
26 FreeBSD Journal

I manage our CS department's big data cluster and recently
faced an interesting issue I was able to diagnose using
DTrace. Here is the backstory.

Excess LDAP
Connections

[DIAGNOSING]

Using DTrace

I
had set up a couple of student-accessible FreeBSD machines
for lab exercises. Students typically log into the cluster
machines assigned to them using a combination of SSH and
PAM, authenticating themselves against the department's

LDAP server. The LDAP server provides all the information the stu-
dents require, like checking whether a password is correct, what
the home directory is, and what shell they're using. For certain sys-
tems, students are not allowed access. These nodes have an
AllowedUsers line in /etc/ssh/sshd_config that lists the
accounts that are permitted to log in. This setup has worked for a
number of semesters without problems, and it is integrated into
our installation scripts to let users log into the system from the
moment it is installed.

One day, in the middle of the semester, my office phone rang. A
colleague from the IT department told me that they had received
an unusually high number of requests coming from the big data
cluster subnet hitting their two LDAP servers. He gave me a couple
IP addresses of the worst offenders that had shown up in their
logs. Some were creating multiple requests per second—a number
that would typically be much less. Clearly, this was odd and should
not have been happening at such a high rate. After hanging up, I
concentrated my search on the machines he mentioned. Having a

by Benedict Reuschl ing

March/April 2019 27

short list of offending machines was already a good start, as it gave me
the material I needed to focus my investigative efforts and also permit-
ted a comparison with systems that exhibit normal behavior.

First, I did a few basic checks: were there any processes running that
should not be there, were there too many students working on the
machine at the same time, thus creating network requests? Both
answers turned out negative, as I was the only person logged into the
system. Only the expected lab software was showing up in top(1)
and ps(1) outputs. Next, running netstat(1) did not show any
unusual connections or open ports other than the ones that were sup-
posed to be open on this host. The same was true for the other hosts
in question, so I needed to dig deeper.

I knew the problem somehow involved our LDAP servers and some
kind of software running on the hosts connecting to them. But what
kind of application was it (third-party or from the OS itself) and how
could I get an overview of the number of connections to the LDAP
servers for each application? Surely I could run tcpdump(1) for a
while and see traffic to the LDAP servers go by. It would take more
work to get an overview of the initiating applications. I looked at the
DTrace one-liners on the FreeBSD wiki [https://wiki.freebsd.org/DTrace/
One-Liners] and found one that would list the number of connections
the local system was making to a remote IP address.

When I ran it for a couple of seconds and then stopped the trace, I
was presented with a two-column output. The first column showed
the foreign IP address and the second listed the number of connections
made during the trace time in ascending order. That was helpful, as I
saw that the two IP addresses of our LDAP servers were showing up
among them and there certainly had been a high number of connec-
tions during the short while I ran the trace. Over time, these counts
increased and the longer I let the DTrace one-liner run, the more probes
would fire. Not every program was making a connection every second.
Letting the script run for a couple of minutes provided a better
overview of what was going on. The only piece of information missing
was the actual application making the requests. I extended the script
to also give me the executable name (called execname in DTrace lingo)
like this:

The output now has three columns: the first has the name of the pro-
gram or process initiating the connection (for example sshd or sudo).
The second and third are the same as in the previous trace. Since I knew

sudo dtrace -n 'tcp:::send { @[args[2]->ip_daddr] = count(); }'

sudo dtrace -n 'tcp:::send { @[execname, args[2]->ip_daddr] = count(); }'

�

28 FreeBSD Journal

the target IP address I was looking for (one of our two LDAP servers), I could
also filter it more by using
sudo dtrace -n 'tcp:::send {@[execname, args[2]->ip_daddr ==
"IP.address.LDAP.server"] = count(); }'

Looking at the output, a new question arises: why is the ssh daemon
sending so much TCP traffic to our LDAP servers? Of course, we're running
this script from an SSH session, which means that a good amount of traffic
could be generated by us running the script. I stopped the trace and dis-
connected from the SSH session. After logging in from the server console, I
confirmed using w(1) that I was still the only user currently logged in.
Then I re-ran the trace. To my surprise, sshd was still establishing a lot of
connections, even though no one was using SSH at the moment.
Compared to other processes on the system, sshd was responsible for the
second-largest amount of connects, while the leading connection was to
the local server IP address. This was fine and did not cause any problems,
but why a constant barrage of requests to both LDAP server IPs when no
one was actively using SSH sessions? A little further down the list, another
thing that caught my eye was the sudo process. Of course, I was running
my script using sudo, so I stopped the trace again and repeated it as the
root user. As before, the number of sudo connections did not decrease.

Both ssh and sudo were using the LDAP server—one for enabling cer-
tain users to log into the system, while the other gave permissions to run
certain local privileged actions. Remember, I had used this configuration for
a number of years, but only recently had I received complaints from the IT
department about these connections. And since this trace was showing just
one machine, you can imagine the number of total requests the LDAP

intr 0 5
sshd 0 23
intr 0 44
postgres 0 63
postgres 0 259
sudo 0 301
intr 0 380
postgres 0 405
intr 0 405
intr 0 422
sudo 0 441
psql 0 475
sshd 0 550
sshd 0 560
sshd 0 665
postgres 0 1073

�

sudo dtrace -n 'tcp:::send {@[execname, args[2]->ip_daddr ==
"IP.address.LDAP.server"] = count(); }'

March/April 2019 29

servers were getting just from this subnet that contains at least 40 nodes with
the same configuration (FreeBSD and Linux). Clearly, this needed to be
addressed or we'd risk a permanent network ban for those machines, which
would be bad news in the middle of the semester when students and
researchers were using those machines for their lab work.

Consulting with the IT department, they suggested that I activate
nscd(8), the name service caching daemon. The idea was to use the
caching service to provide results from the local cache rather than contacting
the LDAP servers for each request directly. As the information returned from
the LDAP servers would not change very often, a local cache should reduce
the load on the servers. It would also increase the local request lookup per-
formance. After reading the respective man pages for nscd, nscd.conf,
and nsswitch.conf on FreeBSD, I activated nscd using

sysrc nscd_enable=yes

Before starting the nscd service, I added "cache" statements to
/etc/nsswitch.conf to make it look like this:

group: cache files ldap
hosts: cache files dns
networks: cache files
passwd: cache files ldap
passwd_compat: nis
shells: files
services: compat
services_compat: nis
protocols: files
rpc: files

The default /etc/nscd.conf has most if not all caches enabled, so there
was no need to make any changes to this file. Then I started the nscd service
using

service nscd start

I activated this on the servers that were reported to be the most prominent
abusers of the LDAP servers. Then, because other job-related things needed
my time, I did not run a second trace to confirm that the requests were less-
ening in number as a result of activating nscd. A week and a half went by
without me thinking much about it. There is a lesson here: confirm that an
issue has been solved before moving on to other things. Mentally switching
back to a problem after a while can be difficult.

In my case, the problem manifested again when I was not at work. On a
Wednesday morning, our IT department shut off the network of the entire
big data cluster because the number of requests to the LDAP server were so

�

severe that they were thought to be an internal Denial of Service attack.
This caused one of the lab groups that was using the cluster nodes that
morning to lose access. Only after the professor attending to that group,
who was completely unaware of the network lockout, opened a ticket with
the IT department asking for help, did they reestablish the network. The lab
group was able to work again; however, the issue remained (and com-
plaints were reaching my inbox, of course). At peak times, a single IP was
responsible for 12.5% of total traffic to the LDAP servers. Not good, so a
solution had to be found, and quickly.

Apparently, nscd had not solved the problem as expected, so I had to
get back to the analysis. When searching online for similar issues that other
people might have encountered, I did not find anything directly related to
my problem. However, I did find discussions about pam_ldap, which is the
client that I was using on the cluster nodes to establish the connection to
the LDAP servers. It turned out that the FreeBSD port had not received any
updates since April 1, 2016, and according to some users, the software
had been badly designed from the beginning. People recommended an
alternative client, written and maintained by Arthur de Jong:
nss-pam-ldapd [https://arthurdejong.org/nss-pam-ldapd/].
Among other things, the port description (cat pkg-descr in
/usr/ports/net/nss-pam-ldapd) listed "less connections to the
LDAP server". This sounded exactly like what I was looking for, so I did a
test install on one of the cluster nodes that had caused many of those
requests.

Not only was the nss-pam-ldapd software designed completely from
scratch and integrated with a local caching service called nslcd, it was
also well documented. Additionally, the software was maintained with the
last update of the FreeBSD port in November 2018—the time of the writ-
ing of this article. The changes could be implemented without a reboot of
the system. A word of warning: errors in the files in /etc/pam.d or
/etc/nsswitch.conf can lock you out of the system, even the root
user. When that happens, you need to repair this in single-user mode or
using a live CD.

Once the changes had been put in place and the nslcd service had
been started, I ran the DTrace script again. I found an entry for nslcd in
the first column connecting to the LDAP server (I had disabled nscd earlier
as it did not help). This was now the caching daemon making the calls,
providing the results to the local services (sudo and ssh) asking for the
information. The number of connections to the LDAP servers was greatly
reduced in the DTrace output. On the server side, our IT department also
confirmed that the traffic had gone down to normal levels again. Needless
to say, I rolled out the nss-pam-ldapd service with nslcd on all the
other machines. I also updated our install scripts to use nss-pam-ldapd
instead of pam-ldap when a system is installed. Note there is also a ver-
sion available with SASL support called nss-pam-ldapd-sasl.

�

30 FreeBSD Journal

The nice thing about this exercise was that I did not have to think
much about writing the DTrace probes myself. I could simply access them
from the library of handy DTrace one-liners on the FreeBSD wiki
[https://wiki.freebsd.org/DTrace/One-Liners]. There are already a couple of
good and ready-to-use one-liners there for various areas like storage,
networking, and syscalls. With a bit of modification, it is fairly straight-
forward to construct a probe that provides the information you are look-
ing for to help diagnose the more difficult problems. •

B e n e d i c t R e u s c h l i n g joined the FreeBSD Project in 2009. After
receiving his full documentation commit bit in 2010, he actively began
mentoring other people to become FreeBSD committers. He joined the
FreeBSD Foundation in 2015, where he is currently serving as vice pres-
ident. Benedict has a Master of Science degree in Computer Science

and is teaching a UNIX for software developers class at the University of Applied
Sciences, Darmstadt, Germany. Together with Allan Jude, he is host of the weekly
BSDNow.tv (http://BSDNow.tv) podcast.

March/April 2019 31

®

BSDTW—2017

By Brooks Davis, Robert Norton, Jonathan Woodruff & Robert N. M. Watson

Choose ebook, print, or combo. You’ll learn to:
• Use boot environment, make the riskiest sysadmin

tasks boring.
• Delegate filesystem privileges to users.
• Containerize ZFS datasets with jails.
• Quickly and efficiently replicate data between

machines.
• Split layers off of mirrors.
• Optimize ZFS block storage.
• Handle large storage arrays.
• Select caching strategies to improve performance.
• Manage next-generation storage hardware.
• Identify and remove bottlenecks.
• Build screaming fast database storage.
• Dive deep into pools, metaslabs, and more!

ZFS experts make their servers
Now you can too. Get a copy of.....

WHETHER YOU MANAGE A
SINGLE SMALL SERVER OR
INTERNATIONAL DATA
CENTERS, SIMPLIFY YOUR
STORAGE WITH

FREEBSD MASTERY: ADVANCED ZFS. Get it Today!

Link to:

