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t Computex 2018, Intel unveiled a prototype 28-core

system. Within a few months, AMD launched the world’s most
parallel desktop processor, the ThreadRipper 2, featuring 32

cores (64 hardware threads).
AMD'’s EPYC2 is in the lab and
rumored to be 64 cores (128 hard-
ware threads), bringing 256 hard-
ware threads to a commodity serv
er dual socket system. Historically,
FreeBSD has existed at the "knee"
of the hardware commodity curve.
In order to maintain its relevance
in the server space, FreeBSD needs
to keep pace with the latest
processor developments.

Processor Evolution
As core count has increased, the designs have got-
ten steadily more complicated. AMD's Shanghai
and Intel's Nehalem used a broadcast bus for han-
dling cache coherence. Intel's Haswell later
changed this to multiple rings on chip. And with
Skylake, Intel has moved to a mesh (see right).
AMD has taken a yield-centric focus to scaling
up by reusing the same design across its product
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line. Each chip consists of two core complexes (CCX), and an EPYC package consists of four chips (often referred
to as "chiplets") (see lower right).

Defining Scalability
Scalability can be defined on a number of axes [Culler, 1999]:

e Problem-Constrained strong scaling - The user wants to use a larger machine to solve the same problem
faster. As the number of processors available to complete a task increases, the extent to which the time com-
pletes the problem decreases:

Time(1 processor)

Time(nprocessors)

Speeduppc(n processors) =

e Time-Constrained weak scaling - the time to execute a given workload remains constant; user wants to
solve the largest problem possible. It is the degree to which the amount of work accomplished increases as
the number of processors increases:

Work(n processors)
Work(1 processor)

Speeduprc(n processors) =

* Memory-Constrained - The user wants to solve the largest problem that will fit in memory.

Speedupyc(p Processors) = Work(p processors) « Time(1 processor)  _ Increase in Work
P Pmcio P Time(p processors) Time(1 processor) Increase in Execution Time

In this article, scalability refers to time-constrained scalabilty (“weak scaling”),
which will be characterized by the aggregate number of operations performed dur-
ing benchmarks. Performance bottlenecks are application- and work-load specific.
Therefore it is problematic to extrapolate actual application performance from
these scalability measurements. Nonetheless, the OS impact on any given workload
can be characterized as a combination of the average time per system call and the
impact of scheduling decisions. System call overhead can be captured by simple
microbenchmarks. Scheduling decisions are harder to measure but one can meas-
ure them to a limited degree by measuring workloads with varying scheduler
restrictions (i.e., limiting the set of CPUs the scheduler can use) or by comparing
single socket results with dual/multi-socket results.

It is important for the reader to understand that the purpose of
microbenchmarks is not to measure workloads themselves. They
are a means to observe the scaling of individual OS services to 8 ov o | vt B o
measure scalabilty in isolation. These measurements are only pre- - .
dictive of performance on real world workloads to the extent to
which a workload uses the individual service being measured.

What Makes Scaling Difficult—
Serialization and Scheduling

If n threads are attempting to perform an operation, serialization overhead can roughly be defined as the
extent to which the throughput per thread declines from 1 to 1/n, as each thread waits to acquire the same
lock. Scheduling overhead is more difficult to define. In an ideal world a given thread would only ever run
on one core; any other threads that it communicated with would be on the same "core complex" - sharing an
L3 cache so that IPIs (inter processor interrupts—a facility to allow a cpu to interrupt other cpus) and cache
coherency traffic would not have to traverse an interconnect and any misses could be refilled without going to
memory. Unfortunately, in practice, this is impossible in the general case. CPUs are commonly oversubscribed
and the scheduler cannot infer relationships between threads in different processes. The further away one cpu
is from another, the poorer the performance for latency-sensitive operations such as networking and synchro-
nous IPC. And the larger the distance between two cpus, the greater cost of refilling the caches when a thread
is migrated.

AMD Zen Core Complex

The scaling challenges stem from three factors:
e memory latency

e |imits to coherency traffic

e shared globally unique resources
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To a large degree the scaling solutions are all a combination of:

® per Cpu resources

® relaxing constraints

e distinguishing between existence guarantees and mutual exclusion

Memory latency and the bounds on coherency traffic are fundamental to the evolution of computer hard-
ware over the last decade. What were once design artifacts seen only in high-end systems are now an
important consideration even in consumer CPUs like AMDs ThreadRipper. The shared memory programming
model is becoming an increasingly leaky abstraction. Cache coherence logic in processors provides the sin-
gle-writer /multiple-reader SWMR guarantees that programmers are all accustomed to [Sorin, 2011].
However, at its limit, the observed performance is defined by the actual implementation of a distributed
memory with all updates performed by message passing [Hacken, 2009], [Molka, 2015]. Today, message
latency and bandwidth are dominant factors in observed performance.

Implementation issues impacted by the increasing number of hardware threads are:
e |ocking granularity

e using locks to provide existence guarantees

e using atomic references to provide existence guarantees

e poor cache locality between L3 caches or NUMA domains.

Locking Granularity

Locking granularity refers to how many operations are protected by a single lock. The “Big Kernel Lock” or
“BKL" in Linux or “Giant” in FreeBSD initially encompassed the entire kernel in a single lock. This evolved
into locks for individual subsystems, then individual data structures, and finally fields in data structures. Even
with fine-grained locking, the case of a widely referenced global resource (memory, routing table entry, etc.)
that can only be accessed one at a time occurs. In general, locking granularity in FreeBSD is already relatively
fine-grained. Nonetheless, between FreeBSD 11 and FreeBSD 12 there are numerous examples of work done
to reduce lock contention, either by increasing locking granularity, moving to per-cpu resources, or reducing
the frequency with which global updates occur.

Locking for Existence Guarantees

One can use a lock to guarantee that entries in a system global or process global structure have not been
freed while in use. One example in FreeBSD 11.x vs FreeBSD 12.x is how existence is guaranteed for connec-
tion state within the per protocol hash table. FreeBSD 11.x guarantees a thread that any connection found
in the table is valid by requiring that all table readers do a shared (for read) acquisition of a per-table read-
er/writer lock. This allowed multiple simultaneous readers while preventing any table updates. Although con-
ceptually straightforward, this comes at a substantial price and the guarantee is stronger than required.
FreeBSD 12.x weakens the guarantee to provide that any connection found during a lookup had not been
freed. Lookups are protected with epoch and updates are serialized with a mutex. Connection state lookup
still returns the connection locked to guarantee existence past lookup. However, once the lock is acquired,
lookup now checks that the connection has not had the INP_FREED flag set. If the flag is set, this indicat-
ed that connection is pending free. In this case, we drop the lock and return NULL as if no connection had
been found. This change adds some additional complexity to readers, but in exchange we no longer require
a global atomic for the rwlock [App. A] and updates can proceed in parallel with lookups (lookups no longer
block on updates and vice versa). This change provided a 10-20x reduction in time spent in lookups on a
loaded multi-socket server.

Atomic Refcounts for Existence Guarantees
Atomically updating a reference counter for an object peforms better than using a lock to serialize updates.
Updates can proceed fully in parallel with ownership changes. Each new thread or object holding a pointer
to the object increments the reference. When the reference is removed from the object or the thread's refer-
ence goes out of scope the reference is decremented. When the count goes to zero the referenced object is
freed. Nonetheless it does not scale as the cost of coherency traffic rises. For an object frequently referenced
by many threads the coherency traffic invalidating and migrating the cache line between L2 and L3 caches
quickly becomes a bottleneck. There are two separate issues to address here:

e |s reference counting necessary here?

e Can anything be done to make reference counting cheaper?
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Perhaps suprisingly, for stack local references, reference counting isn't actually necessary. SMR "Safe
Memory Reclamation" techniques such as Epoch Based Reclamation [Fraser, 2004], Hazard Pointers
[Michael, 2004; Hart, 2006], RCU [McKenney, 2011], scalable parallel sections [Wang, 2016], etc., can allow
us to provide existence guarantees without any shared memory modifications. And reference counting can,
in many cases, be made much cheaper.

Recent work in UDP expanded the scope of objects tied to the network stack’s epoch structure. Epoch
structure is now also used to guarantee existence of interface addresses. This now means that references to
them that are stack local no longer need to update the object's refcount.

The observed reference count can safely be different from the "true" reference count if we can safely
handle zero detection correctly. The different approaches to scalable reference counts rely on this insight.
Although there are other approaches to this in the literature [Ellen, 2007], the ones | consider most interest-
ing are Linux's percpu refcount [Corbet, 2013] and Refcache [Clements, 2013]. The former is a per-cpu
counter that degrades to a traditional atomically updated reference count when the initial reference holder
"kills" the perpcpu refcount. Its advantage is that it is simple and can be extremely lightweight provided
that the life cycle of the object closely mirrors that of the initial reference holder. It does not work well if the
object substantially outlives the initial owner. Refcache maintains a per cpu cache of reference updates and
flushes them when there is conflict or at the end of an "epoch." In this case an "epoch” is 10 milliseconds.
Zero detection is done by putting the object on a per-cpu "review" list when its global reference count
reaches zero. The global reference count can be assumed to be the true reference count when it has
remained at zero for two "epochs." Refcache doesn't rely on an initial reference holder with a closely corre-
lated life cycle to avoid a degraded state. In some respects this makes it much more general. However,
potential multiple passes through the review queue can add substantial overhead to the zero detection
process. The latency between initial candidate for free and final release makes it unsuitable for objects with
a high rate of turnover. For example, a ten millisecond backlog of network mbufs or VM page structures
could incur punitive overhead.

Cache Locality

A simple example of designing for cache locality is packing structures contiguously as opposed to a linked
list so that the prefetcher can furnish the next element as a thread iterates through them. At high operation
rates, the way in which fields are ordered within a structure can make a measurable performance difference.
A 45% increase in brk calls per second was measured when a reorganization of the core memory allocation
structure reduced from three to two the number of cache lines for the most commonly accessed fields.
Once serialization bottlenecks are eliminated, kernel performance is determined by the frequency of cache
misses.

Minimal sharing and cache misses are easily definable ideals for serialization and locality. However, algo-
rithmically defining optimal scheduling for an arbitrary hitherto unseen workload is an unrealizable ideal.
Even where the information is present, data structure knowledge and sharing afforded to the scheduler
slows down scheduling decisions. When sharing an L2 cache, two communicating threads with a small
working set will benefit while two communicating threads with a larger working set will be adversely
impacted. A particularly egregious example of where FreeBSD falls down due to thread scheduling on multi-
ple sockets is measured throughput on TCP connections to localhost. On a ~3Ghz single socket system
FreeBSD can achieve 50-60Gbps, partly by offloading network processing to the netisr thread. On a dual
socket system of the same clock speed, the measured throughput drops to 18-32Gbps. In the worst case,
two communicating processes are on one socket and the netisr thread is on the other. Therefore the noti-
fication for every packet has to cross the interconnect between sockets. At least on a dual socket, Linux
does network processing inline (i.e., no service thread) when doing TCP to localhost. On a single socket
Linux would achieve lower throughput than FreeBSD does. However, it achieves a consistent 35Gbps provid-
ed both processes are scheduled on the same socket. There are a number of issues to address here:

¢ the existence of only one netisr thread for the entire system

e where the sender, receiver, and netisr thread should be scheduled

e how to convey to the scheduler that the three different threads are communicating with each other.
Nonetheless, the key insight here is that latency can determine usable bandwidth and poor scheduling deci-
sions can have a devastating impact on performance when we move from single socket to dual socket.

For users who understand in advance what workloads they will be running, the situation is manageable.

The cpuset command allows one to assign processor sets to processes, restricting the choices that the
scheduler has available to it.
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Measuring Scalability ==
For purposes of this article, scaling measurements will be limited to oD
running the "Will-it-scale" system call microbenchmark suite
[Blanchard, 2013] on FreeBSD 11, FreeBSD 12 and Ubuntu 18 (Linux- 00000000
4.15.1) on two systems—a dual socket EPYC 7601 (2x32 cores
@2.2Ghz) and a dual socket Intel Xeon 6130 (2x16 cores @2.1Ghz).
The two cannot be directly compared as the EPYC 7601 is a top bin
processor retailing for 130% more than the mid-level Xeon 6130.
Nonetheless, the more complex EPYC is likely to show very different —
scaling characteristics and a higher penalty for poor locality.
The first thing of note is that the multithreaded variants of most 0
benchmarks scale much more poorly than their multi-process coun-
terparts.The shared address space, file descriptor array, and proc < s =
structure all require added locking for the multithreaded case. In the
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the halfway mark. This is because we move from a regime of one 120000000

benchmark thread or process per core to oversubscribing the cores
and using both hardware threads (1).

There are a number of notable improvements going from FreeBSD
11 to FreeBSD 12.The getuid benchmark shows that system call over-
head has been reduced by more than 50%. Page fault performance
has improved by 20-80x (2, 3, 4).

Anonymous memory mmap/munmap of 128MB has improved sub-
stantially and currently outperforms Linux (5, 6).

Unix domain socket performance has improved by 19x. .
Performance previously flattened out at eight hardware threads, but o m  w W m
now continues to increase up to 128 hardware threads (7).
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At least as of Linux 4.15 FreeBSD actually scales better than Linux on Separate file read
UNIX sockets (8).

Separate file read still peaks at 32 hardware threads, but it's an 8x
improvement (9, 10).

Unfortunately, there are a few areas where underinvestment shows
through quite clearly. Although there was an improvement in the brk
benchmark from changing handling of swap reservations (11), there are
several other system-wide serialization points. Linux scales near linearly
here, and at its peak is capable of performing 32x as many brk ops/s (12). ;

Arguably this isn't that big a deal in practice due to its relative lack of
prominence in real world workloads. As a class, the most unsettling differ-
ence between FreeBSD and Linux is in filesystem operations. Linux scales
near linearly in many cases where FreeBSD stops scaling at four hardware 5 % 3
threads (13, 14, 15, 16).

Given more time we would have provided benchmarks with more real 10 I
world workloads such as the nginx web server serving small static objects, e
memcached, PostgreSQL, etc.
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the scalable commutativity rule, which says, in essence, that whenever
interface operations commute, they can be implemented in a way that
scales. The intuition behind this is simple: when operations commute, their
results (both the values returned and any side effects) are independent of
order.

He starts by observing that many scalability problems lie not in the
implementation, but in the design of the software interface. An interface
definition that does not permit two operations to commute enforces seriali-
zation between two calls. The POSIX definition of the open system call
requires that it return the lowest available file descriptor. This means that
two calls to open of different files need to be serialized on file descriptor
allocation. Some other system calls that have unnecessarily unscalable inter-
faces are: fork (when immediately followed by exec), stat, sigpending, and
munmap.

This is an interesting observation, but the real contribution of the work is
developing a tool called COMMUTER which:

1. takes a symbolic model of an interface and computes precise condi-
tions for when that interface’s operations commute.

memwrite

All tests
conflict-free

memread

2 All tests
memwrite

conflicted
sv6 (26,115 of 26,238 cases scale)

£33 " .
z gg §%Eg o B s . 2. uses these conditions to generate concrete tests of sets of operations
SEEER2 Vg= B E . .
gEEFEET o885 558 that commute according to the interface model, and thus should have
open 42303228 2 @736 4

a conflict-free implementation according to the commutativity rule.
3. checks whether a particular implementation is conflict-free for each

link
unlink
rename

44 20 32 20
6116
203220 1

-q_

stat 89 7r test case.
fstat 4118302028 16 7
Iseek 6813752 49 26§ 4 117
s RS He applied this to 18 POSIX system calls to generate 26,238 test cases

All tests
conflict-free

read 16 2 15350 5144 34
write 6 5 25 3 15664 44 42

pread [ 20 2 23260122

pwrite 40 4 n@N
mmap 5
munmap
mprotect

memread 23 20
memwrite 28

and used these to compare Linux with sv6, a research OS developed by his
group. He found that on Linux 3.8 17,206 cases scale vs 26,115 on sv6.
The collection of test cases that failed to scale can be used as a starting
point for redesigning subsystems just as the will-it-scale benchmarks have
enabled us to identify a much narrower set of issues (see diagrams left).
Porting COMMUTER to work with FreeBSD would be an interesting

All tests
conflicted

Linux (17,206 of 26,238 cases scale)
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APPENDIX A - FreeBSD Serialization

Primitives

mutex
Mutex is the most straightforward
primitive; ownership is acquired by
a thread doing a compare and swap
operation on it with a pointer to
the acquiring thread's structure. If
the lock already contains a thread
pointer, it is owned; if not it is free.
There are two classes, MTX DEF
and MTX_ SPIN. A MTX SPIN
mutex is considered "heavyweight"
because it disables interrupts. It can
be acquired in any context. While it
is held (and with interrupts disabled
in general) a thread can only
acquire other MTX_SPIN locks and
cannot allocate memory or sleep.
While holding a MTX DEF lock a
thread can do anything that would
not entail sleeping (acquire either
types of mutex, rwlocks, non-sleep-
able memory allocations, etc.). While
waiting to acquire a MTX_ SPIN
mutex a thread will "spin™ polling
the lock for release by its current
holder. While waiting to acquire a
MTX DEF a thread will "adaptively
spin™ on it, polling for release if the
current holder is running and being
enqueued a turnstile if the cur-
rent holder has been preempted.
Turnstiles are facility for priority
propagation allowing blocked
threads to "lend" their scheduler
priority to the current lock holder as
a mechanism for avoiding priority
inversion. In other words, if the
blocked thread is higher priority the
lockholder's scheduler priority will
be elevated to that of the blocked
thread.

rwlock

The rwlock extends the semantics
of the MTX DEF mutex by sup-
porting two modes — single writer
and multiple readers. Its implemen-
tation is similar to that of mutex
with some additional state assigned
to the lower bits of the lock field. In
single writer mode it behaves the
same as a mutex would. In reader
mode, multiple readers can acquire
the lock and writers are blocked
until all readers drop the lock. In this
mode we can no longer efficiently
track the lockholders' state so we
cannot propagate priority and it is
not possible for an acquirer to know
if all holders are running. Thus a

thread can only spin speculatively.

It supports an arbitrary number
of readers, so it's the first primitive
developers have traditionally
reached for when trying to guaran-
tee existence of fields during a table
lookup. However, every read acqui-
sition and release involves an atom-
ic update of the lock. When the
lock is shared across core complexes
(and thus updates entail cache
coherency traffic between LLCs to
transition the previous holder's
cacheline from modified/exclusive to
invalid) its use can quickly become
very expensive.

sX
The sx lock is logically equivalent to
the rwlock with the critical differ-
ence being that a lockholder can
sleep. Blocked readers and writers
are maintained on sleepqueues and
priority propagation is not done.

rmiock

Like the rwlock and sx, the rmlock
“read mostly lock" is a reader/writer
lock. Its critical difference is that
acquisition for read is extremely fast
and does not involve any atomics.
Acquisition for write is extremely
expensive. In its current incarnation
it involves a system wide IPI to all
other cpus. This is actually a reason-
able primitive for guaranteeing exis-
tence if updates are infrequent
enough. It is easy to reason about,
having the same semantics as famil-
iar rwlocks.

lockmgr

Lockmgr is something of an
anachronism. It has some unique
features required by the VFS (virtual
file system) layer. It is generally not
a bottleneck in today's code and its
idiosyncracies are outside the scope
of what | hope to touch on.

epoch
The epoch primitive allows the ker-
nel to guarantee that structures
protected by it will remain live while
a thread is in an epoch section.
Executing do_stuff () inan
epoch section looks something like:

epoch enter(global epoch);
do_stuff(); ...
epoch exit(global epoch);

A thread deleting an object refer-
enced within an epoch section can
either synchronously wait for all
threads in an epoch section during
the current epoch plus a grace peri-
od by calling epoch_wait(epoch),
or it can enqueue the object to be
freed at a later time using
epoch call(epoch, context,
callback), allowing a service
thread to confirm — at lower cost
than a synchronous operation —
that a grace period has elapsed. In
many respects the read side of
epoch has similar characteristics to
the read side of an rmlock.
However, it does not provide a
mutual exclusion guarantee.
Modifications to an epoch protect-
ed data structure can proceed in
parallel with readers. Modifications
do typically need to be explicitly
serialized with respect to each
other. Thus a mutex is used to pro-
tect a writer against other writers.
Although its implementation and
the performance trade-offs are
completely different from Linux's
RCU, it largely supports the same
programming design patterns.
There are two variants of epoch,
preemptible and non-preemptible.
A non-preemptible epoch is lighter
weight but does not permit the call-
ing thread to acquire any lock type
other than MTX SPIN mutexes.
Epoch is new in FreeBSD 12. It is
essentially in-kernel scaffolding built
around ConcurrencyKit's epoch
(Epoch Based Reclamation) API.
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APPENDIX B Will-l1t-Scale Results The complete results for
Will-It-Scale for FreeBSD 11 vs FreeBSD 12 and FreeBSD 12 vs Ubuntu 18 (Linux 4.15) can be fo
https:/github.com/ScaleBSD/scalebsd.github.io/tree/master/media/freebsd_processor_scaling

d at:
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