Monitoring

BY ALLAN JUDE

ZFS is an advanced filesystem, but it is also one of the most observable. The combination of static and dynamic DTrace probes, statistics, and tooling built into ZFS means it is one of the easiest filesystems to do performance analysis on. This article covers checking the health of the pool, measuring load and performance in real time, and using historical statistics to detect changes in health, performance, or behavior. Then provides a brief overview of other tools to consider for monitoring a system in even more detail. First up, is the pool healthy?

HEALTH CHECKING • zpool Status

The zpool status command is the first place to look to assess the general health of the pool. It prints a visual representation of the layout of the devices in the pool, and the status of each device. In addition to the status of each device, there are also columns of counters, showing the number of read, write, and checksum errors that have been detected on each device.

Each device can be in one of these states:

- **Online** The device is healthy and working as expected.
- Offline An administrator has marked this device as offline.
- **Degraded** The device is functioning at a reduced capacity. Usually only applies to a top level vdev, like RAID-Z or a Mirror; indicates that one or more member disks has failed and the system is using parity to remain operational.
- Faulted The device or pool is no longer working because too much data is missing. If a device or pool loses more devices than it has redundancy, files may be inaccessible or lost. Try to reconnect the missing devices to continue.
- Removed An underlying device has been

removed. This can happen when a disk fails and the device is removed by the operating system, or when a disk is physically disconnected by an operator. • Missing — ZFS was unable to find, or unable to open, the device. Try to reconnect the device, or solve the error that prevented ZFS from opening the device (such as it being in use by another process). The zpool online command is useful to

bring a device back online.
Replacing — A device is being replaced. When replacing a device that is online, a new top-level vdev called replacing-X (where X is an incrementing integer) will be created; it is effectively a mirror with the new and old devices as members. Data is copied from the old device to the new device. Once the operation is complete, the old device will

be detached from the pool, and the new device will become a regular member of the vdev.

Spare — The device is missing or otherwise degraded and has been temporarily replaced with a spare.
Resilvering — This device was temporarily offline or has suffered some corruption and the missing or damaged data is being replaced from available parity.

# zpool	status				
pool:	media				
state:	ONLINE				
scan:	resilvered 25.7M in Oh0	m with 0 err	ors on S	at Oct 14	4 14:40:18 2017
config:					
8.548-5.					
	NAME	STATE	READ WR	ITE CKSUN	1
	media	ONLINE	Θ	0 0)
	raidz2-0	ONLINE	Θ	0 0)
	gpt/s5-Z5009MV3	ONLINE	Θ	0 0)
	gpt/s3-Z500Z78C	ONLINE	Θ	0 0)
	gpt/s2-Z500ZKL8	ONLINE	Θ	0 0)
	gpt/s4-Z503E2PR	ONLINE	Θ	0 0)
	gpt/s1-Z1F3134B	ONLINE	Θ	0 0)
	gpt/s6-Z500XXPA	ONLINE	Θ	0 0)
errors:	No known data errors				

If one or more problems are detected with the pool, a summary will be displayed at the end of the status output. Running zpool status -v <optional poolname> will extend this summary, and provide a list of each file that has suffered damage, allowing those individual files to be restored from backups.

```
# zpool status -v zroot
 pool: zroot
 state: DEGRADED
status: One or more devices has experienced an error resulting in data
        corruption. Applications may be affected.
action: Restore the file in question if possible. Otherwise restore the
       entire pool from backup.
  see: http://illumos.org/msg/ZFS-8000-8A
 scan: resilvered 1.43T in 79h21m with 3 errors on Sat Oct 14 01:18:56 2017
config:
                                            READ WRITE CKSUM
      NAME
                                  STATE
      zroot
                                  DEGRADED 113
                                                     0
                                                           0
         raidz1-0
                                  DEGRADED 113
                                                     0
                                                           0
          ada0p3
                                  ONLINE
                                              0
                                                     0
                                                           0
          ada1p3
                                  ONLINE
                                               Θ
                                                     0
                                                           0
          ada2p3
                                  ONLINE
                                             113
                                                     0
                                                           0
                                  OFFLINE
          replacing-3
                                               0
                                                     0
                                                           0
            17161359962879308376 OFFLINE
                                               0
                                                     0
                                                           0
                                  ONLINE
             ada3p3
                                               0
                                                     0
                                                           0
errors: Permanent errors have been detected in the following files:
        /usr/src/contrib/binutils/ld/emultempl/armcoff.em
        /usr/src/contrib/binutils/ld/emultempl/armelf.em
        /usr/src/contrib/binutils/ld/emultempl/astring.sed
        /usr/src/contrib/binutils/opcodes/ChangeLog-2006
```

The zpool status command also tracks the progress of scrub and resilver operations, including an average speed and a completion estimate. The speed estimate is an average for the entire operation, which is much slower for the first few %, so consider waiting until 5%–10% completion before taking the speed and ETA seriously. If the system is rebooted or otherwise interrupted during the resilver operation, the estimate may be stuck at 1 byte per second for a long time.

# zpool	status -v zroot								
pool:	zroot								
state:	ONLINE								
scan:	scrub in progress since Wed Oct 18 22:27:19 2017								
	20.7G scanned out of 32.	1G at 401M	/s, 0h	nOm to	go				
	0 repaired, 64.50% done								
config:									
	NAME	STATE	READ	WRITE	CKSUM				
	zroot	ONLINE	Θ	Θ	Θ				
	mirror-0	ONLINE	0	Θ	Θ				
	gpt/i1-14450DAFF1A8	ONLINE	Θ	0	Θ				
	gpt/i2-154310EB96A5	ONLINE	0	0	Θ				

S.M.A.R.T.

Disks also provide some insight into the state of their health using the SMART (Self-Monitoring, Analysis and Reporting Technology) protocol. For spinning disks, the greatest indicators of impending failure are usually the number of pending and reallocated sectors. Each manufacturer provides a different set of statistics, so it is difficult to create hard and fast rules about what means the disk is underperforming or indi-

RootBSD has multiple datacenter locations, and offers friendly, knowledgeable support staff. Starting at just \$20/mo you are granted access to the latest FreeBSD, full Root Access, and Private Cloud options.

cating potential failure. To make the most sense out of the various counters in the SMART status, you need a reference point, what those counters looked like in the past, how much and how fast they have changed. Another condition to watch out for is disks that have a high and rapidly growing cycle count. If the disk is going to sleep and waking up every few seconds, this will put tremendous wear on the disk. The disk may need to be given specific commands to adjust the idle timeout, or need updated firmware to fix the problem. SAS disks generally provide fewer counters but are more consistent across drive models and manufacturers.

<pre># smartctl -a /dev/ada1 === START OF INFORMATION SEC</pre>	CTTON							
			1 (AE)					
Model Family: Seagate Barracuda 7200.14 (AF) Device Model: ST2000DM001-1CH164								
Serial Number: Z1E1DWN4								
LU WWN Device Id: 5 000c50 04e53cf8d								
Firmware Version: CC43	74050100							
	934.016	bytes	[2.00 T	[B]				
Sector Sizes: 512 bytes logical, 4096 bytes physical Rotation Rate: 7200 rpm								
Form Factor: 3.5 inches	5							
Device is: In smartct	tl databa	se [fo	r detai	ils use	: -P show]			
ATA Version is: ATA8-ACS T								
SATA Version is: SATA 3.0,				0 Gb/s)			
Local Time is: Thu Nov 30	00:56:2	7 2017	UTC					
SMART support is: Available	- device	has SI	MART ca	apabili	ty.			
SMART support is: Enabled								
SMART Attributes Data Struct	cure revi	sion n	umber:	10				
Vendor Specific SMART Attrib	outes wit	h Three	sholds:	:				
ID# ATTRIBUTE_NAME	FLAG	VALUE	WORST	THRESH	TYPE	UPDATED	WHEN_FAILED	RAW_VALUE
1 Raw_Read_Error_Rate	0x000f	113	099	006	Pre-fail	Always	-	53347512
3 Spin_Up_Time	0x0003	095	095	000	Pre-fail	Always	-	0
4 Start_Stop_Count	0x0032	100	100	020	Old_age	Always	-	9
5 Reallocated_Sector_Ct	0x0033	100	100	036	Pre-fail	Always	-	Θ
7 Seek_Error_Rate	0x000f	083	060	030		Always	-	4510892460
9 Power_On_Hours	0x0032	087	087	000	Old_age	Always	-	12060
10 Spin_Retry_Count	0x0013	100	100	097		Always	-	Θ
12 Power_Cycle_Count	0x0032	100	100	020	Old_age	Always	-	9
183 Runtime_Bad_Block	0x0032	100	100	000	Old_age	Always	-	Θ
184 End-to-End_Error	0x0032	100	100	099	Old_age	Always	-	Θ
187 Reported_Uncorrect	0x0032	100	100	000	Old_age	Always	-	Θ
188 Command_Timeout	0x0032	100	100	000	Old_age	Always	-	0 0 0
189 High_Fly_Writes	0x003a	099	099	000	Old_age	Always	-	1
190 Airflow_Temperature_Cel		074	065	045	Old_age	Always	-	26 (Min/Max 23/35)
191 G-Sense_Error_Rate	0x0032	100	100	000	Old_age	Always	-	0
192 Power-Off_Retract_Count		100	100	000	Old_age	Always		9
193 Load_Cycle_Count	0x0032	100	100	000	Old_age	Always	-	269
194 Temperature_Celsius	0x0022	026	040	000	Old_age	Always	-	26 (0 19 0 0 0)
	0x0012	100	100	000	Old_age	Always	-	24
	0x0010	100	100	000	Old_age	Offline	_	24
199 UDMA_CRC_Error_Count	0x003e	200	200	000	Old_age	Always		0
240 Head_Flying_Hours	0x0000	$100\\100$	253 253	000 000	Old_age Old_age	Offline Offline	_	12059h+46m+50.704s
241 Total IBAs Writton			175		ulu dge	UTITIE	-	67220217075
241 Total_LBAs_Written 242 Total_LBAs_Read	0×0000 0×0000	100	253	000	Old_age	Offline	-	7368543577

```
SMART Error Log Version: 1
No Errors Logged
```

SATA SSDs usually have rather different SMART values since many of the regular values do not apply. Most SSDs will provide pairs of counters for the total amount of reads and writes that have been completed, allowing the administrator to track the wear lifetime of the device. Some SSDs even provide a drive lifetime statistic, as a %, either counting up or down toward the end of the useful life of the device. Sometimes the "raw value" has little meaning, and you need to look at the 'value' and 'thresh(old)' volumes instead. This SSD has relatively little wear:

#smartctl -a /dev/										
=== START OF INFOR										
Model Family:		Intel 730 and DC S35x0/3610/3700 Series SSDs								
Device Model:	INTEL SSDS		ł							
Serial Number:	BTHV515103									
LU WWN Device Id:		94b7d7610								
Firmware Version:			_							
User Capacity:	200,049,64									
Sector Sizes:	512 bytes		4096 k	pytes p	ohysica	L				
Rotation Rate:	Solid Stat									
Form Factor:	2.5 inches					_				
Device is:	In smartc				ils use:	-P show]				
	ACS-2 T13,									
SATA Version is:	SATA 2.6,		<u>.</u>		.0 Gb/s					
	Thu Nov 30									
SMART support is:		- device	has SN	1ART ca	apabili	су.				
SMART support is:	Enabled									
CMADE Attaile										
SMART Attributes [
Vendor Specific SM ID# ATTRIBUTE NAME					THRESH	TVDE	UPDATED	WHEN_FAILED		
5 Reallocated_Se		0x0032	100	100	000	Old_age	Always	-	0	
9 Power_On_Hours		0x0032	100	100	000	Old_age	Always	_	18834	
12 Power_Cycle_Co		0x0032	100	100	000	Old_age	Always		35	
170 Available_Rese			100	100	010	Pre-fail	Always	-	0	
171 Program_Fail_(0x0033	100	100	000	Old_age	Always	_	0	
172 Erase_Fail_Cou		0x0032	100	100	000	Old_age	Always	-	0	
174 Unsafe_Shutdov		0x0032	100	100	000	Old_age	Always	_	20	
175 Power_Loss_Cap		0x0032	100	100	010	Pre-fail	Always	—	5290 (71 4859)	
183 SATA_Downshift		0x0032	100	100	000	Old_age	Always	_	0	
184 End-to-End_Err		0x0033	100	100	090	Pre-fail	Always	-	0	
187 Reported_Uncor		0x0032	100	100	000	Old_age	Always	-	0	
190 Temperature_Ca		0x0022	064	060	000	Old_age	Always	-	36 (Min/Max 31/40)	
192 Unsafe_Shutdow		0x0032	100	100	000	Old_age	Always	-	20	
194 Temperature_Ir		0x0022	100	100	000	Old_age	Always	-	36	
197 Current_Pendir	ng_Sector	0x0012	100	100	000	Old_age	Always		0	
199 CRC_Error_Cour		0x003e	100	100	000	Old_age	Always		0	
225 Host_Writes_32	2MiB	0x0032	100	100	000	Old_age	Always	-	655468	
226 Workld_Media_W	Vear_Indic	0x0032	100	100	000	Old_age	Always	-	552	
227 Workld_Host_Re	eads_Perc	0x0032	100	100	000	Old_age	Always		29	
228 Workload_Minut	es	0x0032	100	100	000	Old_age	Always	-	1129889	
232 Available_Rese	ervd_Space	0x0033	100	100	010	Pre-fail	Always		Θ	
233 Media_Wearout_	Indicator	0x0032	100	100	000	Old_age	Always	-	Θ	
234 Thermal_Thrott	le	0x0032	100	100	000	Old_age	Always		0/0	
241 Host_Writes_32	2MiB	0x0032	100	100	000	Old_age	Always	-	655468	
242 Host_Reads_32M	1iB	0x0032	100	100	000	Old_age	Always	-	275081	

SMART Error Log Version: 1 No Errors Logged

INTERACTIVE PERFORMANCE MONITORING

Now that it is established that the pool is healthy, it is time to look at what is happening with the pool. These interactive monitoring tools shed light on the operations that are being performed in real time.

zpool iostat

The zpool iostat command will print data about the activity on the pool. It shows the number of read and write IOPS, as well as bytes per second. If no other parameters are given, it will display one status line for each pool. If a pool name is given, it will show only that pool. If an integer is given, it will run continuously, and print new stats every X seconds, where X is that integer. You'll notice the natural cycle of ZFS, where there are a minimal number of synchronous writes as requested by applications; then every 5 seconds all other buffered asynchronous writes are flushed out to disk. If you change the integer to a longer interval, it will provide an average over that time span.

	capa	city	opera	tions	bandwidth		
pool	alloc	free	read	write	read	write	
sestore5	46.0T	84.5T	99	189	14.8M	4.89	
sestore5	46.0T	84.5T	9	208	9.81M	1.09M	
sestore5	46.0T	84.5T	Θ	Θ	31.9K	0	
sestore5	46.0T	84.5T	103	Θ	12.9M	6	
sestore5	46.0T	84.5T	64	Θ	7.79M	0	
sestore5	46.0T	84.5T	38	570	4.74M	16.4	
sestore5	46.0T	84.5T	34	152	5.23M	826k	
sestore5	46.0T	84.5T	11	Θ	278K	(
sestore5	46.0T	84.5T	6	Θ	247K	6	
sestore5	46.0T	84.5T	146	Θ	16.4M	(
sestore5	46.0T	84.5T	31	977	1.46M	8.85	
sestore5	46.0T	84.5T	3	Θ	487K	3.991	
sestore5	46.0T	84.5T	35	Θ	4.12M	6	
sestore5	46.0T	84.5T	1	Θ	2.00M	6	
sestore5	46.0T	84.5T	12	Θ	63.9K	(
sestore5	46.0T	84.5T	244	650	978K	8.25	
sestore5	46.0T	84.5T	5	Θ	235K	0	
sestore5	46.0T	84.5T	Θ	Θ	Θ	6	

zpool iostat sestore5 30

	cap	capacity		ations	bandwidth		
pool	alloc	free	read	write	read	write	
sestore5	46.0T	84.5T	95	179	14.0M	4.93M	
sestore5	46.0T	84.5T	22	163	5.43M	4.76M	
sestore5	46.0T	84.5T	3	161	2.04M	5.96M	
sestore5	46.0T	84.5T	17	264	3.71M	3.96M	
sestore5	46.0T	84.5T	13	279	3.54M	4.01M	
sestore5	46.0T	84.5T	21	416	4.87M	4.80M	
sestore5	46.0T	84.5T	19	152	4.62M	6.89M	
sestore5	46.0T	84.5T	36	166	6.21M	5.26M	
sestore5	46.0T	84.5T	15	125	4.19M	2.66M	
sestore5	46.0T	84.5T	16	136	3.54M	4.54M	

top -m io

One of the fastest ways to figure out which application is causing all of the I/O is to use top. On FreeBSD top has a -m flag to change the mode. In IO mode, instead of tracking applications by CPU and memory usage, it tracks reads, writes, and other IO operations. This can help you determine which application is consuming all of the IO resources. To break things down further, see the section on the DTrace Toolkit.

# top	-m io -o read								
PID	USERNAME	VCSW	IVCSW	READ	WRITE	FAULT	TOTAL	PERCENT	COMMAND
35765	www	931	85	48	Θ	Θ	48	10.50%	nginx
35766	www	410	66	32	Θ	Θ	32	7.00%	nginx
4994	root	66139	3971	10	Θ	Θ	10	2.19%	nfsd
35248	www	1113	39	6	143	Θ	149	32.60%	nginx
3975	mysql	205	28	1	145	Θ	146	31.95%	mysqld

zfs-stats

On Solaris, ZFS uses a system called kstat to publish various statistics about what is happening internally in ZFS. On FreeBSD those stats are published via the sysctl interface. The **sysutils/zfs-stats** package can summarize those statistics in a more human-readable way, logically grouping them together.

# zfs-sta	ts -A			
	stem Report			19 03:50:59 201
ARC Summa	ry: (HEALTHY)			
Me	emory Throttle Count:		Θ	
ARC Misc:				
De	eleted:		92.50m	
R	ecycle Misses:		0	
Mu	utex Misses:		14.31k	
E	vict Skips:		6.79k	
ARC Size:		99.87%	31.92	GiB
Та	arget Size: (Adaptive)	100.00%	31.96	GiB
M	in Size (Hard Limit):	12.50%	4.00	GiB
Ma	ax Size (High Water):	8:1	31.96	GiB
ARC Size I	Breakdown:			
R	ecently Used Cache Size:	98.18%	31.38	GiB
F	requently Used Cache Size:	1.82%	594.11	MiB
ARC Hash I	Breakdown:			
E	lements Max:		690.77k	
E	lements Current:	75.55%	521.90k	
C	ollisions:		5.89m	
CI	hain Max:		4	
CI	hains:		8.13k	

MEMORY THROTTLE

The more important indicator of problems is the "Memory Throttle Count." This is the number of times that the ZFS ARC has had to reduce its memory usage because of demands elsewhere in the system. You might consider setting the maximum size of the ARC (vfs.zfs.arc_max) to a value that makes ZFS coexist with your other workloads better. The output also shows a breakdown of the ARC usage by MRU (Most Recently Used) and MFU (Most Frequently Used). This gives you some insight into how the cache is adapting to the workload.

zfs-mon

The sysutils/zfs-stats package also includes a second tool, zfs-mon, which looks at how a subset of the kstats are changing over time. This can provide useful insight into how the requests are being broken down, and how the various caching layers in ZFS are being used. The stats break down the performance of the ARC, L2ARC, the filesystem prefetch, and the device prefetching code. It also breaks down data vs metadata operations. By default, ZFS limits the amount of cache available for metadata to 25% of the max ARC size. If the total storage capacity is very large—and most operations impact only the metadata of the files, not the content-increasing the amount of the ARC that can be used for metadata can actually increase performance, since otherwise the ARC may be 3/4s full of content that will not be referenced again before it is replaced with other content.

tot

142

18

207

90

23

33

2

0

5

18

189

zfs-mon -a ZFS real-time cache activity monitor Seconds elapsed: 329 Cache hits and misses: 1s 10s 60s ARC hits: 130 305 591 2875 ARC misses: 38 113 62 ARC demand data hits: 95 236 539 2642 ARC demand data misses: 2 51 29 ARC demand metadata hits: 34 46 36 ARC demand metadata misses: 0 36 17 ARC prefetch data hits: 1 17 13 ARC prefetch data misses: 36 26 16 ARC prefetch metadata hits: 0 6 3 ARC prefetch metadata misses: 0 1 0 ZFETCH hits: 28 69 50 ZFETCH misses: 18639 18029 17450 23507 VDEV prefetch hits: 0 3 1 VDEV prefetch misses: 0 39 12 Cache efficiency percentage: 10s 60s tot 90.51 95.29 ARC: 72.97 ARC demand data: 82.23 94.89 99.32 ARC demand metadata: 56.10 67.92 69.70 ARC prefetch data: 39.53 44.83 41.07 ARC prefetch metadata: 85.71 100.00 100.00 ZFETCH: 0.39 0.28 0.80 7.14 7.69 21.74 VDEV prefetch:

As you can see, the ARC cache hit ratio varies quite a lot over short intervals, but in the 5-1/2 minutes this tool ran, the overall average was a 95.29% hit ratio.

GEOM STATS

gstat is an interactive tool that pulls statistics from the FreeBSD GEOM subsystem. It can be a useful window into what is happening with the underlying storage. For each GEOM object (there may be many that represent a single device, or a partition or other subdivision of a device), the depth of the queue, total operations per second, read operations per second, read kilobytes per second, milliseconds per read operation, and all the same again for write operations are printed. Then a synthesized '% busy' number is calculated, a best guess only, and can often be seen exceeding 100%. There are additional operation types (delete for TRIM/UNMAP etc., and flush) that can be shown with additional flags. If the sum of the read and write IOPS per second is less than the value in the ops/s column, it is likely that these other operations are happening as well.

# gst	at -f da	\?\$						
L(q)	ops/s	r/s	kBps	ms/r	w/s	kBps	ms/w	%busy Name
Θ	Θ	Θ	Θ	0.0	Θ	Θ	0.0	0.0 ada0
Θ	Θ	Θ	Θ	0.0	Θ	Θ	0.0	0.0 ada1
5	733	Θ	Θ	0.0	733	62244	10.5	88.8 ada2
7	883	Θ	Θ	0.0	883	62443	7.1	85.9 ada3
7	961	Θ	Θ	0.0	961	62539	5.2	61.6 ada4
Θ	960	Θ	Θ	0.0	960	63425	8.6	73.4 ada5
7	1047	Θ	Θ	0.0	1047	65006	5.5	79.1 da0
10	1078	Θ	Θ	0.0	1078	60751	5.9	81.4 da1

DTRACE TOOLKIT

DTrace is a very powerful tool designed to allow you to safely inspect and debug the running system, while having very minimal impact on performance when not debugging. DTrace scripts vary in complexity, from simple one liners to interactive tools.

A simple example of a DTrace one liner:

```
# dtrace -n 'syscall::read:entry { @bytes[execname] = sum(arg2); }'
```

This creates an aggregation of the 3rd argument (they are numbered from 0) of the read system call, by the calling application's name. Run this for a few seconds, then hit control+c to stop it. It will then print out a list of every application that called read, and the total number of bytes that were read. Now it is obvious which application was causing all of the reads from disk.

You don't have to write your own DTrace scripts; the OpenDTrace project maintains a collection of crossplatform scripts that you can download and use. These serve as a great starting point that can be modified to answer the questions you want to ask; <u>https://github.com/opendtrace/toolkit</u>

To look at how much data is being written in each transaction group, or how long each transaction group is taking to sync to disk, check out these DTrace examples by Adam Leventhal: http://dtrace.org/blogs/ahl/2014/08/31/openzfs-tuning/

CONTINUOUS PERFORMANCE MONITORING

Understanding the cause of performance problems first requires having something to compare the new measurements and observations against. Is the current level of operations per second typical? Or is it much higher or lower than expected. In order to make sense of the cache hit ratio, you need to know what it is when the system is NOT having problems. In order to have this information, and to be able to make sense of it, you need to be continuously recording the metrics that you will want to compare the current state of the system against. Collecting, storing, and graphing these metrics in a useful way is the key to being able to quickly diagnose issues and detect problems early.

Disks can be very ungentlemanly when they fail. Rather than loudly dying and going offline completely, they often misbehave. One of the first signs that a disk is beginning to fail can be greatly increased read

and write latencies. Consumer grade disks often retry internally many times before returning a read error. The operating system might then helpfully ask the drive to retry a few more times, each of those repeated commands resulting in a series of additional internal retries. Because of this, operating systems will often have rather high timeouts while waiting for commands to complete, with defaults on the order of 30 seconds per command and 5 retries. A single failed read can thus hold up the entire system for 2-1/2 minutes.

ZFS KSTATS

ZFS presents an impressive number of stats and counters via the kstat interface. On FreeBSD, this is currently exposed via the kstats.zfs sysctl mibs.

One of the advantages of ZFS is the ARC (Adaptive Replacement Cache), which provides better cache hit ratios than a standard LRU (Least Recently Used) cache. Looking at the various stats about the ARC can provide insight into what is happening with a system.

• kstat.zfs.misc.arcstats.c_max — The target maximum size of the ARC.

• kstat.zfs.misc.arcstats.c_min — The target minimum size of the ARC. The ARC will not shrink below this size, although it can be adjusted with the vfs.zfs.arc_min sysctl.

• kstat.zfs.misc.arcstats.size — The current size of the ARC; if this is less than the maximum, your system has either not had enough activity to fill the ARC, or memory pressure from other processes has caused the ARC to shrink.

• kstat.zfs.misc.arcstats.c — The current target size of the ARC. If the current size of the ARC is less than this value, the ARC will try to grow.

• kstat.zfs.misc.arcstats.p — How much of the ARC is to be used for the MRU list; the remainder is the target for the MFU list. This value will adjust dynamically based on workload. A lower value suggests frequent access to the same blocks, where a higher value suggests a more varied workload.

• kstat.zfs.misc.arcstats.arc_meta_used — The amount of the ARC used to store metadata rather than user data. If this value has reached vfs.zfs.arc_meta_limit (which defaults to 25% of vfs.zfs.arc_max), then consider raising or lowering the fraction of the ARC used for metadata. Caching more metadata will increase the speed of directory scans and other operations, at the cost of decreasing the amount of user data that can be cached.

SNMP

net-snmpd provides a number of useful counters like total IOPS per device and bytes read and written. These can be used to create graphs to provide some historical perspective when looking for performance problems. Is the IOPS load twice what it normally is? That might be your problem. If the number of IOPS is

down, but the workload is higher, something might be causing one or more devices to perform suboptimally.

OTHER TOOLS

There are many different solutions for monitoring, measuring, and recording statistics from a system. Some you might wish to investigate include:

• Zabbix — An advanced monitoring suite with some predefined probes for ZFS.

• Collectd — A metrics collection daemon that can be used with a number of different back-ends.

• Grafana — A graphing and analytics tool for time series data that can make sense of metrics gathered by applications such as collectd.

• OSQuery — An operating system instrumentation framework for analyzing the live and historical metrics of a system using a familiar structured query language. ●

ALLAN JUDE is VP of operations at ScaleEngine Inc., a global HTTP and Video Streaming Content Distribution Network, where he makes extensive use of ZFS on FreeBSD. Allan is a FreeBSD src and doc committer, and was elected to the FreeBSD core team in summer 2016. He is also the host of the weekly video podcast BSDNow.tv (with Benedict Reuschling), and coauthor of FreeBSD Mastery: ZFS and FreeBSD Mastery: Advanced ZFS with Michael W Lucas.