
4 FreeBSD Journal

in health, performance, or behavior. Then provides a brief overview
of other tools to consider for monitoring a system in even more detail.
First up, is the pool healthy?

S E E
T E X T
O N L Y

ZFS is an advanced file-
system, but it is also one of
the most observable. The
combination of static and
dynamic DTrace probes, statistics,
and tooling built into ZFS means it
is one of the easiest filesystems to do
performance analysis on. This article covers
checking the health of the pool, measuring load and perform-
ance in real time, and using historical statistics to detect changes

ZFSBY ALLAN JUDE

M o n i t o r i n g

HEALTH CHECKING • zpool Status
The zpool status command is the first place to look to assess the general health of the pool. It prints a
visual representation of the layout of the devices in the pool, and the status of each device. In addition to
the status of each device, there are also columns of counters, showing the number of read, write, and
checksum errors that have been detected on each device.

Each device can be in one of these states:
• Online — The device is healthy and working as
expected.
• Offline — An administrator has marked this
device as offline.
• Degraded — The device is functioning at a
reduced capacity. Usually only applies to a top level
vdev, like RAID-Z or a Mirror; indicates that one or
more member disks has failed and the system is
using parity to remain operational.
• Faulted — The device or pool is no longer work-
ing because too much data is missing. If a device
or pool loses more devices than it has redundancy,
files may be inaccessible or lost. Try to reconnect
the missing devices to continue.
• Removed — An underlying device has been

removed. This can happen when a disk fails and the
device is removed by the operating system, or when
a disk is physically disconnected by an operator.
• Missing — ZFS was unable to find, or unable to
open, the device. Try to reconnect the device, or
solve the error that prevented ZFS from opening
the device (such as it being in use by another
process). The zpool online command is useful to
bring a device back online.
• Replacing — A device is being replaced. When
replacing a device that is online, a new top-level
vdev called replacing-X (where X is an increment-
ing integer) will be created; it is effectively a mirror
with the new and old devices as members. Data is
copied from the old device to the new device.
Once the operation is complete, the old device will

Nov/Dec 2017 5

be detached from the pool, and the new device will become a regular member of the vdev.
• Spare — The device is missing or otherwise degraded and has been temporarily replaced with a spare.
• Resilvering — This device was temporarily offline or has suffered some corruption and the missing or damaged
data is being replaced from available parity.

If one or more problems are detected with the pool, a summary will be displayed at the end of the status
output. Running zpool status -v <optional poolname> will extend this summary, and provide a list of each
file that has suffered damage, allowing those individual files to be restored from backups.

6 FreeBSD Journal

The zpool status command also tracks the progress of scrub and resilver operations, including an aver-
age speed and a completion estimate. The speed estimate is an average for the entire operation, which is
much slower for the first few %, so consider waiting until 5%–10% completion before taking the speed
and ETA seriously. If the system is rebooted or otherwise interrupted during the resilver operation, the esti-
mate may be stuck at 1 byte per second for a long time.

S.M.A.R.T.
Disks also provide some insight into the state of their health using the SMART (Self-Monitoring, Analysis
and Reporting Technology) protocol. For spinning disks, the greatest indicators of impending failure are
usually the number of pending and reallocated sectors. Each manufacturer provides a different set of sta-
tistics, so it is difficult to create hard and fast rules about what means the disk is underperforming or indi-

Premier VPS Hosting

www.rootbsd.net

RootBSD has multiple datacenter locations,
and offers friendly, knowledgeable support staff.

Starting at just $20/mo you are granted access to the latest
FreeBSD, full Root Access, and Private Cloud options.

Nov/Dec 2017 7

cating potential failure. To make the most sense out of the various counters in the SMART status, you
need a reference point, what those counters looked like in the past, how much and how fast they have
changed. Another condition to watch out for is disks that have a high and rapidly growing cycle count. If
the disk is going to sleep and waking up every few seconds, this will put tremendous wear on the disk. The
disk may need to be given specific commands to adjust the idle timeout, or need updated firmware to fix
the problem. SAS disks generally provide fewer counters but are more consistent across drive models and
manufacturers.

SATA SSDs usually have rather different SMART values since many of the regular values do not apply.
Most SSDs will provide pairs of counters for the total amount of reads and writes that have been complet-
ed, allowing the administrator to track the wear lifetime of the device. Some SSDs even provide a drive
lifetime statistic, as a %, either counting up or down toward the end of the useful life of the device.
Sometimes the “raw value” has little meaning, and you need to look at the ‘value’ and ‘thresh(old)’ vol-
umes instead. This SSD has relatively little wear:

Nov/Dec 2017 9

INTERACTIVE PERFORMANCE MONITORING
Now that it is established that the pool is healthy, it is time to look at what is happening with the pool.
These interactive monitoring tools shed light on the operations that are being performed in real time.

zpool iostat
The zpool iostat command will print data about the activity on the pool. It shows the number of read and
write IOPS, as well as bytes per second. If no other parameters are given, it will display one status line for
each pool. If a pool name is given, it will show only that pool. If an integer is given, it will run continuously,
and print new stats every X seconds, where X is that integer. You’ll notice the natural cycle of ZFS, where
there are a minimal number of synchronous writes as requested by applications; then every 5 seconds all
other buffered asynchronous writes are flushed out to disk. If you change the integer to a longer interval, it
will provide an average over that time span.

10 FreeBSD Journal

top -m io
One of the fastest ways to figure out which application is causing all of the I/O is to use top. On
FreeBSD top has a -m flag to change the mode. In IO mode, instead of tracking applications by CPU and
memory usage, it tracks reads, writes, and other IO operations. This can help you determine which
application is consuming all of the IO resources. To break things down further, see the section on the
DTrace Toolkit.

zfs-stats
On Solaris, ZFS uses a system called kstat to publish various statistics about what is happening internally
in ZFS. On FreeBSD those stats are published via the sysctl interface. The sysutils/zfs-stats pack-
age can summarize those statistics in a more human-readable way, logically grouping them together.

Nov/Dec 2017 11

MEMORY THROTTLE
The more important indicator of problems is the “Memory Throttle Count.” This is the number of times
that the ZFS ARC has had to reduce its memory usage because of demands elsewhere in the system. You
might consider setting the maximum size of the ARC (vfs.zfs.arc_max) to a value that makes ZFS
coexist with your other workloads better. The output also shows a breakdown of the ARC usage by MRU
(Most Recently Used) and MFU (Most Frequently Used). This gives you some insight into how the cache is
adapting to the workload.

zfs-mon
The sysutils/zfs-stats package also includes a second tool, zfs-mon, which looks at how a subset
of the kstats are changing over time. This can provide useful insight into how the requests are being bro-
ken down, and how the various caching layers in ZFS are being used. The stats break down the perform-
ance of the ARC, L2ARC, the filesystem prefetch, and the device prefetching code. It also breaks down
data vs metadata operations. By default, ZFS limits the amount of cache available for metadata to 25% of
the max ARC size. If the total storage capacity is very large—and most operations impact only the metada-
ta of the files, not the content—increasing the amount of the ARC that can be used for metadata can
actually increase performance, since otherwise the ARC may be 3/4s full of content that will not be refer-
enced again before it is replaced with other content.

As you can see, the ARC cache hit ratio varies quite a lot over short intervals, but in the 5-1/2 minutes
this tool ran, the overall average was a 95.29% hit ratio.

12 FreeBSD Journal

GEOM STATS
gstat is an interactive tool that pulls statistics from the FreeBSD GEOM subsystem. It can be a useful win-
dow into what is happening with the underlying storage. For each GEOM object (there may be many that
represent a single device, or a partition or other subdivision of a device), the depth of the queue, total
operations per second, read operations per second, read kilobytes per second, milliseconds per read opera-
tion, and all the same again for write operations are printed. Then a synthesized ‘% busy’ number is calcu-
lated, a best guess only, and can often be seen exceeding 100%. There are additional operation types
(delete for TRIM/UNMAP etc., and flush) that can be shown with additional flags. If the sum of the read
and write IOPS per second is less than the value in the ops/s column, it is likely that these other operations
are happening as well.

DTRACE TOOLKIT
DTrace is a very powerful tool designed to allow you to safely inspect and debug the running system, while
having very minimal impact on performance when not debugging. DTrace scripts vary in complexity, from
simple one liners to interactive tools.

A simple example of a DTrace one liner:

This creates an aggregation of the 3rd argument (they are numbered from 0) of the read system call,
by the calling application's name. Run this for a few seconds, then hit control+c to stop it. It will then print
out a list of every application that called read, and the total number of bytes that were read. Now it is
obvious which application was causing all of the reads from disk.

You don’t have to write your own DTrace scripts; the OpenDTrace project maintains a collection of cross-
platform scripts that you can download and use. These serve as a great starting point that can be modified
to answer the questions you want to ask; https://github.com/opendtrace/toolkit

To look at how much data is being written in each transaction group, or how long each transaction
group is taking to sync to disk, check out these DTrace examples by Adam Leventhal:
http://dtrace.org/blogs/ahl/2014/08/31/openzfs-tuning/

CONTINUOUS PERFORMANCE MONITORING
Understanding the cause of performance problems first requires having something to compare the new
measurements and observations against. Is the current level of operations per second typical? Or is it much
higher or lower than expected. In order to make sense of the cache hit ratio, you need to know what it is
when the system is NOT having problems. In order to have this information, and to be able to make sense
of it, you need to be continuously recording the metrics that you will want to compare the current state of
the system against. Collecting, storing, and graphing these metrics in a useful way is the key to being able
to quickly diagnose issues and detect problems early.

Disks can be very ungentlemanly when they fail. Rather than loudly dying and going offline completely,
they often misbehave. One of the first signs that a disk is beginning to fail can be greatly increased read

and write latencies. Consumer grade disks often retry internally many times before returning a read error.
The operating system might then helpfully ask the drive to retry a few more times, each of those repeated
commands resulting in a series of additional internal retries. Because of this, operating systems will often
have rather high timeouts while waiting for commands to complete, with defaults on the order of 30 sec-
onds per command and 5 retries. A single failed read can thus hold up the entire system for 2-1/2 minutes.

ZFS KSTATS
ZFS presents an impressive number of stats and counters via the kstat interface. On FreeBSD, this is cur-
rently exposed via the kstats.zfs sysctl mibs.

One of the advantages of ZFS is the ARC (Adaptive Replacement Cache), which provides better cache
hit ratios than a standard LRU (Least Recently Used) cache. Looking at the various stats about the ARC can
provide insight into what is happening with a system.

• kstat.zfs.misc.arcstats.c_max — The target maximum size of the ARC.
• kstat.zfs.misc.arcstats.c_min — The target minimum size of the ARC. The ARC will not
shrink below this size, although it can be adjusted with the vfs.zfs.arc_min sysctl.
• kstat.zfs.misc.arcstats.size — The current size of the ARC; if this is less than the maximum,
your system has either not had enough activity to fill the ARC, or memory pressure from other processes
has caused the ARC to shrink.
• kstat.zfs.misc.arcstats.c — The current target size of the ARC. If the current size of the ARC
is less than this value, the ARC will try to grow.
• kstat.zfs.misc.arcstats.p — How much of the ARC is to be used for the MRU list; the remain-
der is the target for the MFU list. This value will adjust dynamically based on workload. A lower value sug-
gests frequent access to the same blocks, where a higher value suggests a more varied workload.
• kstat.zfs.misc.arcstats.arc_meta_used — The amount of the ARC used to store metadata
rather than user data. If this value has reached vfs.zfs.arc_meta_limit (which defaults to 25% of
vfs.zfs.arc_max), then consider raising or lowering the fraction of the ARC used for metadata.
Caching more metadata will increase the speed of directory scans and other operations, at the cost of
decreasing the amount of user data that can be cached.

SNMP
net-snmpd provides a number of useful counters like total IOPS per device and bytes read and written.
These can be used to create graphs to provide some historical perspective when looking for performance
problems. Is the IOPS load twice what it normally is? That might be your problem. If the number of IOPS is
down, but the workload is higher, something
might be causing one or more devices to per-
form suboptimally.

OTHER TOOLS
There are many different solutions for monitor-
ing, measuring, and recording statistics from a
system. Some you might wish to investigate
include:
• Zabbix — An advanced monitoring suite with
some predefined probes for ZFS.
• Collectd — A metrics collection daemon that
can be used with a number of different back-
ends.
• Grafana — A graphing and analytics tool for
time series data that can make sense of met-
rics gathered by applications such as collectd.
• OSQuery — An operating system instrumen-
tation framework for analyzing the live and
historical metrics of a system using a familiar
structured query language. •

ALLAN JUDE is VP of operations
at ScaleEngine Inc., a global HTTP
and Video Streaming Content
Distribution Network, where he
makes extensive use of ZFS
on FreeBSD. Allan is a FreeBSD src
and doc committer, and was elect-
ed to the FreeBSD core team in
summer 2016. He is also the
host of the weekly video
podcast BSDNow.tv (with
Benedict Reuschling),
and coauthor of
FreeBSD Mastery: ZFS
and FreeBSD Mastery:
Advanced ZFS with
Michael W Lucas.

Nov/Dec 2017 13

