
Have you ever mounted an NTFS-formatted hard drive on your FreeBSD or Linux laptop? Or
have you ever connected your PTP camera to your laptop and browsed its photos through your
file browser? Maybe you’ve used a distributed file system like MooseFS, GlusterFS, or CephFS?
If you answered yes to any of those questions, then you’ve already used FUSE.

What Is FUSE?
FUSE (Filesystem in USErspace) is a driver and a protocol for allowing userspace processes to im-
plement a file system which the kernel presents to other processes just like any other. Running
in userspace makes file systems considerably easier to develop and debug than kernelspace file
systems. That’s why file systems like NTFS use FUSE. Userspace programs can also access librar-
ies and utilities that aren’t normally available in kernelspace, enabling virtual file systems like
sshfs (which mounts a remote server’s files over an SSH connection) and encfs (an encrypted
file system that uses an ordinary file system as its backing store). Finally, FUSE provides license
hygiene for kernel modules. For example, a GPLv3 kernel module cannot coexist alongside ei-
ther a CDDL or a GPLv2 module; the result would not be legally redistributable. But a GPLv3
FUSE file system is not a derived work of the kernel, so it’s perfectly redistributable.

FUSE was originally written for Linux in 2005, first appearing in kernel version 2.6.14. It
proved so useful, however, that ports soon began to appear. Today, OSX, OpenBSD, Illumos,
Minix, and of course FreeBSD also support FUSE. NetBSD does not use the FUSE protocol, but
it still supports many FUSE file systems via a userspace compatibility layer. And a FUSE driver for
DragonflyBSD is under development.

User Space

Kernel Space

Application

VFS

UFS ZFS FUSEFS

libfuse

FUSE daemon

FreeBSD’s FUSE Port
FreeBSD’s FUSE driver began life as a GSoC project in 2005 by Csaba Henk but wasn’t inte-
grated into the base system. A further GSoC project in 2011 by Ilya Putsikau finished the port
and Attilio Rao merged it soon after. However, the 2011 version was still a few years behind
the then-current protocol and had some unresolved bugs. In the subsequent 8 years, many

FUSE
 Driver Update

BY ALAN SOMERS

1 of 4

FUSE API Stack

22FreeBSD Journal • March/April 2020

of those bugs went unaddressed and there was little maintenance or new features until now.
Thanks to Foundation sponsorship, I was able to rectify this situation. I’ve largely rewritten the
driver, updated the protocol version, fixed dozens of bugs, and added new features and perfor-
mance enhancements.

Using FUSE File Systems
Using FUSE file systems is fantastically easy —that’s the whole point of FUSE. Once mounted,
they can be accessed just like a normal file system. The mount command varies between differ-
ent file systems. For example, to mount an ext2 file system:

sudo pkg install -y fusefs-lkl e2fsprogs
truncate -s 1g /tmp/ext2.img
mkfs.ext2 /tmp/ext2.img
mkdir /tmp/mnt
lklfuse -o type=ext2 /tmp/ext2.img /tmp/mnt

Notice the lackof sudo in the second command. That’s intentional. To enable this behavior,
set the vfs.usermount sysctl to 1. FUSE daemons can run unprivileged. When they do, the
mountpoint is only accessible by the user running the daemon. That’s to prevent the daemon’s
user from spying on the I/O of other users. In fact, many FUSE daemons eschew any explicit
permission checks in this mode, allowing the mounting user to do virtually whatever he wants
with the file system, like this:

install -m 755 -o root -g wheel -d /tmp/mnt/bin
install -m 755 -o root -g wheel /bin/sh /tmp/mnt/bin/sh

The unprivileged user can create files owned by root! At first glance, that looks like a whop-
ping security hole. But it’s actually ok, since other users can’t access that file system at all. An
astute and paranoid reader might ask whether the mounting user can set create a SUID file
and elevate his privileges that way. Rest assured—he can’t. Unprivileged mounts automatically
get nosuid set. All that’s really happening is that the user is changing /tmp/ext2.img, which he
owns. This feature is very cool. For example, you can use it to create a complete bootable im-
age, such as for an embedded system.

Of course, that’s only one use case. More traditional mounts are possible. For example, if a
certain file system weren’t available in the running kernel, you could mount a FUSE implemen-
tation as root with the allow_other and default_permissions options. That way it would
be available to all users, and would function just like any other filesystem:

umount /tmp/mnt
sudo lklfuse -o type=ext2,allow_other,default_permissions \
/tmp/ext2.img /tmp/mnt

Developing FUSE File Systems
Compared to an in-kernel file system, developing file systems for FUSE is much easier. And not
only is it easier to write a FUSE file system, it’s also very easy to write it portably. Most FUSE file
systems need few to no changes in order to run on several operating systems.

One of the benefits of programming in userland is the program is not limited to C. Indeed,

2 of 4

23FreeBSD Journal • March/April 2020

FUSE bindings are available for Perl, Python, Rust, Javascript, Java, Ruby, Nim, C#, Go, and prob-
ably others too.

Starting a FUSE daemon is slightly complicated: the daemon first opens /dev/fuse, then
calls nmount with that file descriptor as one of the arguments. Then it begins to read FUSE re-
quests from that same file descriptor and write the responses back. However, developers rarely
need to worry about those details, because libfuse takes care of it. Instead, whether writing in
C or another language, the developer generally just has to define callbacks for each supported
FUSE operation. Then, the library takes care of all the plumbing. For example, in Python the cru-
cial code for a “Hello World” example is just 37 lines. (For the full example, see https://github.
com/libfuse/python-fuse/blob/master/example/hello.py).

class HelloFS(Fuse):

 def getattr(self, path):
 st = MyStat()
 if path == '/':
 st.st_mode = stat.S_IFDIR | 0o755
 st.st_nlink = 2
 elif path == hello_path:
 st.st_mode = stat.S_IFREG | 0o444
 st.st_nlink = 1
 st.st_size = len(hello_str)
 else:
 return -errno.ENOENT
 return st

 def readdir(self, path, offset):
 for r in '.', '..', hello_path[1:]:
 yield fuse.Direntry(r)

 def open(self, path, flags):
 if path != hello_path:
 return -errno.ENOENT
 accmode = os.O_RDONLY | os.O_WRONLY | os.O_RDWR
 if (flags & accmode) != os.O_RDONLY:
 return -errno.EACCES

 def read(self, path, size, offset):
 if path != hello_path:
 return -errno.ENOENT
 slen = len(hello_str)
 if offset < slen:
 if offset + size > slen:
 size = slen - offset
 buf = hello_str[offset:offset+size]
 else:
 buf = b''
 return buf

3 of 4

24FreeBSD Journal • March/April 2020

The security model of FUSE may come as a surprise: by default, the daemon is responsible
for authorizing all operations. That does place an extra burden on the FUSE file system devel-
oper. However, the usual behavior can be achieved by always using the default_permissions
mount option. The upside is that the FUSE file system can use exotic authorization strategies,
like bespoke ACL formats. This feature is also very useful for networked file systems that do au-
thorization on the server, rather than on the clients.

New Features
FreeBSD 13’s new fusefs(5) driver adds several new features, all of which should be immediately
useable by existing FUSE file systems. Here are the most interesting:

• Kernel-side permissions checks (-o default_permissions) is now fully implemented.
• mknod(2), pipe(2), and socket(2) are now supported, so it’s possible to create any type

of file on a fusefs file system.
• Server-side support for fcntl(2) advisory locks has been added. Previously, fcntl locks

were always implemented in-kernel, but that was insufficient for network file systems that
do distributed locking.

• When mounted with -o intr, and if the server supports it, fusefs mounts are now fully
interruptible. That means that a signal can interrupt an operation that’s blocked waiting for
a response from the server. It’s similar to NFS’s mount option of the same name.

• A fusefs mountpoint can now be exported over NFS.
• The kernel will now cache file names and attributes if the server allows it. The server can

also asynchronously evict part of the kernel’s cache. The kernel can also cache reads and
writes, if permitted by the server. Finally, it will read ahead when a process appears to be
reading sequentially. These features will all improve performance with no application or
configuration changes required.

ALAN SOMERS has been a FreeBSD committer since 2013. In 2019, he rewrote the fusefs
driver under contract from the FreeBSD Foundation. Currently Alan works for Axcient on their
FreeBSD storage servers.

4 of 4

25FreeBSD Journal • March/April 2020

