
FreeBSD CASE STUDY

OPEN CONNECT

Netflix (NASDAQ: NFLX) is the world’s leading streaming entertainment service
with 183 million paid memberships in over 190 countries enjoying TV series,
documentaries and feature films across a wide variety of genres and languages.
Members can watch as much as they want, anytime, anywhere, on any internet-
connected screen. Members can play, pause and resume watching, all without
commercials or commitments. www.netflix.com

Open Connect is the name of the global network that is responsible for delivering
Netflix TV shows and movies to members world-wide. This type of network is
typically referred to as a Content Delivery Network, or CDN, because its job is
to deliver internet-based content (via HTTP/HTTPS) efficiently by bringing the
content that people watch close to where they’re watching it. Open Connect
Appliances run a lightly customized version of FreeBSD. https://openconnect.
netflix.com/Open-Connect-Overview.pdf

Netflix employs several FreeBSD committers and additional members of the
Open Connect team also contribute code upstream.

OVERVIEW

INDUSTRY

STREAMING
ENTERTAINMENT

SERVICE

LOCATION

HEADQUARTERS
IN LOS GATOS,
CALIFORNIA

EMPLOYEES

6700
WORLDWIDE

https://www.netflix.com/
https://openconnect.netflix.com/Open-Connect-Overview.pdf
https://openconnect.netflix.com/Open-Connect-Overview.pdf

FreeBSD CASE STUDY

2

Client Devices OCAs

Netflix in AWS

Playback
Apps

Steering
Service
(CODA)

Cache
Control
Service
(CCS)

OCA serves files to Client Device6

Client Device requests files from OCA5

Picks OCAs, sends URL
to Client Device4

Determines
required files 3

“Play” request2

Reports health status,
learned routes, and
available files

1

Netflix Playback Process

Those of us old enough to remember the dot com and
telecom boom may recall the emblematic 1999 Quest
Communications advertisement in which a weary traveler
checks into a hotel in the middle of nowhere. The clerk
promises a lackluster breakfast, but entertainment?
That they have in spades. “Every movie ever made, in
any language, anytime day or night.”

Flabbergasted, the guest wonders aloud “how is that
possible?” How indeed! (read on). Twenty years later,
and hotel TVs are some of the last devices to provide

OPEN CONNECT PUSHES OVER 100 TB/S PEAK

every movie ever made. Technology, it seems, is not
without a sense of irony.

No discussion of the latest trends in streaming
entertainment and the technology that makes it possible is
complete without Netflix. As of April 2019, the Netflix U.S.
catalog consisted of 47,000 TV shows and 4,000 movies.
Netflix reports that the global Open Connect Network
pushes over 100 Tb/s of traffic at peak. According to
Sandvine, this represented about 15% of total internet
traffic in 2019.

Netflix began the Open Connect initiative in 2011 as a response to the ever-increasing scale of Netflix streaming.
Two primary reasons motivated the program:

OPEN CONNECT: A NETWORK AND A PROGRAM

1. As Netflix grew to be a significant portion of overall
traffic on consumer Internet Service Provider (ISP)
networks, it became important to be able to work with
those ISPs in a direct and collaborative way

2. Creating a content delivery solution customized for Netflix
allowed their engineers to design a proactive, directed caching
solution that is much more efficient than standard demand-
driven CDNs. The directed caching architecture reduces the
overall demand on upstream network capacity by several
orders of magnitude.

https://www.youtube.com/watch?v=xAxtxPAUcwQ
https://www.youtube.com/watch?v=xAxtxPAUcwQ
https://www.statista.com/statistics/1041104/disney-catalog-netflix-comparison-us/

FreeBSD CASE STUDY

3

The Network

Most CDNs work in what’s called a demand-driven
way. This means that what the network caches and
where is determined by what is requested in
a particular area. For general purpose CDNs where
there is limited ability to predict the content people
will want, this works well.

Because Netflix controls the end user apps and
has detailed information about viewing trends, they
could achieve significant efficiencies moving to a
directed CDN. In the Netflix directed CDN model,
their fleet of Open Connect Appliances (OCAs),
described in detail below, receive daily catalog
updates during what are called Fill windows when
viewing is very low.

The Program

Netflix has an open peering policy, meaning they will peer
with any ISP that agrees with the terms of the program.
Open peering improves internet user experience by
localizing traffic. It also has the advantage of reducing
transit costs, a benefit to Netflix, ISPs, and the internet
as a whole.

In addition to OCAs in Netflix data centers and installed
in Internet Exchange Points (IXPs), Netflix provides
OCAs free of charge to qualifying ISPs for installation
directly in the ISP’s network. This increases localization
and reduces upstream traffic even further.¹ Interestingly,
the fact that these OCAs are owned by Netflix, but used
by the ISP, raised some licensing considerations that
initially drew the Open Connect engineers to FreeBSD
for its permissive license.²

1 See https://openconnect.netflix.com/Open-Connect-Overview.pdf for program information.
2 https://www.nginx.com/blog/why-netflix-chose-nginx-as-the-heart-of-its-cdn/

OPEN CONNECT APPLIANCES

The workhorses of the Open Connect CDN are
the Open Connect Appliances, or OCAs for short.
These appliances, of which there are three primary
configurations, run a lightly customized version of
FreeBSD head, or development, branch. That such
a large and mission critical network would run the
fast-moving development branch may at first blush
seem risky. At the 2019 FOSDEM conference,
Jonathan Looney, Netflix Engineering Manager on
the team responsible for maintaining the OCA
operating system, explained the rationale of tracking
the FreeBSD head branch.

“Running FreeBSD head lets us
deliver large amounts of data to
our users very efficiently, while
 maintaining a high velocity of
feature development.”

 — Jonathan Looney, Netflix

First, Jonathan and his team find FreeBSD code to be
generally very stable and high quality. Second, they prefer
to quickly find and fix the relatively infrequent and mostly
low-impact bugs they do encounter. Otherwise, Jonathan
explains, a development team that waits for the long-term,
or Stable, branch, may end up in what he calls a vicious cycle
of infrequent merges, many conflicts/regressions,
and ultimately slower feature velocity.

Tracking the head branch helps Netflix add features more
quickly. They also find that tracking the head branch makes
collaborating with others in the development community easier.

• FreeBSD
• NGINX
• BIRD internet routing daemon

40Gb/s OCA Storage Appliance with 248TB storage (2RU form factor)

https://openconnect.netflix.com/en/peering/
https://openconnect.netflix.com/en/appliances/#the-hardware
https://openconnect.netflix.com/en/appliances/#the-hardware
https://archive.fosdem.org/2019/schedule/event/netflix_freebsd/
https://openconnect.netflix.com/Open-Connect-Overview.pdf
https://www.nginx.com/blog/why-netflix-chose-nginx-as-the-heart-of-its-cdn/

FreeBSD CASE STUDY

4

Just how efficient are these OCAs? Using FreeBSD
and commodity parts, Netflix achieves 90 Gb/s
serving TLS-encrypted connections with ~55% CPU
on an Intel 6122 CPU, in 1 RU, with 96GB RAM, and
16TB of NVMe-attached flash storage.

Because it’s their intention to upstream as much
code as they can, all FreeBSD users benefit from the
many enhancements that help Netflix achieve this
kind of performance. Some of these contributions
include NUMA enhancements, Asynchronous
sendfile, Kernel TLS, Pbuf allocation enhancements,
“Unmapped” mbufs, I/O scheduling, TCP algorithms,
and TCP logging infrastructure.

In order to achieve this kind of performance cost-
effectively, Netflix engineers realized they need to

reduce context switching between Kernel and user
space as much as possible. Async sendfile is one key
technique that helps with this.

The new implementation of the sendfile(2) system
call, which is a drop-in replacement for the previous
one, speeds up TCP data transfers because it avoids
copying file data into a buffer before it’s sent. The new
version of sendfile further speeds up and simplifies
large data transfers by supporting asynchronous I/O.

The new sendfile is a product of a development
partnership between NGINX and Netflix, and was
released in tandem with a 2016 Netflix service
expansion to nearly 200 countries.

Async Server

sendfile

user space

kernel space

HTTP
response

HTTP
request

Web Server

File
system

Network
socket

Throughput Efficiency

https://lists.freebsd.org/pipermail/freebsd-current/2018-January/068145.html
https://lists.freebsd.org/pipermail/svn-src-head/2016-January/080924.html
https://lists.freebsd.org/pipermail/svn-src-head/2016-January/080924.html
https://www.nginx.com/blog/nginx-and-netflix-contribute-new-sendfile2-to-freebsd/

FreeBSD CASE STUDY

5

To protect the privacy of end users, in 2016 Netflix added
Transport Layer Security (TLS). Jan Ozer summarized
this move well in his Streaming Media article:

Netflix had long deployed DRM to prevent piracy, and
it protects customer data during account login and
any administration via HTTPS. However, the actual
transfer of the movie data was not protected, so
any information contained in the communications
between the server and client could be accessed by
hackers, or by network administrators or ISPs. This
information could be used to determine which content
the viewer was watching, and perhaps other details.

Adding TLS encryption efficiently required additional
performance enhancements to the OCA software stack.
That’s because existing TLS techniques relied on the
web server - an approach that Netflix’s Director of

NGINX

KERNEL

Network I/O

Write() Read()

SSL

Session
Management

Bulk
Encryption

Classic TLS Web serving

NGINX

KERNEL

Network I/O

Sendfile V/M

SSL Session
Management

In-kernel TLS Web Serving

Bulk
Encryption

Netflix Video Serving with TLS

Kernel TLS Performance 90Gb/s, 68% CPU (SW), 35% CPU (T6 NIC kTLS)

Original (~2016) Netflix 100G NVME flash appliance

E5-2697A v4 @ 2.6GHz (16 core / 32 HTT), 128GB DDR4 2400MT/s, 1x100GbE, 4xNVME

kTLS vs Userspace
Bandwidth %CPU

NO KTLS SW KTLS NIC KTLS
0

25

50

75

10

INCREASING EFFICIENCY
AND PRIVACY - KERNEL TLS

Streaming Standards Mark Watson reported in 2014
would diminish capacity “between 30-53%.”

The answer is kernel-side TLS, or kTLS for short,
which marries TLS with the new sendfile model. This
hybrid TLS scheme (described by John Baldwin in this
vBSDCon 2019 session) keeps session management
in the application space, and inserts the bulk encryption
into the sendfile data pipeline in the kernel. TLS
session negotiation and key exchange messages are
passed from Nginx to the TLS library, and session state
resides in the library’s application space. Once the TLS
session is set up and appropriate keys are generated
and exchanged with the client, those keys become
associated with the communication socket for the client
and are shared into the kernel.

In their EuroBSD 2019 presentation, Drew
Gallatin and Slava Shwartsman show how
kTLS gives a 50 Gb/s boost to bandwidth
performance while reducing CPU%. The next
frontier in TLS performance improvement
is something called NIC TLS, where the
encryption is done in hardware. As the graph
on the right shows, this promises to reduce
CPU utilization significantly.

https://www.streamingmedia.com/Articles/Editorial/Featured-Articles/Netflix-Adding-TLS-to-Protect-User-Privacy-112905.aspx
https://lists.w3.org/Archives/Public/www-tag/2015Apr/0027.html
https://youtu.be/la-ljVavd3c
https://youtu.be/p9fbofDUUr4?t=2006

FreeBSD CASE STUDY

6

With no end in sight to members’ demand for more
shows and higher definition, Netflix continues to look
for ways to increase the throughput of OCAs. With
the evolution of high core count systems, the team
has been developing and testing Non Uniform Memory
Architecture, or NUMA, support since 2014, and that is
now beginning to show results. Where a typical system
has a single CPU, disk and memory, a NUMA system
can have many more. As with sendfile and TLS, this
can present throughput-sapping bottlenecks that Netflix
engineers have been hard at work to minimize.

NUMA makes it cheaper for a CPU to access local
resources (e.g. memory) and more expensive for
it to access resources attached to another node.
Consequently, memory and I/O locality impacts
performance. For Netflix to take advantage of NUMA’s
greater computation density, they had to come up
with a way to keep as much of the disk-to-CPU-
to-network traffic local to a node and minimize

GETTING TO 200 GB/S WITH NUMA

performance-sapping NUMA bus transfers. This led to
enhancements, which are in various stages of being
merged upstream, including:

• Allocating NUMA local memory to back
files sent via sendfile(9)

• Allocating NUMA local memory for Kernel
TLS crypto buffers

• Directing connections to TCP Pacers and
kTLS workers bound to the local domain

• Directing incoming connections to Nginx
workers bound to the local domain via
modifications to SO_REUSEPORT_LB
listen sockets

In tests, these enhancements have improved Xeon
performance from 105Gb/s to 191Gb/s While reducing
NUMA fabric utilization from 40% to 13%. For AMD
EPYC, performance increased from 68Gb/s to 194Gb/s.

Four Node Configurations are
Common on AMD EPYC

RAM

RAM

RAM

RAM

NIC

NIC

https://papers.freebsd.org/2019/eurobsdcon/gallatin-numa_optimizations_in_the_freebsd_network_stack/
https://papers.freebsd.org/2019/eurobsdcon/gallatin-numa_optimizations_in_the_freebsd_network_stack/

FreeBSD CASE STUDY

7

In response to the FAQ “why FreeBSD?” Jonathan says
they came for the license and stayed for the efficiency
- efficiency that Netflix measures in three ways:

1. Throughput, or performance, efficiency
described in the previous section

2. Development efficiency

3. Operational efficiency

From a development perspective, the ease of working
with the FreeBSD community helps Netflix upstream
their enhancements for ongoing maintenance by the

FreeBSD GIVES NETFLIX THREE KINDS OF
EFFICIENCY: THROUGHPUT, DEVELOPMENT,
AND OPERATIONS

community. They also enjoy collaborating with others
in the community that are working on the same area.
Sharing code with these other community members
can improve the code all parties are developing.

Finally, the huge fleet of OCAs requires sophisticated
tooling for monitoring and operations. Some of the
tools they’ve needed already existed, and the rest
they have written. For the latter, Jonathan has found
FreeBSD does a good job surfacing the necessary
hooks and, where not, the team has been able to
implement them.

In addition to NUMA and ongoing exploration of NIC TLS, the team is working on
upstreaming some enhancements to kTLS and on UFS enhancements.

In closing, the massive scale of Open Connect combined with the team’s focus on efficiency
and their commitment to open source means that every FreeBSD user with a similar use case
can reap the same performance benefits. The ability to turn on kTLS and take advantage of
Async Sendfile allows anyone serving static content over HTTPS to extend their hardware
lifetime, reduce density, and deliver a great user experience more efficiently.

WHAT’S COMING NEXT FROM
THE OPEN CONNECT BRAIN TRUST

