers, mappings, folds, windows, autocompletion (so useful and fast), and mac-
ros (you’ve been hiding in there from me all my life?), pretty much everything is covered.
A separate chapter gives you extra productivity tips and plenty of ideas on how to apply them.

Since vim is a part of my University course, “Unix for Developers,” I’ve added extra vim con-
tent to my course after reading the book. Explaining these concepts to students who would
typically not touch vim, I think I can convince them that they’ll be much more productive for
learning it. Although mostly written for beginners, I’m pretty sure that even seasoned vim us-
ers will find something useful. The book is also useful for people using many of the vim-clones
(neovim comes to mind). You may need some time to make these concepts stick. However,
now that I know what vim can do, I definitely use it more often. Editing becomes much easier
and my productivity has certainly increased. And if you still want more after reading this book,
the author maintains a weekly newsletter with additional tips.

BENEDICT REUSCHLING is a documentation committer in the FreeBSD project and member
of the documentation engineering team. He serves on the board of directors of the FreeBSD
Foundation as vice president. In the past, he served on the FreeBSD core team for two terms.
He administers a big data cluster at the University of Applied Sciences, Darmstadt, Germa-
ny. He’s also teaching a course “Unix for Developers” for undergraduates. Together with Allan
Jude, he is host of the weekly bsdnow.tv podcast.

BY BENEDICT REUSCHLING

Mastering Vim Quickly

1 of 1

33FreeBSD Journal • November/December 2020

I began running conferences in 2002 when I helped with Open Source Weekend 2003. The
next year, I started BSDCan. Three years later, PGCon started. I think I’ve run at least 32 confer-
ences, two of which have been online: BSDCan 2020 and PGCon 2020.

There have been requests to share what we did, why, and how it went. This is, for the most
part, a brain dump of everything I can remember. In general, I will refer to BSDCan, but unless
otherwise noted, such references can also be to PGCon.

About the Conferences
Our choices were appropriate for our conferences but bear in
mind that they may not work for yours. BSDCan and PGCon are
Open Source conferences and they can be vastly different from
other types of conferences. Here’s how:

• some people are sent by their employers and others come
just because they are interested,

• we are much less expensive than most conferences — $195
is the usual entry fee and half-day tutorials are $75 each,

• we have funding to reimburse speakers for travel and
accommodation if they need it (this is a large budget item
and we do understand it is not the norm),

• we provide catering (breakfast, morning and afternoon
breaks, and lunch),

• we have fantastic sponsors.

Zoom
We used Zoom, but nobody needed to have a Zoom client to attend the conference. We want-
ed to be sure of that. Not everyone wants to use Zoom and being able to view the talks via a
standard web browser was important to us and to the attendees. For the Q&A sessions, some
speakers dialed into the session using their phones, so even that path is an option.

A Zoom client was required to interact with some sessions, but the Q&A sessions via IRC
(Internet Relay Chat) were available. Most open source users/developers are familiar with IRC
and use it.

BY DAN LANGILLE

1 of 3

Tips for Running
an Online Conference

There have been
requests to share
what we did, why,
and how it went.

https://www.freebsddiary.org/osw-2003.php
https://www.bsdcan.org/
https://www.pgcon.org/
https://www.bsdcan.org/2020/
https://www.pgcon.org/2020/

34FreeBSD Journal • November/December 2020

We used Zoom for:
• live sessions with Q&A for the speaker to respond — this was live streamed to ScaleEngine

who broadcast it for us,
• tutorials run by the speakers — they wanted to do this live — 3 live tutorials are easier

than 35 live talks,
• closing and opening sessions.

What We Did
We asked speakers to pre-record their talks to reduce the technical issues you need to solve on
the day. We recommended speakers record using OBS Project. Our Speakers: recording your
talk might be useful for your conference speakers.

Attendees watched free of charge without registration.
Nearly all of the previously offered sponsorship benefits disappear online. The “spon-

sored-by” links remained but everything else vanished tee-shirts were not printed and tote
bags were not distributed.

We tried to retain the same schedule as previous years:
• opening session,
• start at the usual time locally,
• three concurrent sessions,
• closing session.
We used local time. Someone was going to be inconvenienced no matter what we did, so

we decided to make it easier for us by having the conference during our working hours.
All recordings were uploaded and made freely available later. The only thing non-attendees

missed out on is submitting questions. We used ScaleEngine to broadcast the recordings. They
were able to encode all the speaker recordings into various formats and resolutions. They creat-
ed a schedule and broadcasts started on time.

The Q&A sessions were optional for the speakers in case theirs might not be at a good time
for them locally. We had volunteers collect the questions and put them into an online repository
for the speakers to read. Questions were submitted over an IRC channel, one for each of the
three concurrent sessions. Sometimes the speakers were online and monitoring the IRC channel
which made the question collection repo superfluous, but we did it anyway.

Speakers joined a dedicated Q&A Zoom meeting and we had one for each concurrent ses-
sion. They knew how this would proceed and what to expect as we emailed them ahead of
time and provided practice sessions so they could test their Zoom client. Speakers did not need
a Zoom client and they could dial in via phone if they preferred.

The Q&A session was recorded and appended to the session broadcast recording. The
ScaleEngine solution allows for layers or priority of channels and we chose, in order of impor-
tance:

• broadcast recording,
• Q&A session,
• sponsor video.
If a broadcast started, it would play over top of any of the other two. When the broadcast

ends, there is a short video of the sponsor logos. If the Q&A session runs over its time allot-
ment, the next talk starts. However, the Q&A session continues to be recorded by ScaleEngine
for later use.

2 of 3

https://www.bsdcan.org/2020/recording.php
https://www.bsdcan.org/2020/recording.php
https://www.scaleengine.com
https://github.com/BSDCan/2020-Q-A

35FreeBSD Journal • November/December 2020

Free
We decided not to charge because of the complexity involved with ticketing and then providing
access. We might charge in 2021, but that is open to change.

We could afford not to charge because:
• we had sponsors,
• we did not have to live off the conference proceeds (which might differ for you, if

conferences are your livelihood),
• our major expenses (catering, travel, accommodation, venue, tee shirts, tote-bags) were

gone — vanished completely.
We had plans for how we could charge, and people would have paid. The charge would

have been in the $5.00-$25.00 range. We were not worried about people sharing tickets. It
could happen. No big deal. We trust people not to abuse the service.

Record or Live?
We chose recording to reduce problem solving. Our speakers live in varied locations and not all
have great internet service. There was also the time-zone issue. Speakers recorded at their lei-
sure and we broadcast at our convenience.

What Can Sponsors Get?
Our privacy policy does not permit us to provide sponsors with attendee details. Even if it did,
we did not require registration, so there was no way to know who they were anyway. In our
case, we created a few IRC channels specific to the sponsors and drove users there.

Things to Be Aware Of
Don’t post meetings to Twitter. Bots will attend. Things will go very badly.
Let speakers cancel without penalty. Recording is different. Things go wrong. There’s a pan-

demic. The speakers and their families always take priority over the conference. It’s just a con-
ference. If they cancel, thank them, and wish them well.

We posted URLs for the web-based sessions well in advance and only on our website. We
had one page for each room with links to the two other rooms.

We posted URLs for Zoom sessions only just before the Zoom session. Communication with
attendees was mostly over IRC. You can post updates to Twitter, but don’t post Zoom meeting
URLs there. As I mentioned, you’ll get bots.

On IRC we had channels:
• one admin channel mainly for the volunteers running the conference,
• a main channel named after the conference) (e.g. #bsdcan),
• one IRC channel for each concurrent session — think one channel for each room at the

conference venue.

DAN LANGILLE has been using open source since 1998. With a background as a software de-
veloper, Dan now works full time as a sysadmin. With his background in writing how-to guides,
you are sure to find something useful, if not at least amusing. When not documenting his com-
puter adventures, he occasionally attends a conference as opposed to running it (sometimes
the two overlap). Having started his computer antics in Ottawa, he earned his first open source
badges in New Zealand, and now resides near Philadelphia, where he works from home.

3 of 3

36FreeBSD Journal • November/December 2020

I
’ve been doing a lot of network cabling on our big data cluster. Checking links and making
sure that RX and TX lights are blinking are just a couple aspects of it. Once a link has been
set up and documented, cables neatly tucked in the rack, IP addresses assigned, etc., it is time
to see if the box allows the packets to flow in the right direction. There are a surprising num-

ber of tools available to help you with this. I usually breathe a sigh of relief that basic network
diagnostic tools are still part of FreeBSD’s base system. After all, how are people supposed to
diagnose network problems if they have to install
a package for that first—and from the network
that is not working? Hey, who let the chickens lose
in the server room? Look at all the eggs!

Be that as it may, FreeBSD contains ping(8)
(which does both IPv4 and v6 in one as of late
[https://reviews.freebsd.org/rS368045]) for basic
ICMP checking. If you do get a link and want to
see some network activity, systat(1) has a handful
of utilities available for TCP, UDP and interface sta-
tistics monitoring. Of course, you could get really
fancy and let www/grafana paint the most beau-
tiful graphs on your 4k display with a bit of effort. Nothing against it, just that a lot of us prefer
something in between ping and all the bells and whistles of a fully-fledged browser application.
Thanks to ncurses and friends, we don’t have to give up “graphics” because we chose to stay
in the terminal (a.k.a. that black and white text UI).

BY BENEDICT REUSCHLING

Network Monitoring
on the Console

PRACTICAL

This column covers ports and packages for FreeBSD that are useful
in some way, peculiar, or otherwise good to know about. Ports
extend the base OS functionality and make sure you get something
done or, simply, put a smile on your face. Come along for the ride,
maybe you’ll find something new.

There are a surprising
number of tools available
to help you

1 of 3

https://reviews.freebsd.org/rS368045

PRACTICAL

37FreeBSD Journal • November/December 2020

Let’s beef up our ping output with some bar graphs to check long term trends. From a C
library called liboping (octo’s ping) stems the noping utility (net/liboping). Once installed,
you ping a target IP and you’ll see your familiar packets and sequence numbers rolling up
the screen. At the bottom though, there is a trend over time showing any loss in packets. Of
course, when I tried to generate a screenshot for you, not a single packet would get lost. So, I
refer you to [https://noping.cc/] for an example.

How about something for TCP tailored towards the humans among us? You’ll certainly find
net/bmon appealing. I couldn’t help myself and included an image of bmon’s output from one
of my (not so busy) boxes. As a bandwidth monitor and rate estimator—as the description tells
us—it definitely produces a nice output for that one computer screen in your office that makes
you look busy. I expect to see the ASCII art for the bar graphs in a future computer-focused
blockbuster movie.

As an aside, piping your “zfs list -o space” output to misc/nms gives you a 1992 Sneakers
movie feeling. It’s exactly the right thing to do when see you a snooping colleague approaching
to glance at your screen. Impress that person by unscrambling your screen output with a single
press of a button. Repeat it for other commands with a lot of text output.

If you prefer a display like top(1), take a look at net-mgmt/tcptrack. It captures packets via
/dev/bpf (yes, root-permissions only) on any kind of device posing as a NIC connected to your
system. Once a connection has been established, source, destination, port, state information,
bandwidth usage, and zodiac sign (OK, that last one was slightly exaggerated) of the packets
are shown. If you like that, then you should allow net-mgmt/iftop to occupy some storage
space in your system. The three-column output tells you exactly who your computer talks to all
day long.

But who in the name of all the networking gods (the old ones and the new) is using up all
that bandwidth? I have several suspects in the form of processes, so I let net/nethogs analyze

2 of 3

https://noping.cc/

PRACTICAL

38FreeBSD Journal • November/December 2020

that for me. Instead of many nettop-like tools, it gives me bandwidth by process ID. I had al-
ways suspected that running services as root was a bad idea. To a jail(8) with you, bad process!

I sometimes look with envy at software that is not yet ported to FreeBSD. For example,
speedometer [https://excess.org/speedometer/] would be nice to have. Maybe by the time this
column appears, some busy ports committer or contributor will have already ported it. That
would really make my day—do I hear a “challenge accepted” somewhere? After all, this col-
umn would probably not exist if there weren’t
people out there working hard to make sure
FreeBSD has a good, third-party software ecosys-
tem. And I believe we take that for granted some-
times. So, to all the ports people, a big thank you
for your tireless efforts in keeping things up(dated)
and running!

The next time you install a tool you like, why
not drop the maintainer a small thank you to
brighten their day? You can find them on fresh-
ports.org (huge thanks to Dan Langille for that
site!) or in the Makefile for the port itself. Unless it
is ports@freebsd.org, then the port is up for you
to give it some love. And when you do, you can
teach others (including me) how to do that, because there can never be enough port maintain-
ers. Check out the WantedPorts page on FreeBSD’s wiki [https://wiki.freebsd.org/WantedPorts]
for more ports that could be included in the Ports Collection.

If you don’t mind more colors in your network output, then check out sysutils/glanc-
es. It’s as if sysutils/htop and vmstat had a love affair and glances is the result. There is even
disk activity in there, in addition to the top(1)-like information in almost every corner of the
screen. But of the many top(1) clones out there, only FreeBSD’s lists my ZFS ARC statistics at a
glance, thanks to Allan Jude’s addition to it. I come back to it often, even with all the other ap-
plications the ports collection provides.

As a topic, top(1)-like ports could fill a column of its own. And it will, so stay tuned for more
in a future column. If you know a great tool that should be included here, send me an email at
bcr@freebsd.org.

BENEDICT REUSCHLING is a documentation committer in the FreeBSD project and member
of the documentation engineering team. He serves on the board of directors of the FreeBSD
Foundation as vice president. In the past, he served on the FreeBSD core team for two terms.
He administers a big data cluster at the University of Applied Sciences, Darmstadt, Germa-
ny. He’s also teaching a course “Unix for Developers” for undergraduates. Together with Allan
Jude, he is host of the weekly bsdnow.tv podcast.

3 of 3

To all the ports people,
a big thank you for your
tireless efforts in keeping
things up(dated) and
running!

https://excess.org/speedometer/
https://wiki.freebsd.org/WantedPorts

Donate to the Foundation!

Support
 FreeBSD

You already know that FreeBSD is an internationally
recognized leader in providing a high-performance,
secure, and stable operating system. It�s because of
you. Your donations have a direct impact on the Project.

Please consider making a gift to support FreeBSD for the
coming year. It�s only with your help that we can continue
and increase our support to make FreeBSD the high-
performance, secure, and reliable OS you know and love!

Your investment will help:

Funding Projects to Advance FreeBSD

Increasing Our FreeBSD Advocacy and

Providing Additional Conference
Resources and Travel Grants

Continued Development of the FreeBSD
Journal

Protecting FreeBSD IP and Providing
Legal Support to the Project

Purchasing Hardware to Build and
Improve FreeBSD Project Infrastructure

Making a donation is quick and easy.
freebsdfoundation.org/donate

®

®

BSD Events taking place through March 2021
BY ANNE DICKISON

FOSDEM 2021
February 6-7, 2021
VIRTUAL

Taking place, February 6-7, 2021, FOSDEM offers open source and free software developers a place
to meet, share ideas and collaborate. Renowned for being highly developer-oriented, the event
brings together some 8000+ geeks from all over the world. This year they will meet online. Find out
more here.

Please send details of any FreeBSD related events or events that are of interest for FreeBSD
users which are not listed here to freebsd-doc@FreeBSD.org.

Users with organizational software that uses the iCalendar format can subscribe to the FreeBSD
events calendar which contains all of the events listed here.

FreeBSD Fridays
https://freebsdfoundation.org/freebsd-fridays/
Will resume January 29, 2021.
Past FreeBSD Fridays sessions are available at: https://freebsdfoundation.org/freebsd-fridays/

FreeBSD Office Hours
https://wiki.freebsd.org/OfficeHours
Join members of the FreeBSD community for FreeBSD Office Hours. From general Q&A to
topic-based demos and tutorials, Office Hours is a great way to get answers to your FreeBSD-
related questions.

Past episodes can be found at the FreeBSD YouTube Channel
https://www.youtube.com/c/FreeBSDProject.

40FreeBSD Journal • September/October 2020

APRICOT 2021
March 1-4, 2021
VIRTUAL

Representing Asia Pacific’s largest international Internet conference, Asia Pacific Regional Internet
Conference on Operational Technologies (APRICOT) draws many of the world’s best Internet
engineers, operators, researchers, service providers, users and policy communities from over 50
countries to teach, present, and do their own human networking. The ten-day summit consists
of seminars, workshops, tutorials, conference sessions, birds-of-a-feather (BOFs), and other
forums with the goal of spreading and sharing the knowledge required to operate the Internet
within the Asia Pacific region. This year, the conference will happen virtually.

APRICOT is a valuable opportunity for participants and sponsors to hear and contribute to
discussions concerning current and developing Internet networking technologies and trends.

Find out more here.

https://fosdem.org/2021/
https://fosdem.org/2021/
https://fosdem.org/2021/
mailto:freebsd-doc@FreeBSD.org
https://www.freebsd.org/events/events.ics
https://www.freebsd.org/events/events.ics
https://freebsdfoundation.org/freebsd-fridays/
https://freebsdfoundation.org/freebsd-fridays/
https://wiki.freebsd.org/OfficeHours
https://www.youtube.com/c/FreeBSDProject
]https://www.apricot.net/
https://www.apricot.net/
https://www.apricot.net/
https://www.apricot.net/

