
4 FreeBSD Journal

S E E
T E X T
O N L Y

B Y M I C H A E L W L U C A S

Best Security Practices

W

Big wall displays showing
the dotted line where the

Bad Guys routed their traffic
through country after country!

One team, two team, red team, blue
team! It gets your heart pumping without
even needing to get up out of your chair.

hat nobody likes is doing all the things that prevent all the
exciting hacker stuff. Applying patches and locking down all

those fiddly little bits feels like wasting time. In reality, though,
best practices save time. The energy you spend applying patches is

trivial next to the energy you’ll spend trying to scrape an intruder out
of your servers. Best system administration practices, like diet and

exercise, can feel flat-out tedious. Also, much like diet and
exercise, few people can agree on what best practices are.

Hackers! Theft!

BSP

We’re talking security.
Everybody likes security.

Mary/June 2018 5

Here I present what I consider essential securi-
ty practices for every host. In FreeBSD’s case, fig-
uring out what best practices are is complicated
by decades of obsolete documentation. FreeBSD 12
obsoletes much of what was best practice in FreeBSD
6, and what we did with FreeBSD 1.1.2 is utterly
irrelevant.

Your organization might impose additional prac-
tices. If you have a centralized logging server, an
LDAP server for authentication, or an SSH certificate
authority, use them. If you have an automation sys-
tem such as Ansible, have it implement these prac-
tices across your environment.

Always start by listening to FreeBSD. It’ll tell you
most of what you need to know.

Status Mails
FreeBSD schedules automatic system checks every
day, week, and month, using the periodic(8) com-
mand. The results of these commands get emailed to
the system administrator. The simplest way to find
out what’s going on with a host is to regularly read
those status mails.

The emails are sent to the root account on the
local host. Many programs can email root when they
go belly-up. It’s best to go into /etc/aliases and redi-
rect root’s email to an address that someone actually
reads, as shown here.

root: flunkies@mwl.io

Save the file and run newaliases(8).
Most sysadmins I know have a long-standing goal

of reducing the amount of email they receive. Yes,
adding these messages impedes that goal. These
emails have been collaboratively developed to con-
tain the absolute minimum information necessary,
however. You need notices such as “this package has
a security vulnerability” and “your FreeBSD version
just passed end-of-life and maybe you should
upgrade while you can.”

Additionally, you can adjust the checks these jobs
perform. Maybe you have a rock-solid monitoring
system that always catches when a partition or pool
is about to fill, and you don’t want the emails to
contain filesystem utilization information. Disable and
enable checks via /etc/periodic.conf. Like
many other FreeBSD services, you’ll find default set-
tings in /etc/defaults/periodic.conf. By
setting the task name to YES or NO in
periodic.conf, you’ll toggle that check.

Take a look through /etc/defaults/period-
ic.conf and the actual scripts under
/etc/periodic. Some of the disabled jobs will be
useful in your environment.

If you have a large staff, reading server sta-
tus mails is a wonderful task to delegate to

junior sysadmins. When I’m the senior sysad-
min, I’ll usually set the host to send all root mail

to an alias on my mail server. That alias redirects all
email to myself and my Trusted Lieutenant—or,
rather, a lieutenant who thinks she’s worthy of trust
and swears she’ll meticulously read every email and
either resolve any issues or bring them to my atten-
tion. I can perform spot checks on those emails,
watching for a host to report a problem. When my
trusted lieutenant neither resolves nor reports the
issue, I demote her to Lieutenant Formerly Known As
Trusted and the real fun begins.

The pre-scheduled periodic(8) jobs don’t
cover everything you might need to schedule, how-
ever.

Update Checks
Once upon a time, the only way to apply security
patches to FreeBSD was to build the operating system
from source. Knowledgeable folks could avoid build-
ing the whole tree by building only the affected pro-
grams, but that’s highly questionable with software
like OpenSSL that has its grubby little fingers dang
near everywhere. But the worst bit about applying
security patches by hand wasn’t building them; it was
knowing that a patch was available and determining if
the underlying problem affected your hosts.

The freebsd-update(8) program vastly simplifies
security patches for the vast majority of FreeBSD
users. Security patches and upgrades require only
simple commands. Best of all, freebsd-update(8) tells
you if a patch is available. Add a job to check for
security updates to root’s crontab.

1 1 * * * freebsd-update cron

This tells freebsd-update(8) to wait for a random
number of minutes then query FreeBSD’s update
servers for any new security patches for your version
of FreeBSD. If it finds any new patches, it downloads
them and emails root. Your Trusted Lieutenant has
another chance to notice messages from your hosts.

When you notice a new set of security patches, go
check out the corresponding security advisory. There’s
always one. See how badly this problem affects you.
Do you need to apply patches over lunch, or will they
wait for after hours or maintenance day? Or do you
need to re-issue all your TLS security certificates
because of OpenSSL… again?

Once you know how bad the problem is, and how
immediately it affects you, you can apply those
patches. Verify that you have a good backup. If
you’re using ZFS, create a new boot environment so

BSP

you can easily revert. (While I’ve never had a
freebsd-update(8) security patch go badly, I’ve
been a sysadmin too long to not prepare a fall-
back path) Now you can apply your patches.

freebsd-update install

You’ll be prompted to reboot. Depending on
what gets patched, freebsd-update might tell you
to reboot and run freebsd-install once more.
Follow its instructions.

The freebsd-update(8) check also notifies you if
your FreeBSD version has passed its End Of Life
date. That makes it vitally important you upgrade
to a newer version. Freebsd-update(8) makes
updating to a newer release easy, but it won’t do
any downloads for you. It doesn’t know which
release you’ll want to upgrade to. Are you going
to run FreeBSD 11.5, or are you jumping to 12.1?
That’s a decision only you can make. Pick a version
and use the -r flag to specify it.

freebsd-update upgrade -r 12.1-RELEASE

Annoyingly, the release name must appear in
the same case as the official release name. It’s not
12.1-release, it’s 12.1-RELEASE. You’ll be prompt-
ed to compare a few critical configuration files
that you’ve changed on your host. Decide if you
want to keep or discard the changes. The program
downloads the updates, and then you’ll need to
install them with another freebsd-update
install command. For a full version upgrade,
you’ll certainly need to reboot and run the install
command again.

If you’re building FreeBSD from source rather
than using freebsd-update, that’s fine. I’m sure
you have your reasons, and they might—might—
even be valid ones. Just make sure that your envi-
ronment is set up to distribute the upgrade across
your network as quickly as possible. That’s most
often done by building on
one centralized host and
letting the other servers
NFS mount /usr/src and
/usr/obj for speedy
installations.

Once you’ve upgraded
the operating system, con-
sider your packages.

Packages
FreeBSD’s base system is
deliberately small, com-
pared to many other open
source operating systems.
It doesn’t ship with a

modern graphical environment, an SQL database,
or even a web server. All those functions come
from add-on packages. While those packages are
easy to install and maintain, they require the same
devoted, loving attention the base system needs.

FreeBSD’s packaging system includes a tool to
check for known security vulnerabilities in installed
packages, pkg-audit(8). This tool gets run every
day as part of the daily status checks, but those
runs only provide the name of packages that have
known security vulnerabilities. Running the tool on
its own highlights the package problems. You can
have your automation system run pkg-audit(8)
across all of your hosts to get a master list of all
vulnerable packages.

pkg audit
python27-2.7.14_1 is vulnerable:
python 2.7 -- multiple vulnerabilities
CVE: CVE-2018-1061
CVE: CVE-2018-1060
CVE: CVE-2017-9233
CVE: CVE-2016-9063
CVE: CVE-2016-4472
CVE: CVE-2016-0718
CVE: CVE-2012-0876
WWW: https://vuxml.FreeBSD.org/
freebsd/8719b935-8bae-41ad-92ba-
3c826f651219.html
…
5 problem(s) in the installed packages found.

We have a few packages with security prob-
lems. The CVE identifiers let you look up the exact
flaw, what it affects. You could use this informa-
tion to determine if any of these vulnerabilities can
affect your environment. The easiest fix is to see if
FreeBSD has an upgraded package available with
pkg upgrade. If you’re using ZFS, create a boot
environment before upgrading your packages. This
will let you easily revert any changes.

6 FreeBSD Journal

pkg upgrade
Updating FreeBSD repository catalogue...
Fetching meta.txz: 100% 944 B 0.9kB/s 00:01
Fetching packagesite.txz: 100% 6 MiB 6.4MB/s 00:01
…
The following 2 package(s) will be affected (of 0 checked):

Installed packages to be UPGRADED:
perl5: 5.26.1 -> 5.26.2
freetype2: 2.8_1 -> 2.8_2

Number of packages to be upgraded: 2

14 MiB to be downloaded.

Proceed with this action? [y/N]: y

May/June 2018 7

The package manager will download and
install the latest packages. You can then run
pkg audit again to see which packages remain.
In this case, python27 shows up again. The pack-
age upgrade remediated the installed Perl and
freetype2, but didn’t change python. And looking
at all those CVE numbers in python27, that’s a
pretty long list of problems.

How can one program have so many problems?
Because nobody’s fixed them, obviously.
Maybe the problem comes from the original

package. Python 2.7 might have known security
problems, but the python authors might have
decided that eliminating those problems would
unacceptably change how python behaves. In some
software, the software author might dispute that a
security issue needs fixing. In any case, it’s better
that you know the problem exists.

Perhaps the software vendor has created a fix, but
the FreeBSD port isn’t yet updated. Maybe the port
is updated, but the new package isn’t yet built and
distributed to the mirrors. Maybe the fixed package
is available in the bleeding edge packages, but not in
the quarterly branch deployed by default.

If the problem affects you critically, look to see
where the fix is held up. Open source software is
community-maintained. This is your chance to con-
tribute. If you can’t fix the problem, you can at
least determine how long it will be until a fix is
available. If it won’t ever be fixed, you can make
plans to mitigate your risks.

Packet Filtering
I strongly recommend running a packet filter on all
hosts. Even a simple packet filter that says “all out-
bound connections are allowed, but only these
inbound connections” will help protect you against
rogue software. Don’t rely on your network firewall
to block all malicious traffic; if someone weasels
their way into the network, they might attack your
host from another machine. While FreeBSD has
three different firewall suites, my informal surveys
show that 80% of FreeBSD sysadmins prefer pf(4),
so we’ll use that.

Start by creating a simple firewall configuration
in /etc/pf.conf.

This ruleset disallows all inbound traffic but per-
mits outgoing traffic. We then allow connections
on four TCP ports: 22 (SSH), 53 (DNS), 80 (HTTP)
and 443 (HTTPS). We allow a few more UDP ports:
53 for DNS, and 33433 through 33626 for tracer-
oute. Finally, we allow inbound ICMP.

If your host doesn’t run DNS, remove the TCP
and UDP references to port 53. If you don’t have a
web server, you can remove TCP ports 80 and 443.
You probably want traceroute and ping, for diag-
nostic purposes if nothing else.

Enable PF with the /etc/rc.conf entry
pf_enable=YES, then start it with
service pf start.

I could go on at length about unprivileged users
and securelevels and vulnerability assessment, but
you’ll find extensive information about all of these
in any systems administration book. If you start
your FreeBSD systems here, though, you’ll have a
good start. •

ext_if="em0"
set skip on lo
scrub in
block in
pass out
pass in on $ext_if proto tcp to ($ext_if) port {22, 53, 80, 443}
pass in on $ext_if proto udp to ($ext_if) port {53, 33433 >< 33626}
pass in on $ext_if proto icmp

MICHAEL W LUCAS is the author of
several books on FreeBSD, including Absolute
FreeBSD and the FreeBSD Mastery series.
Learn more at www.michaelwlucas.com.

By Jarosław Zurek,
Michał Borysiak,

and Mariusz Zaborski

8 FreeBSD Journal

S E E
T E X T
O N L Y

Do you create complicated passwords?
How hard is it for you to remember the new ones?

Do you keep your credentials on a Post-it note near
your monitor? If you do any or all of the above, we

have an alternative that will help protect your
privacy and make it easier for you to stay safe.

YubiKey Overview

Alot has been said about YubiKey, which is produced by Yubico. It has become one of
the most popular solutions offering a secure 2FA — Two-Factor Authentication. It also
may be used as a secondary password factor U2F — Universal 2nd Factor. It offers

strong authentication and is easy to use.
YubiKey is a USB-like device. In the simplest use-case, when we connect YubiKey to a

computer, it is detected as a keyboard in the operating system and the device allows us to
store up to two passwords. Depending on how long we press the button on the device, it
will release the first or the second password. In this simple use-case, we can use it to inte-
grate with almost any web service.

In this scenario, we can use it to remember our passwords and forget about using
Post-it notes. For more advanced users, this scenario can help protect their data.
Rotating passwords is difficult, as it is problematic to remember new ones. Now, we can
rotate our most often used key (for example access to our password vault) and not have
to bother remembering it (although it is always a good idea to have backup). While
keeping our primary password on the YubiKey device, we can still use other devices
(such as a mobile phone) as a second factor.

PASSWORDS

Protect Your Secrets

May/June 2018 9

Authentication Methods
Besides storing static passwords, some models of YubiKey also support more sophisticated authentication
methods such as:
• One-time Password (OTP) – authentication mechanism, generating passwords that can be used once.
• OATH – HOTP – event token, generating 6- or 8-character OTP passwords using the HOTP algorithm.
• OATH – TOTP – 6- or 8-character OTP passwords, the TOTP algorithm is based on time function.
• PIV (Personal Identity and Verification)-Compatible Smart Card – enables the use of private RSA/ECC keys
stored on YubiKey for signing and decryption. This mode works like a smart card.
• OpenPGP – encryption and signing using RSA and ECC private key, stored on YubiKey, using standard suits
like PKCS #11.
• U2F – an open authentication standard that enables secure access to any number of online services. Only
one single device, without additional drivers, or client software.

It is possible to use two-step verification with web services like Google, Facebook, GitHub, and Hotmail.
This is useful because even if attackers steal the first factor of authentication (username and password to the
account), they are not able to log in. We can ensure this by using a YubiKey device which supports U2F. Of
course, we must enable two step verification on a chosen web service.

Models
There are a few different types of YubiKeys that can be used for various purposes. The most basic version is
the FIDO U2F Security Key. It supports static password authentication and may be integrated with the most
popular applications like Gmail and Facebook using U2F. It does not support methods like HOTP or
OpenPGP. This device is the most affordable product they offer at the time of writing this article and the cost
is US $18.

More advanced models, known as the
YubiKey 4 generation (which also
includes YubiKey 4C, YubiKey Nano and
YubiKey 4C Nano) already support basic
cryptographic methods like OTP or OATH
modes. Differences are in device size and
USB port type. Their use is definitely
wider than the previously mentioned
model and some examples will be
explained in detail later in the article.

Another available option is YubiKey
NEO. An additional feature supported by
this model is communication via NFC.
For example, after tapping the device, a
smartphone can read OTP emitted by
YubiKey. A summary of differences can
be seen in Table 1.

FreeBSD Tooling
YubiKeys come with a set of open source tools that are necessary to integrate YubiKey in a Unix-like environ-
ment. For FreeBSD users most of these tools are available in the ports collection as well as in the binary
package repository. Two of the most interesting packages are security/ykpers and security/
yubico-pam. The security/ykpers package contains several command line tools to manage YubiKey:
• ykpersonalize(1) —is necessary to program YubiKey; it handles configuration options for almost
every YubiKey feature.
• ykinfo(1) —is useful for retrieval of basic information about YubiKey.
• ykchalresp(1) —allows for signing data using YubiKey in a challenge-response mode of operation.

GELI Full Disk Encryption
GELI is the most popular disk encryption method on FreeBSD. One of the most secure ways of using GELI
and FreeBSD is to use two-factor authentication with a passphrase and a key file. The key file is kept on a
memstick. When we boot our machine, we need to provide both factors. After decrypting our device, we

FIDO U2F YubiKey 4
Security Key generation YubiKey NEO

OTP � �

OATH – HOTP � �

OATH – TOTP �* �

OpenPGP � �

U2F � � �

Secure Element � � �

Smart Card (PIV) � �

Supports NFC
communication �

Table 1: Comparisons of different YubiKey models

*Requires additional app (lack of built-in Real Time Clock).

remove the memstick with the file. In that way, if somebody steals our computer they will also need to
see our password and steal our memstick. If we want to be even more paranoid, we can keep a kernel
and a key file on the memstick. In that way, even if somebody has access to our computer, it makes it
impossible to integrate with our software. An intruder could still alter our hardware, but this is much
harder.

FreeBSD has recently begun supporting full disk encryption, which means that even a kernel is
encrypted—only the small boot loader partition is not. Unfortunately, in the current implementation, we
do not support a key file, so we can only use a passphrase to encrypt our disk. Thanks to YubiKey, which
can be detected as a simple keyboard, we can use it to provide a passphrase during boot. Using it in that
way, we lose one factor. We can mitigate this by using a passphrase which we provide using a normal
keyboard and a second part of the password which is much longer and is kept on YubiKey. In that sce-
nario, somebody not only would need to see what passphrase we are typing, but also would need to
steal our YubiKey.

To make the device to meet these
requirements, we program the second
slot of Yubico in static mode:

Thanks to the append-cr flag we do not have to press Enter after each use of this slot. In the case
of GELI, we would first provide our passphrase and then the second factor using YubiKey. By default,
there is no output when typing a password in GELI. In our case, we would see that the passphrase was
submitted because the factor provided by YubiKey would contain trailing ENTER.

Integration with FreeBSD Login
Yubico provides a PAM module which can be deployed within existing authentication systems. The module
can be found in the security/pam_yubico package and it works in two modes: online and offline
authentication. The former provides a second factor based on one-time passwords, but it delegates authen-
tication to Yubico cloud services. Therefore, it requires a stable internet connection. On the other hand, it is
very easy to setup a newly bought Yubico as a second authentication factor for your system account.

Every device has a secret on its first slot preset by the manufacturer. The slot works in so-called Yubico
OTP mode. Each password generated from this slot consists of a static 12-character part and the remain-
ing dynamic part. The static part never changes and it can be considered the device’s public identifier.
These factory defaults are already known by Yubico cloud services. All that we need to do is to retrieve
the API token and the user ID using a special form available on Yubico’s website.

The second mode of operation is more practical. It requires a YubiKey to work in a challenge-response
mode when the device can be issued to sign data sent by a user application. In this particular example,
our application is the Yubico PAM module.

First, we have to program the device to work in a challenge-response mode. In the example below, we
will use the first slot:

We want the device to wait for a user confirmation of each operation which is guaranteed by the
chal-btn-trig flag. The user has to press the key located on the YubiKey while logging into the
system, unfortunately twice. The first press is needed to check whether the challenge located in a file
matches the device response. If so, the second press generates a new challenge-response pair and
stores it for later use. We need to generate an initial challenge which is stored by default in
~/.yubico directory:

$ ykpamcfg -1 -v

The next step is to configure the PAM module. We want to use the second factor together with a
static password to protect any login to our computer. For this purpose, we will modify the
/etc/pam.d/system file so the “auth” section will look as follows:

auth
auth required pam_unix.so no_warn try_first_pass
auth required /usr/local/lib/security/pam_yubico.so mode=challenge-response

10 FreeBSD Journal

$ ykpersonalize -2 -o static-flag -o append-cr

$ ykpersonalize -1 -o chal-resp -o chal-btn-trig -o chal-hmac -o hmac-lt64 -o serial-api-visible

May/June 2018 11

Now issue the sudo -s command, type the static password and press the button on the device. It
waits for a user action up to 15 seconds and an LED indicator is blinking during this time. Authentication
will fail either when the user does not take action or if YubiKey is not connected to the USB port.

Integration with SSH
Another useful application of YubiKey is strengthened remote authentication to an SSH service. A com-
monly described method utilizes the Yubico PAM module using the online mode of operation. However, a
Yubico token is compliant with OATH-HOTP standards and, therefore, it can work with any authentication
server which supports this standard. For example, Wheel Cerb AS is such a multi-factor user authentication
solution. We will use the pam_oath module which is included in the security/oath-toolkit pack-
age and does not require a connection to any external cloud service.

We need to reprogram our YubiKey to support OATH mode. Unfortunately, we have only two slots on
our device so we need to overwrite one of the previous configurations:

$ ykpersonalize -1 -o oath-hotp -o oath-hotp8 -o append-cr

We want to use 8-digit long, counter-based passwords. The output of the command should contain a
line with a key in hexadecimal form:

...
key: h:c621245c5f05eefec1d9f2960f34b865849dd074

...

Premier VPS Hosting
RootBSD has multiple datacenter locations,

and offers friendly, knowledgeable support staff.
Starting at just $20/mo you are granted access to the latest

FreeBSD, full Root Access, and Private Cloud options.

www.rootbsd.net

12 FreeBSD Journal

We need to store the user’s name and the key in the pam_oath database file on the target machine
(of course "alice" and the key should be replaced by real values):

$ echo “HOTP alice - c621245c5f05eefec1d9f2960f34b865849dd074” >> /usr/
local/etc/users.oath

The next step is to modify the sshd PAM configuration in order to enable the pam_oath module. We
can achieve this by modifying the /etc/pam.d/sshd file so the “auth” section will look as follows:

auth
…
auth required pam_unix.so no_warn try_first_pass
auth required /usr/local/lib/security/pam_oath.so usersfile=/

usr/local/etc/users.oath window=16 digits=8

We need to ensure the sshd configuration which is placed in the /etc/ssh/sshd_config file con-
tains a few options set to the appropriate values as follows:

ChallengeResponseAuthentication yes
PasswordAuthentication no
UsePAM yes

Finally, reload sshd(8) service and try to
login to the remote server typing the static
password and then using the dynamic pass-
word from the token.

Conclusion
YubiKey is a remarkable device that can be
used in a corporation or by individuals to
increase their security. This small device sup-
ports many different authentication methods
and can be used with many popular web serv-
ices as well as with programs like SSH. It also
allows us to leverage some of the imperfec-
tions of tools that do not support a 2FA. It
can be used as a second factor or to keep the
primary password. It is an interesting alterna-
tive to other solutions like mobile applications.
YubiKey also allows us to painlessly change
our passwords without the need for any mem-
orization. •

JAROSLAW ZUREK is a software developer at Wheel
Systems where he supports a project creating a privi-
leged session manager. He is interested in cryptogra-
phy, TLS, and low-level/hardware programming.

MICHAL BORYSIAK is a software developer at Wheel
Systems, where he works on centralized authentication
systems. He is fascinated by low-level operating system
concepts, networks and cybersecurity.

MARIUSZ ZABORSKI is a lead software developer at
Wheel Systems. He has been a proud owner of the
FreeBSD commit bit since 2015. Mariusz's main areas of
interest are OS security and low-level programming. At
Wheel Systems, Mariusz leads a team that is develop-
ing the most advanced solution to monitor, record and
control traffic in an IT infrastructure. In his free time, he
enjoys blogging (http://oshogbo.vexillium.org).

Write ForUs!
Contact Jim Maurer with your article ideas.
(jmaurer@freebsdjournal.com)

JOURNAL
®

