
18 FreeBSD Journal

S E E
T E X T
O N L Y

T R A C I N G
ifconfig Commands

from Userspace to
Device Driver

B Y F A R H A N K H A N

I am currently working on expanding

FreeBSD’s rtwn(4) wireless device driver.

I have the basics down, such as initialization,

powering on and off, loading the firmware,

etc., and am now trying to fill in specific

ifconfig(8) methods. This requires an

in-depth knowledge of how ifconfig(8)

commands are ultimately delivered to the

driver. I could not find concise documentation

that outlines each stage of the process,

so I wrote one!

Jan/Feb 2018 19

This article is specific to FreeBSD 12.0-CURRENT, but it should apply to any future version and other
operating systems that utilize net80211(4), such as OpenBSD, NetBSD, DragonFlyBSD, and illumos.
I hope it serves to help the FreeBSD community continue to develop WiFi and other device drivers.

This is not an exhaustive guide, but it should provide you with the basic order of operations. In this exam-
ple, I walk through changing the channel on your WiFi card and placing it in monitor mode as follows:

ifconfig wlan0 channel 6 wlanmode monitor

High-level Summary
FreeBSD’s ifconfig(8) utilizes the lib80211(3) userspace library which functions as an API to popu-
late kernel data structures and issue the ioctl(2) syscall. The kernel receives the ioctl(2) syscall in a
new thread, interprets the structure, and routes the command to the appropriate stack. In our case this is
net80211(4). The kernel then creates a new queued task and terminates the thread. Later on, a different
kernel thread receives the queued task and runs the associated net80211(4) handler, which immediately
delivers execution to the device driver.

To summarize again:

Userspace: ifconfig(8) binary
Userspace: lib80211(3) library
Kernel: net80211(4) code
Kernel: taskqueue(9) to the driver
Kernel: Device Driver

Let’s begin!

Userspace: ifconfig(8)+ lib80211(3) library
Early in ifconfig(8), it opens a SOCK_DGRAM socket in /usr/src/sbin/ifconfig/ifconfig.c
as follows:

s = socket(AF_LOCAL, SOCK_DGRAM, 0).

This socket functions as the interface for userspace to kernel communication. Rather than tracing from
the if-else maze in main(), I grepped for the string “channel”, and found it in
ieee80211_cmd[]defined at the end of /usr/src/sbin/ifconfig/ifieee80211.c.

This table enumerates all ieee80211 ifconfig(8) commands. The “channel” command is defined
as follows:

DEF_CMD_ARG ("channel" set80211channel).

Note the second argument. I looked up DEF_CMD_ARG and found that it was a pre-processor macro
that defines what function is run when the user sends ifconfig(8) a command. A quick grep search
shows set80211channel is defined in /usr/src/sbin/ifconfig/ifieee80211.c. The parame-
ters are fairly easy to identify: val is the new channel number (1 through 14) and s is the socket we
opened earlier. This executes ifconfig(8)’s set80211 function whose sole purpose is to cleanly transfer
execution into the lib80211(3) library.
lib80211(3) is an 802.11 wireless network management library to formally communicate with the

kernel. It is worth noting that neither OpenBSD nor NetBSD has this library and instead opt to communicate
directly to the kernel. As mentioned, ifconfig(8)’s set80211 function calls lib80211_set80211
located in /usr/src/lib/lib80211/lib80211_ioctl.c. The lib80211_set80211 function pop-
ulates an ieee80211reqdata structure, used for user-to-kernel ieee80211 communication. In the
example below, this is the ireq variable, which contains the WiFi interface name and intended channel.

The library then calls the ioctl(2), as follows:

ioctl(s, SIOCS80211, &ireq).

This runs the syscall to formally enter kernel-space execution. In essence, ifconfig(8) is nothing more
than a fancy ioctl(2) controller. You could write your own interface configuration tool that directly calls
the ioctl(2) syscall and get the same result. Now on to the kernel!

Kernel Command Routing to net80211(4)
There are two brief explanations before we proceed: First, at a high level, the BSD kernel operates like an IP
router in that it routes execution through the kernel, populating relevant data values along the way until
the execution reaches its destination handling functions. The following explanation shows how the kernel
will identify the syscall type, determine that it is for an interface card, determine the type of interface card,
and finally queue a task for future execution.

Second, the BSD kernel utilizes a common pattern of using template methods that call a series of func-
tion pointers. The exact function pointers are conditionally populated, allowing the code to maintain a con-
sistent structure while the exact implementation may differ. It works very well, but can make tracing execu-
tion paths difficult if you are just reading the code straight through. When I had trouble, I typically used
illumos’s OpenGrok (http://src.illumos.org/source/) or dtrace(1).

Let's take a brief detour into dtrace(1). Solaris's dynamic tracing tool is imported to FreeBSD and used to
monitor a kernel or process in real time. It is useful in understanding what the operating system is doing
and saves you the trouble of using printf(3)-style debugging. I used dtrace(1) in writing this guide to identify
what the kernel was executing, function arguments, and the stack trace at any given moment. For example,
if I wanted to monitor the ifioctl function, I might run this:

dtrace -n '
> fbt:kernel:ifioctl:entry {
> self->cmd = args[1];
> stack(10);
> }
> fbt:kernel:ifioctl:return {
> printf("ifioctl(cmd=%x) = %x", self->cmd, arg1);
> exit(0);
> } '

This dtrace(1) one-line command sets up handlers for ifioctl’s entry and return probes. On entry,
dtrace(1) records the value of the second argument cmd, and displays the last 10 elements of the stack. On
return, it displays the function argument and return value. I used variations of this basic command template
throughout my research, especially when I was confused in tracing the code or could not identify a func-
tion’s arguments.

The first non-assembly function is the amd64-specific syscall handler, amd64_syscall, that receives a
new thread structure and identifies the type as a syscall. In our case, it is for an ioctl(2), so
amd64_syscall calls sys_ioctl located in /usr/src/sys/kern/sys_generic.c.

On FreeBSD, sys_ioctl performs input validation and formats the data it receives. It then calls
kern_ioctl, which determines what type of file descriptor the ioctl(2) is working with, the capabili-
ties for the socket, and assigns the function pointer fo_ioctl accordingly. (NetBSD and OpenBSD do not
have kern_ioctl. For them, sys_ioctl directly calls fo_ioctl.) Our file descriptor corresponds to an
interface, so FreeBSD assigns fo_ioctl as a function pointer to ifioctl, which handles interface-layer
ioctl(2) calls. This function is located in /usr/src/sys/net/if.c.

The function ifioctl is responsible for all sorts of interfaces: Ethernet, WiFi, epair(4), etc. ifioctl
starts with a switch-condition based on the cmd argument. This checks if the command can be handled by

20 FreeBSD Journal

Jan/Feb 2018 21

net80211(4) without needing to jump into the driver, such as creating a clone interface or updating the
MTU. A quick dtrace(2) probe reveals that the cmd argument is SIOCS80211, which fails to meet any
switch-conditions, so execution jumps to the bottom. The function continues and calls ifp->if_ioctl,
which, in the case of WiFi, is a function pointer to ieee80211_ioctl, located in
/usr/src/sys/net80211/ieee80211_ioctl.c.
ieee80211_ioctl contains another switch-case. With cmd set to SIOCS80211, execution matches the

associated case and calls ieee80211_ioctl_set80211, located in
/usr/src/sys/net80211/ieee80211_ioctl.c.
ieee80211_ioctl_set80211 has yet another switch-case with a few dozen conditions. The

ireq->i_type was set to IEEE80211_IOC_CHANNEL by lib80211(3) so it will match the associated
case and execute ieee80211_ioctl_setchannel. The gist of this function is to determine if the input
channel is valid, or if the kernel needs to set any other values. It concludes by calling setcurchan, which
does two things. First, it determines the validity of the channel and if any additional values must be set.
Second, it runs ieee80211_runtask, which makes the final thread-level call to taskqueue_enqueue.

The Kernel: Task Execution
taskqueue_enqueue is not an ieee80211(9) function, but it’s worth a brief review. In a nutshell, the
taskqueue(9) framework allows you to defer code execution into the future. For example, if you want
to delay execution for 3 seconds, running the kernel equivalent of sleep(3) would cause the entire CPU
core to halt for 3 seconds. This is unacceptable. Instead, taskqueue(9) allows you to specify a function
that the kernel will execute at a later time.

In our channel change example, the scheduled function is the net80211(4) function update_chan-
nel, located in /usr/src/sys/net80211/ieee80211_proto.c. When taskqueue(9) reaches our
enqueued task, it will first initiate the update_channel handler to receive the task and immediately hand
over execution to the driver code pointed to by ic_set_channel.

To summarize, up to this point, the kernel has routed the command to the network stack, which routed
to the WiFi-specific stack, where it was scheduled as a task for future execution. When taskqueue(9)
reaches the task, it immediately jumps to the driver-specific code. At last, we entered the driver!

The Driver
From here on, the code is driver-specific and I will not get into the implementation details, as each device
has its own unique channel changing process. I am currently working on rtwn(9), which is located in
/usr/src/sys/dev/rtwn. NetBSD and OpenBSD separate USB and PCI drivers, so the same driver is
located in /usr/src/sys/dev/usb/if_urtwn.c and /usr/src/sys/dev/pci/if_rtwn.c,
respectively.

Operating systems need a standard way to communicate with device drivers. Typically, the driver provides
a structure containing a series of function pointers to driver-specific code, and the kernel uses this as an
entry point into the driver code. In the case of WiFi, this structure is ieee80211com, located in
/usr/src/sys/net80211/ieee80211_var.h. By convention, all BSD-derived systems use the vari-
able name ic to handle ieee80211(9) methods.

In our case, we are changing the channel, so the operating system will call ic->ic_set_channel,
which is a pointer to the driver’s channel changing function. For rtwn(9), this is rtwn_set_channel,
which itself is a function pointer to r92c_set_chan, r92e_set_chan or r12a_set_chan, depend-
ing on which specific device you are using.

The specifics of rtwn(9) are outside of the scope of this article, but it is worth discussing how the driv-
er communicates to the hardware. The softc structure is a struct that maintains the device’s runtime vari-
ables, states, and method implementations. By convention, each driver’s softc instance is called sc. You
might wonder why you need yet another method function pointer when ieee80211com provides that.
This is because ieee80211com’s methods point to command handlers, not necessarily to device routines.
Device drivers may have their own internal methods that are not part of ieee80211com. Also, the
softcstructure can handle minor variations between device versions. rtwn(9)’s softc struct is

22 FreeBSD Journal

called rtwn_softc and is located in /usr/src/sys/dev/rtwn/if_rtwnvar.h.
How does a driver send data to the driver? rtwn(9) uses the rtwn_write_[1|2|4] and

rtwn_read_[1|2|4] methods to actually send or receive a byte, word, or double-word.
rtwn_read_1 is a pointer to the sc_read_1 method. The driver assigns the sc_read class of func-
tions at initialization to either the rtwn_usb_read_* and rtwn_usb_write_* methods or
rtwn_pci_read_* and rtwn_pci_write_*. The aforementioned classes of functions are abstrac-
tions to the PCI and USB buses. In the case of PCI, these function calls will eventually call
bus_space_read_* and bus_space_write_*, which are part of the PCI subsystem. In the case of
USB, the driver will call usbd_do_request_flags, which is part of the USB subsystem. A well-written
driver should abstract these bus-specific layers and provide you with clean read and write methods for
various data sizes. As an aside, FreeBSD is long overdue for an SDIO stack, and this is a major impedi-
ment for the Raspberry Pi, Chromebooks, and other embedded devices. But I digress…

As an example, the driver uses the following line to enable hardware:

interrupts.rtwn_write_4(sc, R92C_HIMR, R92C_INT_ENABLE).

This will write the value R92C_INT_ENABLE to the R92C_HIMR device register.

Conclusion
To summarize this journey, the ifconfig(8) opens a socket and passes it to the lib80211(3)
library. lib80211(3) sends a userspace-to-kernel command structure to the kernel with an
ioctl(2) syscall. The syscall triggers the kernel to run a new kernel thread. From here, the kernel
determines that the ioctl(2) command corresponds to a network card, specifies the type as a WiFi
card, and then identifies the exact command type. The ieee80211(9) tells taskqueue to create a
new task to change the WiFi channel, and then terminates. Later on, the taskqueue(9) runs the
ieee80211(9) task handler that transfers execution to the driver. The driver communicates to the
hardware using the PCI or USB buses to change the WiFi channel.

In my opinion, FreeBSD is technically superior to Linux, but is still lacking in several critical areas, and
among those is hardware support. I hope this article prompts the FreeBSD community to continue to
produce high-quality, faster device drivers. •

FARHAN KHAN is a 2012 graduate from George Mason

University in Applied Information Technology Security.

He currently works as a Senior Security Engineer for McAfee

Security. He considers himself an IPv6 evangelist, avid pro-

grammer, and hopes to contribute to the FreeBSD Project.

Write ForUs!
Contact Jim Maurer with your article ideas.
(jmaurer@freebsdjournal.com)

T TM

JOURNAL

