
4 FreeBSD Journal

FreeBSD is the perfect platform for maker and hardware
hacking projects because we manage to offer such a solid
and uniform support across a wide range of boards.

Hardware
Hacking

INTRODUCTION TO

on FreeBSD

F
reeBSD has excellent support for many different ARM Single
Board Computers (SBCs). Linux ships with most SBCs, and
each SBC seems to come with its own Linux distro.

Normally the Linux distro with the best support for your
board is the one from the board manufacturer that leaves you with
a fractured set of distributions and varying support for packages
and inconsistent releases. FreeBSD does a lot better—we don't
always have support for boards right away, but the boards we do
support tend to give the same great experience. We have a single,
consistent system that runs the same on all the boards we support.
If it runs FreeBSD, it runs the same FreeBSD as on a desktop system.

This article will show you how to use FreeBSD’s excellent hard-
ware support to control real devices. We will do this by diving into
how to use GPIO on FreeBSD on an ARM SBC.

General Purpose Input/Output (GPIO) devices give us a window
from the computer to cause a change in the real world. This is nor-
mally implemented by writing to a special part of memory or using
processor register to control something in the real world. On ARM
SoCs, this is normally implemented using a mapped piece of memo-
ry that, when written to, allows us to control a voltage on an
exposed pin. FreeBSD provides device drivers to allow processes in
userspace to interact with GPIO with the same interface across all

by Tom Jones

In this article

we use the

BeagleBone Black

Single Board

Computer.

May/June 2019 5

supported hardware platforms.
GPIO devices are not available on all sys-

tems, but they are present on a surprising
number. Normally, exposed GPIO can be
spotted as pin headers on the main pcb of
the system. If you have ever set up a pc
engines board, you may have noticed a pin
header labelled GPIO next to the serial con-
nector. A large number of SBCs are now
being specifically designed to export GPIO
for use in hardware projects. There are Intel
boards such as the LattePanda that run the
familiar 64-bit (x86) platform. By and large,
most of the SBCs designed for hardware
projects run either 32-bit or 64-bit ARM architecture, such as the BeagleBone
and Raspberry Pi families of computers.

In this article, I am going to use the ARMv7 (32-bit) BeagleBone Black board.
The GPIO and bus interface concepts are common to all platforms supported by
FreeBSD and will transfer to different hardware quite easily. The BeagleBone
Black is a nice board because it has very mature FreeBSD support and has a
large number of IO ports exposed for experimentation.

To follow along with this article you will need:
• a BeagleBone Black SBC (a different board would work, but all the GPIO

names will be different)
• a mini USB cable
• an ethernet cable to connect the BeagleBone Black to the Internet
• a small breadboard
• some jumper wires
• 3x resistors (something between 200 ohm and 400 ohm will be fine)
• 3x LEDS (1 red, 1 green, and 1 orange)

Setting up the BeagleBone Black
The latest FreeBSD release image (12 at the time of writing) for the BeagleBone
Black can be downloaded from the project mirror. This must be decompressed
and written to an SD card with dd:

The location your sd card mounts will vary; be careful with the dd command
as it will overwrite the disc at which you point it without any protection.

Once you have prepared the SD card, you should connect the mini USB port
of the BeagleBone Black to a USB port on your computer. This cable provides
both power and the interface we are going to use to connect to the board. The

$ fetch ftp://ftp.freebsd.org/pub/FreeBSD/releases/arm/armv7/ISO-IMAGES/\
12.0/FreeBSD-12.0-RELEASE-arm-armv7-BEAGLEBONE.img.xz

$ xz -d FreeBSD-12.0-RELEASE-arm-armv7-BEAGLEBONE.img.xz
dd if=FreeBSD-12.0-RELEASE-arm-armv7-BEAGLEBONE.img of=/dev/da0 bs=1m

Above: The
BeagleBone
Black and
components
we use in
this article.

6 FreeBSD Journal

BeagleBone Black acts as a USB serial gadget, and through this interface the
BeagleBone Black creates a virtual serial port. After connecting the board,
look in dmesg for a new umodem device or in /dev for a /dev/ttyUX device (on
the Mac OS, this device will probably be /dev/tty.usbmodemFreeBSD11). You
should see a USB serial device, which can establish a connection from a
FreeBSD system using the cu serial terminal in the base at a baud rate of
115200:

cu -l /dev/ttyU0 -s 115200

To exit from cu, hit enter, type ~. (a tilde, then a full stop). Once connected
over serial, you can get into the system with the default username and pass-
word (root/root or freebsd/freebsd).

GPIO with FreeBSD
Once in, you can have a look around and see that this is a normal FreeBSD
install. If you search in dmesg, you will see that four GPIO controllers have
connected and a GPIO bus (gpiobus) and control (gpioc) interface have been
created for each.

gpio0: <TI AM335x General Purpose I/O (GPIO)> mem 0x44e07000-
0x44e07fff irq 7 on simplebus0

gpiobus0: <OFW GPIO bus> on gpio0
gpioc0: <GPIO controller> on gpio0

There can be multiple GPIO controllers on a system. FreeBSD exposes each
of these controllers as a separate /dev/gpiocX device. On the BeagleBone
Black, there are four buses.

Unlike Linux, where GPIO devices are exposed through /sys/class as files,
FreeBSD has a command line tool (and a C library) for interacting with GPIO
pins called gpioctl. Let’s try using gpioctl to list some of the available pins on
the BeagleBone Black.

gpioctl gives a list of all the pins the controller knows about. Each of the
four GPIO controllers on the BeagleBone Black has 32 pins connected. gpioctl
tells us several things about each pin. First, it tells us the number it uses to

gpio0: <TI AM335x General Purpose I/O (GPIO)> mem 0x44e07000-0x44e07fff irq
7 on simplebus0

gpiobus0: <OFW GPIO bus> on gpio0

gpioc0: <GPIO controller> on gpio0

gpioctl -f /dev/gpioc1 -lv
...snip...
pin 19: 0 gpio_19<IN,PD>, caps:<IN,OUT,PU,PD,UNKNOWN,UNKNOWN,UNKNOWN,UNKNOWN,UNKNOWN>
pin 20: 0 gpio_20<IN,PD>, caps:<IN,OUT,PU,PD,UNKNOWN,UNKNOWN,UNKNOWN,UNKNOWN,UNKNOWN>
pin 21: 0 gpio_21<OUT>, caps:<IN,OUT,PU,PD,UNKNOWN,UNKNOWN,UNKNOWN,UNKNOWN,UNKNOWN>
pin 22: 0 gpio_22<OUT>, caps:<IN,OUT,PU,PD,UNKNOWN,UNKNOWN,UNKNOWN,UNKNOWN,UNKNOWN>
...snip...

May/June 2019 7

refer to the pin. Next, the current logical level of the pin. And the final column in
the output has the hardware name of the pin, i.e., gpio_22 and the pins’ flags.
Some controllers have more descriptive names for pins taken from the SoCs
datasheet.

gpioctl(8) lists the possible flags for a pin:

IN Input pin
OUT Output pin
OD Open drain pin
PP Push pull pin
TS Tristate pin
PU Pull-up pin
PD Pull-down pin
II Inverted input pin
IO Inverted output pin

From our gpioctl output, we can see that pin 19 is configured as an input by
default and it has a pull down configured, while pin 21 is configured as an out-
put, but could be configured as either an input or an output and could have
either a pull-up or pull-down resistor. A pull down is a resistor added between
the pin and ground to keep the logical level of the pin output low unless it is
driven upwards. This will help us later.

Pin 21 is configured as an output. If we look at the BeagleBone Black System
Reference manual section 6.5, we see that the BeagleBone Black has four user-
controllable LEDS called USR0-USR3 and they are connected to GPIO1 21, GPIO2
22, GPIO2 23, and GPIO2 24. LED USR0 is available for us to use, while the oth-
ers are set aside for other tasks.

https://cdn-shop.adafruit.com/datasheets/BBB_SRM.pdf

LED GPIO SIGNAL PROC PIN

USR0 GPIO1_21 V15

USR1 GPIO2_22 U15

USR2 GPIO2_23 T15

USR3 GPIO2_24 V16

In the gpioctl output, we can see that all four pins have a logical level of 0; the
easiest way to find the LEDs on the board is to turn them on.

Let’s do that.

User LED Control Signals (Table 7 from the BBB SRM, CC-SA).
Table by Gerald Coley of BeagleBoard.org.
For more information, see http://creativecommons.org/license/results-one?license_code=by-sa.

gpioctl can set the LED to a digital value of 0
or 1. Let’s configure and turn on USR0:

gpioctl -f /dev/gpioc1 21 OUT
gpioctl -f /dev/gpioc1 21 1

Bask in the illumination of our glorious LED.
Further we can toggle an LED by using the -t

flag to gpioctl. This can be helpful when you just
want to blink the LED.

gpioctl -f /dev/gpioc1 -t 21
gpioctl -f /dev/gpioc1 -t 21
gpioctl -f /dev/gpioc1 -t 21

Should cause the LED to turn on and off.
Using the built-in LEDs is handy for showing status information from the

board and for experimenting with tools, but the GPIOs that back these
LEDs are not broken out to the pin headers on the BeagleBone Black. Let’s
do the same thing again with external LEDs.

The BeagleBone Black has two sets of pin headers called P8 and P9. With
the ethernet jack on the right, P8 is the bottom header and P9 is the top
header. Most of P8 is assigned to LED pins (which can be reconfigured) and
there are still several available GPIOs we can use.

We are going to connect LEDs to pins 14, 16,
and 18 on P8. From the System Reference
Manual, we can find out the actual chip GPIO
they are connected to:

We need to connect the pins to the long leg
on the LED and we also need to use a resistor to
limit the current through the LED. A resistor
from around 200 ohm to 470 ohm should be
suitable for this.

With the LEDs connected, we need to config-
ure their GPIOs as outputs and then we can play
with them:

8 FreeBSD Journal

The BeagleBone

Black has four

USR LEDs.

In this case, USR0

is illuminated.

PIN PROC NAME

14 T11 GPIO0_26
16 V13 GPIO1_14
18 V12 GPIO2_1

The figure shows how we have connected these three LEDs to the BeagleBone Black.

P8 connector pin out (derived from Table 10 of the BBB SRM, CC-SA).

gpioctl -f/dev/gpioc0 -c 26 OUT # red
gpioctl -f/dev/gpioc1 -c 14 OUT # orange
gpioctl -f/dev/gpioc2 -c 1 OUT # green

gpioctl -f/dev/gpioc0 26 1
gpioctl -f/dev/gpioc1 14 1
gpioctl -f/dev/gpioc2 1 1

You should now have all three LEDs turned on. If you used three colors as I
did, then you should have a nice red, orange, and green ready to do something
interesting.

A Hardware Project with FreeBSD
FreeBSD has continuous integration (CI) servers that build FreeBSD for different
architectures to test commits as they are made to the tree. FreeBSD uses
Jenkins for CI, and Jenkins offers a handy status API that tells us how a build is
doing and whether it succeeded or failed.

Let’s put together a build status indicator that tells us how the FreeBSD
ARMv7 (the architecture of the BeagleBone Black) is doing. Jenkins exposes the
build status through a json api, and textproc/jq provides a simple way to query
json objects. Jenkins returns two fields concerning the in-progress build—‘build-
ing’ and ‘result’. If ‘building’ is true, then there will not be a valid ‘result’.
‘result’ can be 'SUCCESS' 'FAILURE' 'UNSTABLE' or 'none' depending on the
'building' status and the ‘result’ of the most recent build.

May/June 2019 9

Write
For Us!
Write

For Us!
Contact Jim Maurer

(jmaurer@freebsdjournal.com)

Do You Have an
Idea for an Article?

®
®

The scripts require the jq tool to parse the json from the CI server and we
need a base set of ssl certificates to authenticate with the server. The
BeagleBone Black doesn't have a real time clock—you will need to have
accurate time to do ssl to the CI server.

pkg install jq ca_root_nss
ntpdate -s pool.ntp.org

#!/bin/sh

project=FreeBSD-head-armv7-build

configure the leds as outputs
gpioctl -f /dev/gpioc0 -c 26 OUT # red
gpioctl -f /dev/gpioc1 -c 14 OUT # orange
gpioctl -f /dev/gpioc2 -c 1 OUT # green

flash all the leds at start
gpioctl -f /dev/gpioc0 26 1
gpioctl -f /dev/gpioc1 14 1
gpioctl -f /dev/gpioc2 1 1

sleep 2

check the build status once a minute
while true; do

echo fetching $project
output=`fetch -o - https://ci.freebsd.org/job/$project/
lastBuild/api/json 2>/dev/null`

building=`echo $output | jq ".building"`
result=`echo $output | jq ".result"`

clear all leds
gpioctl -f /dev/gpioc0 26 0
gpioctl -f /dev/gpioc1 14 0
gpioctl -f /dev/gpioc2 1 0

if ["$building" = "true"]; then
echo $project is building
gpioctl -f /dev/gpioc1 14 1 # orange led

for foo in `jot 60 1`;
do
gpioctl -f /dev/gpioc1 -t 14 # orange led
sleep 0.5

done
else
echo $project done building
if ["$result" = '"SUCCESS"']; then
echo build suceeded for $project
gpioctl -f /dev/gpioc2 1 1 #green led

else
echo build failed for $project
gpioctl -f /dev/gpioc0 26 1 #red led

fi
fi

sleep 60 # 1 minute
done

10 FreeBSD Journal

We can connect three LEDs to GPIO on the BeagleBone Black—a
green, a red, and an orange one. The listing blinks the orange LED
when the build is running, the green LED blinks
when the build is passing, and the red LED blinks
when the build fails.

Using LEDs is just an example. We could equally
connect a relay to control a siren to the GPIO
enabling the red LED to wake us up when the build
starts to fail.•

BeagleBone Black

connected to our

three status LEDs.

Photos by Tom Jones

T o m J o n e s is a founder and director of a Hackerspace in
Aberdeen, Scotland (57northhacklab.org.uk). He started
hardware hacking on FreeBSD trying to port a project from
Linux and got sucked into the world of kernel hacking.

May/June 2019 11

Thank you!
The FreesBSD Foundation would like to
acknowledge the following companies for
their continued support of the Project.
Because of generous donations such as
these we are able to continue moving the
Project forward.

Please check out the full list of generous community investors at
freebsdfoundation.org/donors/

Are you a fan of FreeBSD? Help us give back to the
Project and donate today! freebsdfoundation.org/donate/

TM

TM

h

k

!

mniuarU

ef gse ouaceB
euntinor cieth

e thgdelwonkca
D FSBseee FrhT

ahT

s snotianos duorene
e Pf tht oroppud se
mog cniwolloe fe th

luon wotiadnuoD F

ou ykna

s h acus s
. tcejore P

r os feinpa
o e tkid l

!ou

mniuarU

mdiuiIr

arwro ftcejorP
e are ase weth
ef gse ouaceB

TM

d.ar
e muntinoo ce tlbe a

s snotianos duorene

TM

e g thnivoe m
s h acus s

S

revliS

umintlaP

 e ttanod dnt acejorP

ern of Fau a foye rA

ond/goron.itadnuofdsbeerf
sil llue fht tuk ocehe csaelP

 noitadunofdsbeerf!ydaoe t

o tk tcae bvis gp ule? HDSBee

/soron
t s arotsevny itinummos cuorenef gt o

 /teanod/gro.n

e ho t

