
By Jarosław Zurek,
Michał Borysiak,

and Mariusz Zaborski

8 FreeBSD Journal

S E E
T E X T
O N L Y

Do you create complicated passwords?
How hard is it for you to remember the new ones?

Do you keep your credentials on a Post-it note near
your monitor? If you do any or all of the above, we

have an alternative that will help protect your
privacy and make it easier for you to stay safe.

YubiKey Overview

Alot has been said about YubiKey, which is produced by Yubico. It has become one of
the most popular solutions offering a secure 2FA — Two-Factor Authentication. It also
may be used as a secondary password factor U2F — Universal 2nd Factor. It offers

strong authentication and is easy to use.
YubiKey is a USB-like device. In the simplest use-case, when we connect YubiKey to a

computer, it is detected as a keyboard in the operating system and the device allows us to
store up to two passwords. Depending on how long we press the button on the device, it
will release the first or the second password. In this simple use-case, we can use it to inte-
grate with almost any web service.

In this scenario, we can use it to remember our passwords and forget about using
Post-it notes. For more advanced users, this scenario can help protect their data.
Rotating passwords is difficult, as it is problematic to remember new ones. Now, we can
rotate our most often used key (for example access to our password vault) and not have
to bother remembering it (although it is always a good idea to have backup). While
keeping our primary password on the YubiKey device, we can still use other devices
(such as a mobile phone) as a second factor.

PASSWORDS

Protect Your Secrets

May/June 2018 9

Authentication Methods
Besides storing static passwords, some models of YubiKey also support more sophisticated authentication
methods such as:
• One-time Password (OTP) – authentication mechanism, generating passwords that can be used once.
• OATH – HOTP – event token, generating 6- or 8-character OTP passwords using the HOTP algorithm.
• OATH – TOTP – 6- or 8-character OTP passwords, the TOTP algorithm is based on time function.
• PIV (Personal Identity and Verification)-Compatible Smart Card – enables the use of private RSA/ECC keys
stored on YubiKey for signing and decryption. This mode works like a smart card.
• OpenPGP – encryption and signing using RSA and ECC private key, stored on YubiKey, using standard suits
like PKCS #11.
• U2F – an open authentication standard that enables secure access to any number of online services. Only
one single device, without additional drivers, or client software.

It is possible to use two-step verification with web services like Google, Facebook, GitHub, and Hotmail.
This is useful because even if attackers steal the first factor of authentication (username and password to the
account), they are not able to log in. We can ensure this by using a YubiKey device which supports U2F. Of
course, we must enable two step verification on a chosen web service.

Models
There are a few different types of YubiKeys that can be used for various purposes. The most basic version is
the FIDO U2F Security Key. It supports static password authentication and may be integrated with the most
popular applications like Gmail and Facebook using U2F. It does not support methods like HOTP or
OpenPGP. This device is the most affordable product they offer at the time of writing this article and the cost
is US $18.

More advanced models, known as the
YubiKey 4 generation (which also
includes YubiKey 4C, YubiKey Nano and
YubiKey 4C Nano) already support basic
cryptographic methods like OTP or OATH
modes. Differences are in device size and
USB port type. Their use is definitely
wider than the previously mentioned
model and some examples will be
explained in detail later in the article.

Another available option is YubiKey
NEO. An additional feature supported by
this model is communication via NFC.
For example, after tapping the device, a
smartphone can read OTP emitted by
YubiKey. A summary of differences can
be seen in Table 1.

FreeBSD Tooling
YubiKeys come with a set of open source tools that are necessary to integrate YubiKey in a Unix-like environ-
ment. For FreeBSD users most of these tools are available in the ports collection as well as in the binary
package repository. Two of the most interesting packages are security/ykpers and security/
yubico-pam. The security/ykpers package contains several command line tools to manage YubiKey:
• ykpersonalize(1) —is necessary to program YubiKey; it handles configuration options for almost
every YubiKey feature.
• ykinfo(1) —is useful for retrieval of basic information about YubiKey.
• ykchalresp(1) —allows for signing data using YubiKey in a challenge-response mode of operation.

GELI Full Disk Encryption
GELI is the most popular disk encryption method on FreeBSD. One of the most secure ways of using GELI
and FreeBSD is to use two-factor authentication with a passphrase and a key file. The key file is kept on a
memstick. When we boot our machine, we need to provide both factors. After decrypting our device, we

FIDO U2F YubiKey 4
Security Key generation YubiKey NEO

OTP � �

OATH – HOTP � �

OATH – TOTP �* �

OpenPGP � �

U2F � � �

Secure Element � � �

Smart Card (PIV) � �

Supports NFC
communication �

Table 1: Comparisons of different YubiKey models

*Requires additional app (lack of built-in Real Time Clock).

remove the memstick with the file. In that way, if somebody steals our computer they will also need to
see our password and steal our memstick. If we want to be even more paranoid, we can keep a kernel
and a key file on the memstick. In that way, even if somebody has access to our computer, it makes it
impossible to integrate with our software. An intruder could still alter our hardware, but this is much
harder.

FreeBSD has recently begun supporting full disk encryption, which means that even a kernel is
encrypted—only the small boot loader partition is not. Unfortunately, in the current implementation, we
do not support a key file, so we can only use a passphrase to encrypt our disk. Thanks to YubiKey, which
can be detected as a simple keyboard, we can use it to provide a passphrase during boot. Using it in that
way, we lose one factor. We can mitigate this by using a passphrase which we provide using a normal
keyboard and a second part of the password which is much longer and is kept on YubiKey. In that sce-
nario, somebody not only would need to see what passphrase we are typing, but also would need to
steal our YubiKey.

To make the device to meet these
requirements, we program the second
slot of Yubico in static mode:

Thanks to the append-cr flag we do not have to press Enter after each use of this slot. In the case
of GELI, we would first provide our passphrase and then the second factor using YubiKey. By default,
there is no output when typing a password in GELI. In our case, we would see that the passphrase was
submitted because the factor provided by YubiKey would contain trailing ENTER.

Integration with FreeBSD Login
Yubico provides a PAM module which can be deployed within existing authentication systems. The module
can be found in the security/pam_yubico package and it works in two modes: online and offline
authentication. The former provides a second factor based on one-time passwords, but it delegates authen-
tication to Yubico cloud services. Therefore, it requires a stable internet connection. On the other hand, it is
very easy to setup a newly bought Yubico as a second authentication factor for your system account.

Every device has a secret on its first slot preset by the manufacturer. The slot works in so-called Yubico
OTP mode. Each password generated from this slot consists of a static 12-character part and the remain-
ing dynamic part. The static part never changes and it can be considered the device’s public identifier.
These factory defaults are already known by Yubico cloud services. All that we need to do is to retrieve
the API token and the user ID using a special form available on Yubico’s website.

The second mode of operation is more practical. It requires a YubiKey to work in a challenge-response
mode when the device can be issued to sign data sent by a user application. In this particular example,
our application is the Yubico PAM module.

First, we have to program the device to work in a challenge-response mode. In the example below, we
will use the first slot:

We want the device to wait for a user confirmation of each operation which is guaranteed by the
chal-btn-trig flag. The user has to press the key located on the YubiKey while logging into the
system, unfortunately twice. The first press is needed to check whether the challenge located in a file
matches the device response. If so, the second press generates a new challenge-response pair and
stores it for later use. We need to generate an initial challenge which is stored by default in
~/.yubico directory:

$ ykpamcfg -1 -v

The next step is to configure the PAM module. We want to use the second factor together with a
static password to protect any login to our computer. For this purpose, we will modify the
/etc/pam.d/system file so the “auth” section will look as follows:

auth
auth required pam_unix.so no_warn try_first_pass
auth required /usr/local/lib/security/pam_yubico.so mode=challenge-response

10 FreeBSD Journal

$ ykpersonalize -2 -o static-flag -o append-cr

$ ykpersonalize -1 -o chal-resp -o chal-btn-trig -o chal-hmac -o hmac-lt64 -o serial-api-visible

May/June 2018 11

Now issue the sudo -s command, type the static password and press the button on the device. It
waits for a user action up to 15 seconds and an LED indicator is blinking during this time. Authentication
will fail either when the user does not take action or if YubiKey is not connected to the USB port.

Integration with SSH
Another useful application of YubiKey is strengthened remote authentication to an SSH service. A com-
monly described method utilizes the Yubico PAM module using the online mode of operation. However, a
Yubico token is compliant with OATH-HOTP standards and, therefore, it can work with any authentication
server which supports this standard. For example, Wheel Cerb AS is such a multi-factor user authentication
solution. We will use the pam_oath module which is included in the security/oath-toolkit pack-
age and does not require a connection to any external cloud service.

We need to reprogram our YubiKey to support OATH mode. Unfortunately, we have only two slots on
our device so we need to overwrite one of the previous configurations:

$ ykpersonalize -1 -o oath-hotp -o oath-hotp8 -o append-cr

We want to use 8-digit long, counter-based passwords. The output of the command should contain a
line with a key in hexadecimal form:

...
key: h:c621245c5f05eefec1d9f2960f34b865849dd074

...

Premier VPS Hosting
RootBSD has multiple datacenter locations,

and offers friendly, knowledgeable support staff.
Starting at just $20/mo you are granted access to the latest

FreeBSD, full Root Access, and Private Cloud options.

www.rootbsd.net

12 FreeBSD Journal

We need to store the user’s name and the key in the pam_oath database file on the target machine
(of course "alice" and the key should be replaced by real values):

$ echo “HOTP alice - c621245c5f05eefec1d9f2960f34b865849dd074” >> /usr/
local/etc/users.oath

The next step is to modify the sshd PAM configuration in order to enable the pam_oath module. We
can achieve this by modifying the /etc/pam.d/sshd file so the “auth” section will look as follows:

auth
…
auth required pam_unix.so no_warn try_first_pass
auth required /usr/local/lib/security/pam_oath.so usersfile=/

usr/local/etc/users.oath window=16 digits=8

We need to ensure the sshd configuration which is placed in the /etc/ssh/sshd_config file con-
tains a few options set to the appropriate values as follows:

ChallengeResponseAuthentication yes
PasswordAuthentication no
UsePAM yes

Finally, reload sshd(8) service and try to
login to the remote server typing the static
password and then using the dynamic pass-
word from the token.

Conclusion
YubiKey is a remarkable device that can be
used in a corporation or by individuals to
increase their security. This small device sup-
ports many different authentication methods
and can be used with many popular web serv-
ices as well as with programs like SSH. It also
allows us to leverage some of the imperfec-
tions of tools that do not support a 2FA. It
can be used as a second factor or to keep the
primary password. It is an interesting alterna-
tive to other solutions like mobile applications.
YubiKey also allows us to painlessly change
our passwords without the need for any mem-
orization. •

JAROSLAW ZUREK is a software developer at Wheel
Systems where he supports a project creating a privi-
leged session manager. He is interested in cryptogra-
phy, TLS, and low-level/hardware programming.

MICHAL BORYSIAK is a software developer at Wheel
Systems, where he works on centralized authentication
systems. He is fascinated by low-level operating system
concepts, networks and cybersecurity.

MARIUSZ ZABORSKI is a lead software developer at
Wheel Systems. He has been a proud owner of the
FreeBSD commit bit since 2015. Mariusz's main areas of
interest are OS security and low-level programming. At
Wheel Systems, Mariusz leads a team that is develop-
ing the most advanced solution to monitor, record and
control traffic in an IT infrastructure. In his free time, he
enjoys blogging (http://oshogbo.vexillium.org).

Write ForUs!
Contact Jim Maurer with your article ideas.
(jmaurer@freebsdjournal.com)

JOURNAL
®

