FreeBSD Journal

11s an advanced file-
em, but it is also one of
e most observable. The
‘ombination of static and
dynamic DTrace probes, statistics,
and tooling built into ZFS means it

is one of the easiest filesystems to do

performance analysis on. This article covers

checking the health of the pool, measuring load and perform-

ance in real time, and using historical statistics to detect changes

in health, performance, or behavior. Then provides a brief overview

of other tools to consider for monitoring a system in even more detail.

First up, is the pool healthy?

* zpool Status

The zpool status command is the first place to look to assess the general health of the pool. It prints a
visual representation of the layout of the devices in the pool, and the status of each device. In addition to
the status of each device, there are also columns of counters, showing the number of read, write, and
checksum errors that have been detected on each device.

Each device can be in one of these states:

® Online — The device is healthy and working as
expected.

e Offline — An administrator has marked this
device as offline.

e Degraded — The device is functioning at a
reduced capacity. Usually only applies to a top level
vdev, like RAID-Z or a Mirror; indicates that one or
more member disks has failed and the system is
using parity to remain operational.

e Faulted — The device or pool is no longer work-
ing because too much data is missing. If a device
or pool loses more devices than it has redundancy,
files may be inaccessible or lost. Try to reconnect
the missing devices to continue.

e Removed — An underlying device has been

removed. This can happen when a disk fails and the
device is removed by the operating system, or when
a disk is physically disconnected by an operator.

e Missing — ZFS was unable to find, or unable to
open, the device. Try to reconnect the device, or
solve the error that prevented ZFS from opening
the device (such as it being in use by another
process). The zpool online command is useful to
bring a device back online.

e Replacing — A device is being replaced. When
replacing a device that is online, a new top-level
vdev called replacing-X (where X is an increment-
ing integer) will be created; it is effectively a mirror
with the new and old devices as members. Data is
copied from the old device to the new device.
Once the operation is complete, the old device will

be detached from the pool, and the new device will become a regular member of the vdev.

e Spare — The device is missing or otherwise degraded and has been temporarily replaced with a spare.

e Resilvering — This device was temporarily offline or has suffered some corruption and the missing or damaged
data is being replaced from available parity.

zpool status

pool: media

state: ONLINE

scan: resilvered 25.7M in 0hOm with 0 errors on Sat Oct 14 14:40:18 2017
config:

NAME STATE READ WRITE CKSUM
media ONLINE 0 0 0
raidz2-0 ONLINE 0 0 0
gpt/s5-Z5009MV3 ONLINE 0 0 0
gpt/s3-2500278C ONLINE 0 0 0
gpt/s2-Z500ZKL8 ONLINE 0 0 0
gpt/s4-Z503E2PR ONLINE 0 0 0
gpt/s1-Z1F3134B ONLINE 0 0 0
gpt/s6-Z500XXPA ONLINE 0 0 0

errors: No known data errors

If one or more problems are detected with the pool, a summary will be displayed at the end of the status
output. Running zpool status -v <optional poolname> will extend this summary, and provide a list of each
file that has suffered damage, allowing those individual files to be restored from backups.

zpool status -v zroot
pool: zroot
state: DEGRADED
status: One or more devices has experienced an error resulting in data
corruption. Applications may be affected.
action: Restore the file in question 1if possible. Otherwise restore the
entire pool from backup.
see: http://illumos.org/msg/ZFS-8000-8A
scan: resilvered 1.43T 1in 79h21m with 3 errors on Sat Oct 14 01:18:56 2017

config:
NAME STATE READ WRITE CKSUM
zroot DEGRADED 113 0 0
raidz1-o0 DEGRADED 113 0 0
adaOp3 ONLINE 0 0 0
adalp3 ONLINE (0] 0 0
ada2p3 ONLINE 113 0 0
replacing-3 OFFLINE 0 0 0
17161359962879308376 OFFLINE 0 0 0
ada3p3 ONLINE 0 0 0

errors: Permanent errors have been detected in the following files:

/usr/src/contrib/binutils/ld/emultempl/armcoff.em
Jusr/src/contrib/binutils/ld/emultempl/armelf.em
/usr/src/contrib/binutils/ld/emultempl/astring.sed
/usr/src/contrib/binutils/opcodes/ChangelLog-2006

Nov/Dec 2017 | §

The zpool status command also tracks the progress of scrub and resilver operations, including an aver-
age speed and a completion estimate. The speed estimate is an average for the entire operation, which is
much slower for the first few %, so consider waiting until 5%—-10% completion before taking the speed
and ETA seriously. If the system is rebooted or otherwise interrupted during the resilver operation, the esti-
mate may be stuck at 1 byte per second for a long time.

zpool status -v zroot
pool: zroot
state: ONLINE
scan: scrub 1in progress since Wed Oct 18 22:27:19 2017
20.7G scanned out of 32.1G at 401M/s, 0hOm to go
0 repaired, 64.50% done

config:
NAME STATE READ WRITE CKSUM
zroot ONLINE 0 0 0
mirror-0 ONLINE 0 0 0
gpt/i1-14450DAFF1A8 ONLINE 0 0 0
gpt/i12-154310EB96A5 ONLINE 0 0 0
S.MAR.T.

Disks also provide some insight into the state of their health using the SMART (Self-Monitoring, Analysis
and Reporting Technology) protocol. For spinning disks, the greatest indicators of impending failure are
usually the number of pending and reallocated sectors. Each manufacturer provides a different set of sta-
tistics, so it is difficult to create hard and fast rules about what means the disk is underperforming or indi-

ROOIBSD

Premier VPS Hosting

RootBSD has multiple datacenter locations,
and offers friendly, knowledgeable support staff.
Starting at just $20/mo you are granted access to the latest
FreeBSD, full Root Access, and Private Cloud options.

. @ www.rootbsd.net

6 | FreeBSD Journal

cating potential failure. To make the most sense out of the various counters in the SMART status, you

need a reference point, what those counters looked like in the past, how much and how fast they have
changed. Another condition to watch out for is disks that have a high and rapidly growing cycle count. If
the disk is going to sleep and waking up every few seconds, this will put tremendous wear on the disk. The
disk may need to be given specific commands to adjust the idle timeout, or need updated firmware to fix
the problem. SAS disks generally provide fewer counters but are more consistent across drive models and
manufacturers.

smartctl -a /dev/adal
=== START OF INFORMATION SECTION ===

Model Family: Seagate Barracuda 7200.14 (AF)
Device Model: ST2000DMOO1-1CH164
Serial Number: Z1E1DWN4

LU WWN Device Id: 5 000c50 04e53cf8d
Firmware Version: CC43

User Capacity: 2,000,398,934,016 bytes [2.00 TB]

Sector Sizes: 512 bytes logical, 4096 bytes physical

Rotation Rate: 7200 rpm

Form Factor: 3.5 1dinches

Device 1s: In smartctl database [for details use: -P show]

ATA Version 1is: ATA8-ACS T13/1699-D revision 4

SATA Version 1is: SATA 3.0, 6.0 Gb/s (current: 3.0 Gb/s)
Local Time is: Thu Nov 30 00:56:27 2017 UTC

SMART support 1is: Available - device has SMART capability.
SMART support 1is: Enabled

SMART Attributes Data Structure revision number: 10
Vendor Specific SMART Attributes with Thresholds:

ID# ATTRIBUTE_NAME FLAG VALUE WORST THRESH TYPE UPDATED WHEN_FAILED RAW_VALUE
1 Raw_Read_Error_Rate 0Ox000f 113 099 006 Pre-fail Always = 53347512
3 Spin_Up_Time 0x0003 095 095 000 Pre-fail Always = 0
4 Start_Stop_Count 0x0032 100 100 020 Old_age Always - 9
5 Reallocated_Sector_Ct 0x0033 100 100 036 Pre-fail Always = 0
7 Seek_Error_Rate Ox000f 083 060 030 Pre-fail Always = 4510892460
9 Power_On_Hours 0x0032 087 087 000 Old_age Always ol 12060
10 Spin_Retry_Count 0x0013 100 100 097 Pre-fail Always = 0
12 Power_Cycle_Count 0x0032 100 100 020 Old_age Always - 9
183 Runtime_Bad_Block 0x0032 100 100 000 Old_age Always = 0
184 End-to-End_Error 0x0032 100 100 099 Old_age Always - 0
187 Reported_Uncorrect 0x0032 100 100 000 Old_age Always - 0
188 Command_Timeout 0x0032 100 100 000 Old_age Always - 000
189 High_Fly_Writes 0x003a 099 099 000 Old_age Always = 1
190 Airflow_Temperature_Cel 0x0022 074 065 045 Old_age Always = 26 (Min/Max 23/35)
191 G-Sense_Error_Rate 0x0032 100 100 000 Old_age Always = 0]
192 Power-0ff_Retract_Count 0x0032 100 100 000 Old_age Always = 9
193 Load_Cycle_Count 0x0032 100 100 000 Old_age Always - 269
194 Temperature_Celsius 0x0022 026 040 000 Old_age Always = 26 (0 19 0 0 0)
197 Current_Pending_Sector 0x0012 100 100 000 Old_age Always . 24
198 Offline_Uncorrectable 0x0010 100 100 000 Old_age Offline B 24
199 UDMA_CRC_Error_Count 0x003e 200 200 000 Old_age Always = 0
240 Head_Flying_Hours 0x0000 100 253 000 Old_age Offline - 12059h+46m+50.704s
241 Total_LBAs_Written Ox0000 100 253 000 Old_age Offline = 67220217075
242 Total_LBAs_Read 0x0000 100 253 000 Old_age Offline B 7368543577

SMART Error Log Version: 1
No Errors Logged

Nov/Dec 2017 | 7

SATA SSDs usually have rather different SMART values since many of the regular values do not apply.
Most SSDs will provide pairs of counters for the total amount of reads and writes that have been complet-
ed, allowing the administrator to track the wear lifetime of the device. Some SSDs even provide a drive
lifetime statistic, as a %, either counting up or down toward the end of the useful life of the device.
Sometimes the “raw value” has little meaning, and you need to look at the ‘value’ and ‘thresh(old)’ vol-
umes instead. This SSD has relatively little wear:

#smartctl -a /dev/adal
=== START OF INFORMATION SECTION ===

Model Family:
Device Model:
Serial Number:

LU WWN Device Id:
Firmware Version:

User Capacity:
Sector Sizes:
Rotation Rate:
Form Factor:
Device is:

ATA Version is:
SATA Version 1is:
Local Time is:

SMART support 1is:
SMART support is:

Intel 730 and DC S35x0/3610/3700 Series SSDs
INTEL SSDSC2BA200G4

BTHV515103FW200MGN

5 5cd2e4 04b7d7610

G2010110

200,049,647,616 bytes [200 GB]

512 bytes logical, 4096 bytes physical

Solid State Device

2.5 1inches

In smartctl database [for details use: -P show]
ACS-2 T13/2015-D revision 3

SATA 2.6, 6.0 Gb/s (current: 6.0 Gb/s)

Thu Nov 30 00:58:57 2017 UTC

Available - device has SMART capability.
Enabled

SMART Attributes Data Structure revision number: 1
Vendor Specific SMART Attributes with Thresholds:

ID# ATTRIBUTE_NAME FLAG VALUE WORST THRESH TYPE UPDATED WHEN_FAILED RAW_VALUE

5 Reallocated_Sector_Ct 0x0032 100 100 000 Old_age Always = 0
9 Power_On_Hours 0x0032 100 100 000 Old_age Always - 18834
12 Power_Cycle_Count 0x0032 100 100 000 Old_age Always = 35
170 Available_Reservd_Space 0x0033 100 100 010 Pre-fail Always . 0
171 Program_Fail_Count 0x0032 100 100 000 Old_age Always = 0
172 Erase_Fail_Count 0x0032 100 100 000 Old_age Always = 0
174 Unsafe_Shutdown_Count 0x0032 100 100 000 Old_age Always - 20
175 Power_Loss_Cap_Test 0x0033 100 100 010 Pre-fail Always - 5290 (71 4859)
183 SATA_Downshift_Count 0x0032 100 100 000 Old_age Always = 0
184 End-to-End_Error 0x0033 100 100 090 Pre-fail Always = 0
187 Reported_Uncorrect 0x0032 100 100 000 Old_age Always = 0
190 Temperature_Case 0x0022 064 060 000 Old_age Always - 36 (Min/Max 31/40)
192 Unsafe_Shutdown_Count 0x0032 100 100 000 Old_age Always - 20
194 Temperature_Internal 0x0022 100 100 000 Old_age Always = 36
197 Current_Pending_Sector 0x0012 100 100 000 Old_age Always - 0
199 CRC_Error_Count 0x003e 100 100 000 Old_age Always - 0
225 Host_Writes_32M1iB 0x0032 100 100 000 Old_age Always - 655468
226 Workld_Media_Wear_Indic 0x0032 100 100 000 Old_age Always = 552
227 Workld_Host_Reads_Perc 0x0032 100 100 000 Old_age Always - 29
228 Workload_Minutes 0x0032 100 100 000 Old_age Always = 1129889
232 Available_Reservd_Space 0x0033 100 100 010 Pre-fail Always = 0
233 Media_Wearout_Indicator 0x0032 100 100 000 Old_age Always - 0
234 Thermal_Throttle 0x0032 100 100 000 Old_age Always = 0/0
241 Host_Writes_32M1iB 0x0032 100 100 000 Old_age Always = 655468
242 Host_Reads_32MiB 0x0032 100 100 000 Old_age Always = 275081

SMART Error Log Version: 1
No Errors Logged

INTERACTIVE PERFORMANCE MONITORING

Now that it is established that the pool is healthy, it is time to look at what is happening with the pool.
These interactive monitoring tools shed light on the operations that are being performed in real time.

zpool iostat

The zpool iostat command will print data about the activity on the pool. It shows the number of read and
write IOPS, as well as bytes per second. If no other parameters are given, it will display one status line for
each pool. If a pool name is given, it will show only that pool. If an integer is given, it will run continuously,
and print new stats every X seconds, where X is that integer. You'll notice the natural cycle of ZFS, where
there are a minimal number of synchronous writes as requested by applications; then every 5 seconds all
other buffered asynchronous writes are flushed out to disk. If you change the integer to a longer interval, it
will provide an average over that time span.

zpool iostat sestore5 1

capacity operations bandwidth
pool alloc free read write read write
sestore5 46.0T 84.5T 99 189 14.8M 4.89M
sestore5 46.0T 84.5T 9 208 9.81M 1.09M
sestore5 46.0T 84.5T 0 0 31.9K 0
sestore5 46.0T 84.5T 103 0 12.9M 0
sestore5 46.0T 84.5T 64 0 7.79M 0
sestore5 46.0T 84.5T 38 570 4.74M 16.4M
sestore5 46.0T 84.5T 34 152 5.23M 826K
sestore5 46.0T 84.5T 11 0 278K 0
sestore5 46.0T 84.5T 6 (0] 247K 0
sestore5 46.0T 84.5T 146 0 16.4M 0
sestore5 46.0T 84.5T 31 977 1.46M 8.85M
sestore5 46.0T 84.5T 3 0 487K 3.99K
sestore5 46.0T 84.5T 35 0 4.12M 0
sestore5 46.0T 84.5T 1 0 2.00M 0
sestore5 46.0T 84.5T 12 0 63.9K 0
sestore5 46.0T 84.5T 244 650 978K 8.25M
sestore5 46.0T 84.5T 5 0 235K 0
sestore5 46.0T 84.5T 0 0 0 0

zpool iostat sestore5 30

capacity operations bandwidth
pool alloc free read write read write
sestore5 46.0T 84.5T 95 179 14.0M 4.93M
sestore5 46.0T 84.5T 22 163 5.43M 4.76M
sestore5 46.0T 84.5T 3 161 2.04M 5.96M
sestore5 46.0T 84.5T 17 264 3.71M 3.96M
sestore5 46.0T 84.5T 13 279 3.54M 4.01M
sestore5 46.0T 84.5T 21 416 4.87TM 4.80M
sestore5 46.0T 84.5T 19 152 4.62M 6.89M
sestore5 46.0T 84.5T 36 166 6.21M 5.26M
sestore5 46.0T 84.5T 15 125 4.19M 2.66M
sestore5 46.0T 84.5T 16 136 3.54M 4.54M

Nov/Dec 2017 |9

top -mio
One of the fastest ways to figure out which application is causing all of the I/O is to use top. On
FreeBSD top has a -m flag to change the mode. In 10 mode, instead of tracking applications by CPU and
memory usage, it tracks reads, writes, and other IO operations. This can help you determine which
application is consuming all of the 10 resources. To break things down further, see the section on the
DTrace Toolkit.

top -m io -o read
PID USERNAME VCSW IVCSW READ WRITE FAULT TOTAL PERCENT COMMAND
35765 www 931 85 48 0 0 48 10.50% nginx
35766 www 410 66 32 0 0 32 7.00% nginx
4994 root 66139 3971 10 0 0 10 2.19% nfsd
35248 www 1113 39 6 143 0] 149 32.60% nginx
3975 mysql 205 28 1 145 0 146 31.95% mysqld
zfs-stats

On Solaris, ZFS uses a system called kstat to publish various statistics about what is happening internally
in ZFS. On FreeBSD those stats are published via the sysctl interface. The sysutils/zfs-stats pack-
age can summarize those statistics in a more human-readable way, logically grouping them together.

zfs-stats -A

ARC Summary: (HEALTHY)

Memory Throttle Count:

ARC Misc:

Deleted:
Recycle Misses:
Mutex Misses:
Evict Skips:

ARC Size:
Target Size: (Adaptive)

Min Size (Hard Limit):
Max Size (High Water):

ARC Size Breakdown:
Recently Used Cache Size:

Frequently Used Cache

ARC Hash Breakdown:

Elements Max:
Elements Current:
Collisions:

Chain Max:
Chains:

Size:

99.87%
100.00%
12.50%
8:1

98.18%
1.82%

75.55%

92.50m

14.31k
6.79k

31.92
31.96
4.00

31.96

31.38
594.11

690.77k
521.90k
5.89m

4

8.13k

GiB
GiB
GiB
GiB

GiB
MiB

10

FreeBSD Journal

MEMORY THROTTLE

The more important indicator of problems is the “Memory Throttle Count.” This is the number of times
that the ZFS ARC has had to reduce its memory usage because of demands elsewhere in the system. You
might consider setting the maximum size of the ARC (vfs.zfs.arc_max) to a value that makes ZFS
coexist with your other workloads better. The output also shows a breakdown of the ARC usage by MRU
(Most Recently Used) and MFU (Most Frequently Used). This gives you some insight into how the cache is
adapting to the workload.

zfs-mon

The sysutils/zfs-stats package also includes a second tool, zfs-mon, which looks at how a subset
of the kstats are changing over time. This can provide useful insight into how the requests are being bro-
ken down, and how the various caching layers in ZFS are being used. The stats break down the perform-
ance of the ARC, L2ARC, the filesystem prefetch, and the device prefetching code. It also breaks down
data vs metadata operations. By default, ZFS limits the amount of cache available for metadata to 25% of
the max ARC size. If the total storage capacity is very large—and most operations impact only the metada-
ta of the files, not the content—increasing the amount of the ARC that can be used for metadata can
actually increase performance, since otherwise the ARC may be 3/4s full of content that will not be refer-
enced again before it is replaced with other content.

zfs-mon -a
ZFS real-time cache activity monitor
Seconds elapsed: 329

Cache hits and misses:
1s 10s 60s tot

ARC hits: 130 305 591 2875

ARC misses: 38 113 62 142

ARC demand data hits: 95 236 539 2642

ARC demand data misses: 2 51 29 18

ARC demand metadata hits: 34 46 36 207
ARC demand metadata misses: 0 36 17 90
ARC prefetch data hits: 1 17 13 23

ARC prefetch data misses: 36 26 16 33
ARC prefetch metadata hits: 0 6 3 2
ARC prefetch metadata misses: 0 1 0 0
ZFETCH hits: 28 69 50 189

ZFETCH misses: 18639 17450 18029 23507

VDEV prefetch hits: 0 3 il 5

VDEV prefetch misses: 0 39 12 18

Cache efficiency percentage:
10s 60s tot
ARC: 72.97 90.51 95.29
ARC demand data: 82.23 94.89 99.32
ARC demand metadata: 56.10 67.92 69.70
ARC prefetch data: 39.53 44.83 41.07
ARC prefetch metadata: 85.71 100.00 100.00
ZFETCH: 0.39 0.28 0.80
VDEV prefetch: 7.14 7.69 21.74

As you can see, the ARC cache hit ratio varies quite a lot over short intervals, but in the 5-1/2 minutes
this tool ran, the overall average was a 95.29% hit ratio.

Nov/Dec 2017

11

GEOM STATS

gstat is an interactive tool that pulls statistics from the FreeBSD GEOM subsystem. It can be a useful win-
dow into what is happening with the underlying storage. For each GEOM object (there may be many that
represent a single device, or a partition or other subdivision of a device), the depth of the queue, total
operations per second, read operations per second, read kilobytes per second, milliseconds per read opera-
tion, and all the same again for write operations are printed. Then a synthesized ‘% busy’ number is calcu-
lated, a best guess only, and can often be seen exceeding 100%. There are additional operation types
(delete for TRIM/UNMAP etc., and flush) that can be shown with additional flags. If the sum of the read
and write I0OPS per second is less than the value in the ops/s column, it is likely that these other operations
are happening as well.

gstat -f da..\?$

L(g) ops/s r/s kBps ms/r w/s kBps ms/w %busy Name

0 0 0 o 0.0 0 © 0.0 0.0| ada®
0 0 0 © 0.0 0 © 0.0 0.0| adal
5 733 0 © 0.0 733 62244 10.5 88.8| ada2
7 883 0 © 0.0 883 62443 7.1 85.9] ada3
7 961 0 © 0.0 961 62539 5.2 61.6| ada4
0 960 0 © 0.0 960 63425 8.6 73.4| ada5
7 1047 0 © 0.0 1047 65006 5.5 79.1| da®
10 1078 0 © 0.0 1078 60751 5.9 81.4| dal
DTRACE TOOLKIT

DTrace is a very powerful tool designed to allow you to safely inspect and debug the running system, while
having very minimal impact on performance when not debugging. DTrace scripts vary in complexity, from
simple one liners to interactive tools.

A simple example of a DTrace one liner:

dtrace -n 'syscall::read:entry { @bytes[execname] = sum(arg2); }’

12

This creates an aggregation of the 3rd argument (they are numbered from 0) of the read system call,
by the calling application's name. Run this for a few seconds, then hit control+c to stop it. It will then print
out a list of every application that called read, and the total number of bytes that were read. Now it is
obvious which application was causing all of the reads from disk.

You don’t have to write your own DTrace scripts; the OpenDTrace project maintains a collection of cross-
platform scripts that you can download and use. These serve as a great starting point that can be modified
to answer the questions you want to ask; https:/github.com/opendtrace/toolkit

To look at how much data is being written in each transaction group, or how long each transaction
group is taking to sync to disk, check out these DTrace examples by Adam Leventhal:
http://dtrace.org/blogs/ahl/2014/08/31/openzfs-tuning/

CONTINUOUS PERFORNMANCE MONITORING

Understanding the cause of performance problems first requires having something to compare the new
measurements and observations against. Is the current level of operations per second typical? Or is it much
higher or lower than expected. In order to make sense of the cache hit ratio, you need to know what it is
when the system is NOT having problems. In order to have this information, and to be able to make sense
of it, you need to be continuously recording the metrics that you will want to compare the current state of
the system against. Collecting, storing, and graphing these metrics in a useful way is the key to being able
to quickly diagnose issues and detect problems early.

Disks can be very ungentlemanly when they fail. Rather than loudly dying and going offline completely,
they often misbehave. One of the first signs that a disk is beginning to fail can be greatly increased read

FreeBSD Journal

and write latencies. Consumer grade disks often retry internally many times before returning a read error.
The operating system might then helpfully ask the drive to retry a few more times, each of those repeated
commands resulting in a series of additional internal retries. Because of this, operating systems will often
have rather high timeouts while waiting for commands to complete, with defaults on the order of 30 sec-
onds per command and 5 retries. A single failed read can thus hold up the entire system for 2-1/2 minutes.

ZFS KSTATS

ZFS presents an impressive number of stats and counters via the kstat interface. On FreeBSD, this is cur-
rently exposed via the kstats.zfs sysctl mibs.

One of the advantages of ZFS is the ARC (Adaptive Replacement Cache), which provides better cache
hit ratios than a standard LRU (Least Recently Used) cache. Looking at the various stats about the ARC can
provide insight into what is happening with a system.

® kstat.zfs.misc.arcstats.c_max — The target maximum size of the ARC.

® kstat.zfs.misc.arcstats.c_min — The target minimum size of the ARC. The ARC will not
shrink below this size, although it can be adjusted with the vfs.zfs.arc_min sysctl.

e kstat.zfs.misc.arcstats.size — The current size of the ARC; if this is less than the maximum,
your system has either not had enough activity to fill the ARC, or memory pressure from other processes
has caused the ARC to shrink.

® kstat.zfs.misc.arcstats.c — The current target size of the ARC. If the current size of the ARC
is less than this value, the ARC will try to grow.

e kstat.zfs.misc.arcstats.p — How much of the ARC is to be used for the MRU list; the remain-
der is the target for the MFU list. This value will adjust dynamically based on workload. A lower value sug-
gests frequent access to the same blocks, where a higher value suggests a more varied workload.

® kstat.zfs.misc.arcstats.arc _meta_used — The amount of the ARC used to store metadata
rather than user data. If this value has reached vfs.zfs.arc_meta limit (which defaults to 25% of
vEs.zfs.arc_max), then consider raising or lowering the fraction of the ARC used for metadata.
Caching more metadata will increase the speed of directory scans and other operations, at the cost of
decreasing the amount of user data that can be cached.

SNMP

net-snmpd provides a number of useful counters like total IOPS per device and bytes read and written.
These can be used to create graphs to provide some historical perspective when looking for performance
problems. Is the IOPS load twice what it normally is? That might be your problem. If the number of IOPS is
down, but the workload is higher, something
might be causing one or more devices to per-
form suboptimally.

OTHER TOOLS

ALLAN JUDE is VP of operati
at ScaleEngine Inc., a global
and Video Streaming Content

There are many different solutions for monitor-
ing, measuring, and recording statistics from a
system. Some you might wish to investigate
include:

e Zabbix — An advanced monitoring suite with
some predefined probes for ZFS.

e Collectd — A metrics collection daemon that
can be used with a number of different back-
ends.

e Grafana — A graphing and analytics tool for
time series data that can make sense of met-
rics gathered by applications such as collectd.

e OSQuery — An operating system instrumen-
tation framework for analyzing the live and
historical metrics of a system using a familiar
structured query language. @

Michael W Lucas.

Distribution Network, where he
makes extensive use of ZFS

on FreeBSD. Allan is a FreeBSD src
and doc committer, and was elect-
ed to the FreeBSD core team in
summer 2016. He is also the
host of the weekly video
podcast BSDNow.tv (with
Benedict Reuschling),
and coauthor of
FreeBSD Mastery: ZFS
and FreeBSD Mastery:
Advanced ZFS with

Nov/Dec 2017

