
14 FreeBSD Journal

N
omad by HashiCorp arguably does this in a sane, declarative format.
Nomad handles the entire lifecycle of the task, from allocating
resources, setting up the environment, executing the task, monitor-
ing the task for health, and then on any failure, restarting the task

and any dependent tasks across any number of nodes. This makes it super
trivial to do things like:

• Rolling upgrades
• Blue/Green (A/B) deployments
• Canary deployments
• Failure recovery of tasks, nodes, or datacenters.
Nomad is officially part of the HashiCorp Suite and is corporate spon-

sored yet is a fairly standard Github project, written in Golang and released
under the MPL-2.0. This makes it usable for many of us who prefer BSD-
licensed code.

There is an enterprise commercial version of Nomad by HashiCorp that
gives you a few extras, but most everything is available in the MPL-licensed
version. The commercial version gets you features like support, fine-grained
access control, global resource quotas, and namespaces. Most of these fea-
tures are not required for even large production usage.

Nomad’s architecture is of an agent and server variety, but the same
Golang binary is used for either mode, and can be completely self-con-
tained with no external dependencies. However, running a multi-node serv-
er will likely also require running Consul, a distributed KV store. We won’t
cover production setup/installation here.

HashiCorp
Nomad by Tara Sawyer

In the BSDs we have RC scripts, on Windows we have
Service Manager, and on Linux we have systemd. All of

them are missing things or make things more difficult than
perhaps they should be. Pretty much none of them are declarative or
let you easily define (and limit) resources. What if we could have all
the things, do them across all platforms, interact with Containers, and
include all the hot new bells and whistles as well?

N
o

m
a

d
 M

u
lt

i-
TA

S
K

July/August 2019 15

Nomad’s server mode is a leader/follower model, typically running three servers
per datacenter, plus an agent on every node that’s executing tasks. For smaller
deployments, you can run the agent stand-alone and not require a server
instance. For larger deployments, Nomad is fully datacenter– and region–aware,
and can easily handle 10,000 nodes in production.

A typical Nomad agent that runs on every node is not very resource intensive. On
one of my production nodes, the agent consumes 58MB RSS and about 2% of my
CPU and 3MB of /var disk to hold state (not including job tasks, log files, etc.).

Nomad cluster communication can be encrypted with little configuration
required. There is a full capability-based access control system, so you can option-
ally configure access control. Without the enterprise version, access control is
strictly based on tokens and does not cover authentication. In practice, this isn’t
an issue, as you can either gate your job submission through a CI/CD system or
you can tie your token generation to HashiCorp Vault. Alternatively, you can pay
HashiCorp for high-quality access control in their enterprise version.

Tasks
Each “task” or application can be just running some command on the machine or
can result from running a command in some sort of container, be it QEMU, dock-
er, rkt, Java, etc. These “task drivers” are plugin based and writing your own isn’t
that difficult and typically written in Go. Tasks are defined in a very declarative
manner using HCL, which is a saner, more human-friendly version of JSON and is
completely compatible with JSON if you so desire.

Tasks can easily be scheduled across 10,000-plus nodes in production and can
be constrained by most any aspect of a given node, including by region or data-
center. So, from the smallest of deployments of one node to a full-scale enterprise
system, Nomad can handle the job of getting your tasks running.

Tasks are scheduled in a variety of ways as well, from periodic (think crontab),
batch (run once), service (run always), or system (think run on every node).

Task configuration is done in an HCL-based job file. There are basically three
parts to a job file

• Constraints and groups of tasks for a given job.
• The resources you need (to include the files and artifacts needed to run the

job to the CPU, memory, and network resources required).
• The operational and failure settings—this is how many instances to run,

how to handle failures, and how to handle updates to the job.
Let’s go through each of the three things:

Constraints and Groups
Every job belongs to a group, which is grouping tasks that need to run on the
same node. Each group can have one or more tasks/applications to run.

Constraints let you handle where a job or task should run (or not run). You can
do the normal Boolean comparisons of various things like equal, greater, and less
than, etc., but we can also specify more complicated things like regex compar-

•

16 FreeBSD Journal

isons, set comparisons (like node lists), and version comparisons. A complete list of
constraint operators is available in the documentation.

Resources
For a given task in a group, you need to define the resources, artifacts, which sys-
tem/driver in which to execute the task (jails for us), the runtime environment, and
any templated configuration to render into the task before start-up.

Nomad strongly encourages you to declaratively state every artifact/file and
resource your job requires. This includes network ports, bandwidth, CPU, memory,
and any special hardware (for instance, GPUs). This also includes any dynamic
payloads required for map/reduce type batch jobs.

Operational and Failure Settings
This includes things like the scheduler (batch, system, service, periodic), affinities,
restart, reschedule, spread, and service check items. This also includes how many
instances to run.

In general, it’s fairly robust in all the options available here, and I won’t get into
massive detail, but some things Nomad can handle are:

• If you have a leader/follower set of tasks, you can specify a task as a leader,
and it will stop all the follower tasks for you when the leader stops.
• Rolling updates, starting X copies at a time, and ensuring each of the X
copies are running and healthy (passes health checks) before continuing to
start more copies.
• Blue/Green deployments. When upgrading from version 11.2 to 11.3, start
all copies of 11.3 while not changing any 11.2 versions that are running.
Ensure they are healthy and then manually promote the 11.3 versions. Nomad
will then auto-stop the 11.2 versions. This can also support Canary deploy-
ments, where you start, say one instance of the new version, verify that it’s
happy, and then have it roll out all the other copies.
• Failure handling and fault tolerance. Besides specifying affinities for where a
job or task should get deployed, Nomad can also handle many different fail-
ures. You can, for instance, spread a number of the same tasks across different
nodes, so in a node failure, no users notice. Examples of this might be if a
local resource you need stopped responding, or if the application crashed and
needs to be restarted, or even if an application isn’t responding in a certain
amount of time and you want to reschedule the task. Nomad handles all of
these situations directly.

Now that we have a pretty good overview of all the things Nomad can handle,
let’s get to the fun bits of actually deploying a very simple Python application into
a jail from Nomad. All declaratively! But first, we need to install Nomad and get it
running.

Installing and Running
On FreeBSD a pkg install nomad will just work.

On HardenedBSD currently two patches are required and must be built from source.

•

July/August 2019 17

git/source Install
First install the dependencies

install git
pkg install go

then as a normal user

export GOPATH=~/go
mkdir -p $GOPATH/src/github.com/hashicorp && cd $_
git clone https://github.com/hashicorp/nomad.git
cd nomad

then follow the patching instructions from this issue and this issue if on
hardenedBSD. Finally build it:

go install

Then copy to /usr/local/bin/nomad and run Nomad as root in development mode:

cp ~/go/bin/nomad /usr/local/bin/nomad

To run Nomad:

nomad agent -dev
This will get Nomad up and running.
Now to make some jobs and run them.
Running it in production mode with multiple masters is beyond this guide. You

can use service nomad enable and then service nomad start, but you will
have to edit the configuration file, and all logging output is currently set to
/dev/null, so especially at the beginning, just run it on its own terminal.

Running Your First Job
A very simple example job to fetch your IP:

18

It should be pretty self-explanatory, but a few things should be said. Every
job file has one job {} definition. Inside of a job, you define any global con-
straints, like here we are saying run in the dc1 datacenter (which is the
default dc the Nomad agents join). We also specify the type—here it’s type
batch because it is not a long-running service; it runs once, and then it’s
done. Groups, as we may remember, group tasks to a node. Count is the
instance count. If you wanted to run 100 fetch commands, you would simply
say count=100 and Nomad will take care of the rest. Tasks is the details,
where we specify the driver to use the commands to run, and the resources
required to run the task. Nothing overly exciting here. More details are avail-
able in the Nomad documentation.

Save this to a file fetch.nomad and then run:

Nomad tasks create allocations of tasks; here you can see an allocation of
“fe19e216”. Your allocation ID will of course be different. You can also find
the allocations by using the nomad status <jobname> command. To see
what’s happening with the task, we can ask for the allocation status:

continues next page

continues next page

continued

Here we can see the allocation, which node it was placed on, the resources
allocated for this task, and all the events. We see it ran successfully and termi-
nated with exit 0, so it successfully ran. The logs and output of the task can be
gotten with the logs command:

The IP address has been changed, I don’t really work for the NSA, or do I? :)
We have the output from the fetch command. To get the standard error out-

put just add a -stderr to the logs command, but if we did this correctly, there
won’t be any stderr output for this command. This, of course, all works across
nodes and datacenters.

Let’s run a simple go binary http-echo, which is basically a hello-world with
http. But let’s build it and a jail for it, and then run it inside of a jail. I think that
would be much more interesting.

First, let’s set up a webserver with which to deploy artifacts.

19

20 FreeBSD Journal

continued

This job file has two tasks, one to create a basejail by compiling the source,
and the second task builds the http-echo program. Save this to something like
build-hello-jail.nomad and run it. Since it has a lot of compilation, it will take a
while—on my laptop about two hours. Nomad alloc status is your friend here.
It should eventually complete, and nginx should now be serving up both the
basejail tarball and the http-echo tarball.

We used a template {} here, which uses the Golang templating system, but
I didn’t use any templating; it’s just a handy way to include a shell script to run
in your job file.

Now we need a job to actually run the hello example in a jail:

continues next page

21

This introduces the artifact {} sections, which you may need to modify a
little bit, as the SHA256 checksums may be different for your tarballs. Luckily
Nomad computed them for you and can be found in the .sum files like so

cat /usr/local/www/nginx/nomad/*.sum

to update the .nomad file with the correct checksums, if needed.
Save the file and run it (nomad run <FILENAME>), and we should see

something fun in the alloc status:

continues next page

continued

22 FreeBSD Journal

continued

The task is “running”! because this is type “service”. Nomad will do it’s very
best to keep it always running until you nomad stop <jobname>, which for
us is nomad stop hello. But before we stop the job, let’s see a few things:

We can see the jail is up and going! The Path is showing a complete root
jail from the artifacts we asked. Also, whenever we stop this job, we don’t
have to worry about cleaning up those /tmp/Nomad* directories; Nomad will
garbage collect and clean up after itself.

Nomad created a fresh jail and ran the http-echo server. In fact, if you go
exploring, you will see the parent directory also has an alloc/ directory, and
inside that, you will find the logs. Of course, accessing it that way is difficult if
running across multiple nodes, hence the nomad logs command, and you
can actually look at the entire filesystem of the nomad jobs with the `nomad
fs` command.

Note, my trap commands don’t reliably work, but I haven’t bothered
debugging as there is a better way (read on!). For now, if the trap doesn’t
catch and stop the jails for you (you can tell with jls command), you can
remove them with jail -r <JID> where the JID is in the output of the jls

July/August 2019 23

command. Sorry for not having perfect shell fu!
Now let’s make a python3 http.server jail:

24

This is a much more complicated job file, but I’ll explain what’s happening.
First, we download the basejail tarball and open that up, and then we create
two shell scripts, one that calls the other. The first happens inside the Nomad
jail root, but not inside of the jail, start.sh, which is responsible for doing any
startup, creating the run.sh script, and then starting the jail, which runs the
run.sh script.

Our setup is just creating a very simple html file to then serve via python3’s
built-in http server. nomad run python.nomad should get you all set up
and running the simplest python http server around.

This should get you started, but running jails in Nomad is actually a lot easier
than above, by using a brand new Nomad jail driver, which we will talk about
next.

Jails Under Nomad the Sane Way
So, let’s make running jails easier on ourselves. Why do it the hard way with all
these shell scripts to build jails, etc.? Let’s use a Nomad task driver that will do
all the jail setup, teardown, and management for us:

https://github.com/cneira/jail-task-driver

Installation:

This should get the plugin installed and the Nomad agent running with the
config to load the plugin.

Now let’s run the same http-echo job but under the Nomad driver:

continues next page

Run that and good things should happen:

YAY! You can see having a jail-task-driver makes the config a lot easier to
understand and reason about!

The examples are probably not how you want to actually run and build
Nomad jobs. Ideally, you would have a Nomad batch job (or ci/cd system) that
would create a jail tarball all set up with your application in it. Version and
deploy the resulting tarball to your webserver for Nomad to then deploy
either in the same batch job or after some testing, etc. See the makebasejail
example for a Nomad batch job that will do this first part.

Then you would have a Nomad job that would fetch the tarball, unpack it,

July/August 2019 25

continued

26 FreeBSD Journal

and run it as a service. This is mostly up to you, but the Nomad jobs in this
article show you all the different bits and pieces. This will get you started
with Nomad and jails. Further information can be found via the Nomad com-
munity and their documentation. Or reach out to me. I’m happy to help.•

TARA SAWYER ran other people’s software for a while, then wrote
some software, then settled for mostly operations, where she has

been running a production Nomad cluster for a few years.
She recently got back into the BSDs after a hiatus in various

other operating systems. Current likes are almonds and compas-
sion. Tara has yet to manage a formal education.

FreeBSD is internationally recognized as an innovative
leader in providing a high-performance, secure, and stable
operating system.
Not only is FreeBSD easy to install, but it runs a huge number

full source code.

The FreeBSD Community is proudly supported by

Help Create the Future.
Join the FreeBSD Project!

Find out more by

Checking out our website

Downloading the Software

for people like you to help continue
developing this robust operating system.
Join us!

Already involved?

Don�t forget to check out the latest
grant opportunities at
freebsdfoundation.org

The FreeBSD Project
is Looking for:
• Programmers
• Testers
• Researchers
• Tech writers
• Anyone who wants

to get involved!

®

