
svnUPDATE

20 FreeBSD Journal

S E E
T E X T
O N L Y

by Steven Kreuzer

Add Lua as a scripting language to
/boot/loader— https://svnweb.freebsd.org/
changeset/base/329166

liblua glues the lua runtime into the boot loader.
It implements all the runtime routines that lua

expects. In addition, it has a few standard 'C'
headers that neuter various aspects of the LUA
build that are too specific to lua to be in libsa.
Many refinements from the original code improve
implementation and the number of included lua
libraries. Use int64_t for lua_Number. Have
"/boot/lua" be the default module path.
Numerous cleanups from the original GSoC proj-
ect, including hacking libsa, allow lua to be built
with only one change outside luaconf.h. Add the
final bit of lua glue to bring in liblua, and plug into
the multiple interpreter framework, previously
committed.

Presently, this is an experimental option. One
must opt-in to using this by defining
WITH_LOADER_LUA and WITHOUT_FORTH. It's
been lightly tested, so keep a backup copy of your
old loader handy.

The menu code, coming in the next commit,
hasn't been exhaustively tested. A LUA bootloader
is 60k larger than a FORTH loader, which is 80k
larger than a no-interpreter loader. Subtle changes
in size may tip things past some subtle limit (the
binary is ~430k now when built with LUA). A
future version may offer coexistence.

Bump FreeBSD version to 1200058 to mark the
milestone.

Add the Lua scripts from the Lua-bootloader
SoC— https://svnweb.freebsd.org/changeset/
base/329167

These are the .lua files from Pedro Souza's 2014
Summer of Code project. Rui Paulo, Pedro

Arthur, and Wojciech A. Koszek also contributed.

Defer kernel/module loading until boot or
menu escape— https://svnweb.freebsd.org/
changeset/base/329576

Loading the kernel and modules can be really
slow. Loading before the menu draws and every

time one changes kernel/boot environment is even
more painful. Defer loading until we either boot,
auto-boot, or escape to loader prompt. We still
need to deal with configuration changes as the
boot environment changes, but this is generally
much quicker. This commit strips all ELF loading
out of config.load/config.reload so that these are
purely for configuration. config.loadelf has been
created to deal with kernel/module loads.
Unloading logic has been ripped out, as we won't
need to deal with it in the menu anymore.

Create a "carousel" menu entry type—
https://svnweb.freebsd.org/changeset/base/329367

This is a precursor to boot environment support
in lualoader. Create a new menu item type,

"carousel_entry", that generally provides a call-
back to get the list of items, a carousel_id, for
storing the current value and the standard
name/func functions of an entry. The difference
between this and a normal menu item, functional-
ly, is that selecting a carousel item will automati-
cally rotate through available items and wrap back
at the beginning when the list is exhausted.

Re-work menu skipping bits—
https://svnweb.freebsd.org/changeset/base/330020

This is motivated by a desire to reduce heap
usage if the menu is being skipped. Currently,

the menu module must be loaded regardless of
whether it is being skipped or not, which adds a
cool ~50-100KB worth of memory usage. Move
the menu skip logic out to core (and remove a
debug print), then check in loader.lua if we should

In 2014, as a Google Summer of Code project, FreeBSD developers and students worked to
design and implement a modular interface for the loader script interpreter—decoupling the
interpreter from the loader. After four long years, it has finally been committed! FreeBSD 12
will ship with a brand-new bootloader based around Lua, which will finally make obsolete the
faithful Forth loader that most say overstayed its welcome years ago. While most installments
of this column tend to highlight development happening across all subsystems, I thought for
this installment I would just focus on the bootloader, since I don't think I have ever seen so
much activity happening on such a low-level component of the system.

March/April 2018 21

be skipping the menu and avoid loading the
menu module entirely. This keeps our memory
usage below ~115KB for a boot with the menu
stripped.

Fix module_path handling with multiple
kernels— https://svnweb.freebsd.org/changeset/
base/329497

Once we've successfully loaded a kernel, we
add its directory to module_path. If we

switch kernels with the kernel selector, we again
prepend the kernel directory to the current mod-
ule_path and end up with multiple kernel paths,
potentially with mismatched kernel/modules
added to module_path. Fix it by caching mod-
ule_path at load() time and using the cached ver-
sion whenever we load a new kernel.

Invalidate the screen from menu perspective
upon menu exits— https://svnweb.freebsd.org/
changeset/base/329986

In the common case, this will effectively do noth-
ing as the menu will get redrawn as we leave

submenus, regardless of whether the screen has
been marked invalid or not. However, upon
escape to the loader prompt, one could do either
of the following to reenter the menu system:

— Method 1
require('menu').run()

— Method 2
require('menu').process(menu.default)

With method 1, the menu will get redrawn
anyway, as we do this before autoboot checking
upon entry. With method 2, however, the menu
will not be redrawn without this invalidation.

Both methods are acceptable for reentering
the menu system, although the latter method in
the local module for processing new and interest-
ing menus is more expected.

STEVEN KREUZER is a FreeBSD Developer
and Unix Systems Administrator with an
interest in retro-computing and air-cooled
Volkswagens. He lives in Queens, New
York, with his wife, daughter, and dog.

BSDTW—2017

By Brooks Davis, Robert Norton, Jonathan Woodruff & Robert N. M. Watson

Choose ebook, print, or combo.
You’ll learn to:
• Use boot environment, make the riskiest sysadmin

tasks boring.
• Delegate filesystem privileges to users.
• Containerize ZFS datasets with jails.
• Quickly and efficiently replicate data between machines.
• Split layers off of mirrors.
• Optimize ZFS block storage.
• Handle large storage arrays.
• Select caching strategies to improve performance.
• Manage next-generation storage hardware.
• Identify and remove bottlenecks.
• Build screaming fast database storage.
• Dive deep into pools, metaslabs, and more!

ZFS experts make their servers
Now you can too. Get a copy of.....

WHETHER YOU MANAGE A SINGLE SMALL SERVER OR INTERNATIONAL DATACENTERS,
SIMPLIFY YOUR STORAGE WITH FREEBSD MASTERY: ADVANCED ZFS. GET IT TODAY!

Link to:

