
At that time, BSD development began being man-
aged using SCCS, the first source-code control system.
By 1983, the socket interface had been designed, and
TCP/IP implemented underneath it allowing a small set
of trusted external contributors to log into the CSRG
development machines over the ARPAnet (which later
became the Internet) and directly update the sources
using SCCS. The CSRG staff could then use SCCS to
track changes and verify them before doing distribu-

tions. This structure formed
the basis for the current
BSD-based projects once
BSD was spun off from the
university as open source.

The Formation 
of the FreeBSD
Project

The final release from
Berkeley was an open-
source version of BSD
called Networking Release
2 which was later rere-
leased as 4.4BSD-Lite. The
release was missing six ker-
nel files that still contained
AT&T proprietary code. Bill

Jolitz wrote replacements for these six missing files and
released a system called 386BSD that ran on the com-
modity PC hardware. Frustrated with the slow develop-
ment pace of Bill’s 386BSD work, a set of developers
forked 386BSD to start the FreeBSD Project.

Following the CSRG model, the FreeBSD Project used
a CVS source-code repository to manage the code. The
only distribution method for their early releases was
agonizingly slow 14.4K dialup modems. As the
FreeBSD 1.0 release approached, they were looking for
a way to more quickly reach a larger audience. Jordan
Hubbard approached Walnut Creek CD-ROM whose

The Evolution
Governance

26 FreeBSD Journal

The Berkeley Software Distributions (BSD) was started as a one-man
project by Bill Joy at the University of California at Berkeley in 1977. 
By 1980, the BSD distributions had grown from a few programs that
could be added to an AT&T UNIX system to a complete system coordi-
nated by four people who called themselves the Computer Systems
Research Group (CSRG).

Of FreeBSD

BY MARSHALL KIRK MCKUSICK AND BENNO RICE 

•

S E E
T E X T
O N L Y



Sept/Oct 2017 27

business model was creating CD-ROM distribu-
tions of open-source software that they could
then sell. The FreeBSD developers’ goal of expand-
ing FreeBSD’s distribution matched well with
Walnut Creek CD-ROMs business model, so
Walnut Creek CD-ROM was happy to pick up
FreeBSD as one of their distributions. For its part,
Walnut Creek CD-ROM provided the high-pow-
ered development machines needed by the
FreeBSD developers to host the CVS repository
and to manage the release engineering of distri-
butions that Walnut Creek CD-ROM sold. As the
popularity of FreeBSD grew, Walnut Creek CD-
ROM hired several of the FreeBSD developers to
work on FreeBSD full-time.

As the use of FreeBSD expanded, so did the
number of software packages included with the
distributions. To keep the size of the FreeBSD dis-
tribution from exploding, the ports collection was
created.

The base FreeBSD system has just the critical
programs and libraries. The ports collection (which
currently has over 25,000 packages) can then be
used to supplement the base system with the pro-
grams needed to complete a system’s functionali-
ty. So, a desktop machine installs a window man-
ager, web browser, and a mail client from the
ports collection. A machine providing a web server
installs a program like Apache from ports.

Initially, everyone working on FreeBSD could
commit to the CVS repository, but as the number
of developers involved grew, that became unten-
able. With the move to Walnut Creek CD-ROM, a
core team was created to make the commits and
to decide who else should be able to commit to
the repository. GNATS was brought up to do bug
tracking.

The FreeBSD Project Moves
into Companies

As FreeBSD expanded in size and needs, and
became core technology at more companies, the
source code repository and main development
machines moved from Walnut Creek CD-ROM to
Yahoo, whose entire company ran on FreeBSD.
Realizing that having the project dependent on
the munificence of a single company was undesir-
able, Justin Gibbs created the FreeBSD Foundation
in 2000 in the hope that it could eventually gar-
ner enough support to fully support the project
infrastructure.

It took a decade before the FreeBSD
Foundation was fully able to support the project
resources. Today it provides many things, including
staff to head the marketing and release engineer-
ing teams; a staff person to oversee both develop-
ers receiving grants from the foundation; and
other foundation staff working on projects that
tackle needed parts of the system development
that volunteers do not have the time to do or are
not interested in doing.

Initially, the core team was permanently
appointed, eventually approaching nearly 20
members. By 2000, only about a third were con-
sistently active in the project while another third
were not participating at all. This deadwood
caused the business of the core team to grind
almost to a halt. There was growing frustration
among the committers that decisions were not
being made in a timely manner and/or that the
core team members acted abruptly and radically in
ways that others felt bordered on impunity.

As a result, some key developers, both in and
out of core, increasingly took matters into their
own hands. Nobody wanted to relinquish their
perceived prestigious core-title voluntarily. To gain
better accountability, promote faster decision
making, and to have a natural mechanism that
cleared out the deadwood, a group of central
developers proposed letting the developers elect
the core team.

Warner Losh together with Poul-Henning
Kamp, Wes Peters, and others drew up a set of
bylaws that created the current structure where
the core team is nominated from and elected by
committers every two years. The underlying phi-
losophy was that if core cannot be trusted, the
project is doomed, but at the same time you can-
not legislate common sense. Creating core by
electing a bunch of random people into the role
seemed unlikely to bring about project unity or
even consensus on important matters. But it was
agreed that democracies are the worst form of
government except for all the others. So, an elect-
ed core was deemed to be the best solution.

With some arm-twisting, the original core team
adopted the bylaws thus bringing in the first
elected core team of nine members.
Unsurprisingly, only a few of the original core
members were carried over to the first elected
core. The net effect was generally agreed to be
that there was little change in the effectiveness of
the core team. However, overall contentment of

•



28 FreeBSD Journal

the developers improved as it was a lot harder to
argue with the implicit authority of an elected
body that appears to have the support of a
majority of the electorate.

The core team is tasked with keeping the
FreeBSD Project running. It approves new commit-
ters, resolves differences between committers,
and manages committer discipline using such
mechanisms as suspension of commit privileges.
They also handle any other top-level issues that
arise within the project.

To streamline management of various areas,
the core team has created other teams or respon-
sible people (referred to as ‘‘hats’’) who own cer-
tain aspects of the project. These teams include:
• The port manager team that oversees the 217
ports committers who maintain the ports tree.
• The documentation team that oversees the 126
documentation committers who develop the
FreeBSD documentation and prod other commit-
ters if their documentation needs updating.
• The Security Officer, along with a team that
handles security issues and oversees the release of
security alerts and updates.
• The seven-member system administration team
that maintains the FreeBSD infrastructure.
• The release engineering team that consists of
Glen Barber and about 10 other committers who
assist him with FreeBSD releases.
• The quality assurance team that runs continu-
ous integration builds and creates an ever-grow-
ing set of regression tests. Additionally, the
FreeBSD Foundation assists with advocacy and
marketing. The group is headed by Anne Dickison
who works with members of the FreeBSD com-
munity to provide promotion, outreach, and social
networking for FreeBSD.

The FreeBSD Project Today
Project collaboration was initially handled using a
single mailing list. Over time the traffic on this list
grew until it became necessary to split it out into
multiple lists, each focused on a given topic area
such as networking, file systems, ports, documen-
tation, announcements, and general questions.
Eventually, the proliferation of mailing lists made
it difficult to deal with issues that spanned several
areas. Some collaboration happened via bug
tracking, initially in GNATS and later in Bugzilla,
but these tools were lacking when it came to
reviewing larger changes, particularly if involving
developers outside of FreeBSD.

In 2014 an instance of Phabricator, an open-
source collaboration tool written and released by
Facebook, was set up to allow detailed pre-com-
mit review of larger changes. Phabricator facili-
tates detailed review and discussion of a proposed
change somewhat similar to GitHub “pull
requests.” Phabricator has created an easier
venue for non-committers to propose changes to
FreeBSD as they are able to create their own
Phabricator accounts, post their recommended
changes, and have Phabricator automatically sug-
gest reviewers or otherwise notify appropriate
FreeBSD developers that a change needs review.

FreeBSD Source-Code Control
When the FreeBSD project began, the founders
chose to use the CVS source-control system. With
the release of newer source code management
tools like Subversion in 2000, the pressure to
move to a more modern tool began to increase.
This pressure only increased with the release of
the newer wave of tools such as Git and
Mercurial. The branching models and commit
atomicity of all of these tools were highly attrac-
tive along with the fact that all of them were
generally easier to deal with than CVS. Eventually,
after a lot of discussion, test conversions, and ver-
ification, the project moved to Subversion with
the rationale that it was fairly close in operation
to the CVS system, and that Git and Mercurial
could both function on top of it if needed.

Despite the conversion to Subversion, discus-
sion has continued about moving to something
newer. There are many FreeBSD developers active-
ly using Git, and with the advent of GitHub and
its pull request model, there are ongoing discus-
sions on whether FreeBSD should adopt GitHub
or something like it. The FreeBSD Project has a
presence on GitHub but it is purely read-only. Pull
requests and issues opened on GitHub can only
be addressed by having them moved over to
Phabricator or Bugzilla before being committed
into Subversion.

FreeBSD Workflow
As the project grew, more formal structures were
needed to ensure smooth workflow without
inhibiting innovation. Outside developers produce
bug fixes and updates to FreeBSD. Using mailing
lists or consulting the source-code-control logs,
they identify an appropriate committer with
whom to work to get their changes incorporated



Sept/Oct 2017 29

into FreeBSD. Another option is to create a
Phabricator account to raise an issue and have the
Phabricator infrastructure identify the appropriate
committer or group with whom to work.

Committers (of which there are currently 371)
are authorized to commit changes to specific parts
of the system. These system parts are broken into
three main committer groups: documentation,
ports, and source. Many committers are in more
than one group. Committers normally work in a
self-defined subset of the groups in which they are
a member. All changes (other than trivial ones)
require review by at least one other committer.

Historically, committers could simply make any
changes they saw fit. This policy led to broken
infrastructure, especially when changes were made
to systems that were more central, such as the vir-
tual memory subsystem. To combat these prob-
lems, developers were encouraged to seek review
of their changes before committing. These changes
were formalized by requiring tags to be added to
commit log messages indicating:
• which other project member had reviewed the
changes,
• the sponsoring organization (e.g., the project
member’s employer),
• the bug report number from which it was identi-
fied,
• the Phabricator thread on which it was discussed,
• when to send a reminder to merge the change to
older stable/release branches, and,
• if appropriate, an acknowledgement that the
commit fixes an earlier mistake made by the com-
mitter (the ‘‘Pointy Hat’’ tag).

Guidelines on How to Work and 
Play Together
Though the project had long had a set of guide-
lines on how members should interact with each
other, it did not have explicit rules and procedures
to be followed when the guidelines were violated.
Rules and procedures were added in response to
some developer disagreements and misbehavior,
and detailed clear behavioral expectations. These
initial rules were primarily based around interac-
tions within CVS.

The initial rules did not approach the clarity of
behavioral expectation contained in a more mod-
ern Code of Conduct. The initial rules did provide
examples of the types of sanctions that the core
team could impose in response to breaches of
those rules. The initial rules sufficed until 2015

when there were some serious cases of project
member misbehavior that spread beyond the
bounds of the project itself. This event led to
efforts to augment the initial rules with a modern
Code of Conduct and a set of attendant processes
to deal with issues like this event in the future.

FreeBSD Recruitment
As with all successful open-source projects, devel-
opers lose interest or have insufficient time and
leave the project. To avoid deadwood, it is impor-
tant to have metrics to gauge when developers
have left. The FreeBSD Project uses the metric of
one year without doing a commit to drop an indi-
vidual’s commit privileges.

To keep the project viable, new developers must
be recruited and brought into the project. There
are several ways new contributors come into con-
tact with the project. One is simply by discovering
the project and becoming involved directly.
Another is by coming into contact via a university
or college course. A third is by working at a com-
pany that uses FreeBSD in its products or services.
FreeBSD also takes part in the Google Summer of
Code and has gained many contributions through
this program.

To provide a welcoming and easily entered com-
munity, it is important to make the project visible
and to provide new developers with mentors to
help them learn the policies and procedures used
by the project. Committers working with active
developers can nominate them to be brought into
the project as a new committer. Core is responsible
for deciding whether to admit new committers. To
ease the transition and to ensure that new commit-
ters understand the culture, procedures, and rules
of the project, they are assigned a mentor (usually
the person that nominated them) to review their
changes and ensure that they get proper external
review. Once they have gotten up to speed, typical-
ly in six to twelve months, their mentor deems
them ready to work independently.

FreeBSD Development Model
The project has been quite good at identifying
areas for change. When the changes are small
and/or contained to a small area of the project,
architecting and developing those new areas has
gone smoothly. However large or highly impactful
changes have been difficult. Two examples stand
out: the shift from a single-threaded to a multi-
threaded kernel and the move from CVS to



30 FreeBSD Journal

Subversion.
The shift away from CVS was first suggested

in 1999. It was recommended that the project
move to BitKeeper, which was then in public
beta. This suggestion did not pan out, but it, and
subsequent discussions around other tools, all fit
a general pattern where someone would suggest
moving to one tool, others would object and/or
suggest moving to other tools, yet others would
either vocally support or object to one or more of
the previous suggestions, and in the end the dis-
cussion would die out with no real conclusion. In
2008, Peter Wemm, in his role as both a member
of the cluster administration team and as one of
the CVS repository managers, cleared the dead-
lock by dint of simply picking Subversion, doing
all the work necessary to perform and validate
the migration, and making it all happen.
Subversion was chosen due to its close match to
the semantics of CVS, its relative maturity, and
the ability of the two other most commonly cited
competitors, Git and Mercurial, to interoperate
with Subversion.

Moving the kernel from single-threaded to
multithreaded was a similarly large task, but, in
this case, the problem was one of personalities
and disagreements over architecture. Berkeley
Software Design Inc. (BSDi) purchased Walnut
Creek CDROM in 2000. This purchase provided
developers employed by Walnut Creek access to
the source code of BSD/OS, BSDi’s commercial
BSD derivative. One of these developers, John
Baldwin, used ideas from BSD/OS and Solaris to
create an architecture for a multithreaded
FreeBSD kernel. Another developer, Matthew
Dillon, preferred a different architecture that was
similar to the approach taken in the Amiga ker-
nel. Significant conflicts arose between these two
over how the multithreading project should con-
tinue. These conflicts were exacerbated by the
core team not wanting to actively pick sides in a
technical debate. In the end, due to other rea-
sons, Matthew’s commit access was removed 
and he left the project to found the
DragonFlyBSD project.

To try to avoid situations like these two, core
introduced the ‘‘FreeBSD Community Process’’, a
more formalized mechanism for proposing and
deciding on important or contentious changes
within the project. The idea is to avoid discus-
sions degenerating into an interminable argu-
ment on the mailing lists with ultimately no
action being taken.

The FreeBSD Community Process is modeled
on similar ideas in other projects, particularly the
Python Enhancement Process
(https://www.python.org/dev/peps/pep-0001/),
the Joyent RFD Process (https://github.com/
joyent/rfd/blob/master/README.md), and even
the venerable IETF RFC Process (https://
www.ietf.org/about/standards-process.html).

Committers who want to make a change that
will result in a nontrivial effect on the FreeBSD
user base, or retrospectively, anyone having
backed out a change after running into con-
tention over something that turned out less trivial
than they anticipated, writes down what they
propose to change. Their proposal describes the
problem they are trying to solve, outlines how
they propose to solve it, and indicates any conse-
quential impacts the proposal may have. After
being vetted by a FreeBSD Community Process
editor, the document is added to the FreeBSD
Community Process index, committed into the
FreeBSD Community Process repository, and pub-
lished for discussion. Each FreeBSD Community
Process proposal is a living document and can be
updated to reflect any conclusions resulting dur-
ing the discussion.

Once consensus has been achieved, or the dis-
cussion has gone on for enough time, the core
team votes on accepting the proposal. The core
team is expected to vote according to the mood
of the discussion around the proposal.

FreeBSD Core Team
Interaction with the FreeBSD
Committers
Historically, the core agenda was private, and all
communications within the core team, whether by
email, IRC, or the monthly video conference, were
kept private. Communication of the core team’s
activities to the committers was limited to a
monthly report on the actions that they had taken
that was prepared by the core secretary. The core
secretary was not a member of core but managed
core’s agenda and handled many of the communi-
cations with core. The report consisted of a brief
summary of the actions taken by core and dis-
cussed only actions that had already been taken.
Because of the monthly report’s retrospective per-
spective, there was little opportunity for commit-
ters to participate in core’s deliberations.

After years of prodding by the committers, the
core team recently began working to be more



Sept/Oct 2016 31

transparent and to provide an opportunity for
committers to have more input to core’s delibera-
tions. The core team started providing its agenda
to developers before their meetings. Core is also
looking into allowing committers to attend their
video-conference meetings. Attending video-con-
ference meetings will require identifying agenda
items that require core-only deliberations that may
need careful handling such as disputes between
developers.

FreeBSD Security Team
The role of the Security Officer has evolved over
the years. Initially it was simply a title for the per-
son tasked with looking after security-related
issues for the project. In 2002, an official charter
(https://www.freebsd.org/security/charter.html) was
adopted that also acknowledged that there was
more work than one person could handle and that
there would be a Security Team that reported to
the Security Officer. In the last few years it has also
become apparent that finding someone with the
background and time to be the Security Officer is
no small feat. In response to this expansion of
responsibility, the core team has recast the Security
Officer role to be more of a managerial one with
the Security Team acting as a pool of people who
can do work as needed to address security issues,
draft advisories, and ensure patches get into all the
relevant branches.

Summary and Conclusions
Like many open-source projects, FreeBSD started
out with the Benevolent Dictator(s) For Life gover-
nance model. While this approach can be effective,
it often leads to stagnation and an aging out
and/or burning out of those in charge. For these
reasons, FreeBSD moved first to a core team and
later to an elected core team.

In its 24-year history there have been four major
changes in leadership, each of which has been
beneficial and allowed the project to move forward
and tackle new problems. It has also helped the
project avoid aging out; the median age of the
committers has consistently remained in the mid to
high 30s. Young enough to have the time and
energy to push projects forward, but old enough
to have the necessary wisdom to avoid rat holes,
and with the patience and experience to avoid
technical debt by doing things right rather than
settling for a quick hack.

The creation of the FreeBSD Foundation has also

been important in ensuring that the FreeBSD
Project has the resources that it needs to be suc-
cessful. Importantly, the FreeBSD Foundation has
recognized that its role in the FreeBSD ecosystem is
to let the core team and the committers determine
the technical direction of the FreeBSD Project while
supporting it with infrastructure, marketing, and
outreach.

Governance is mundane yet critical to the suc-
cess of an open-source project. Too much and the
project becomes stifled. Too little and the project
can go off the rails either as a success disaster or
by getting bogged down from lack of enough
structure to get things done. To date, the FreeBSD
Project has gotten governance right, but keeping it
humming requires constant tuning. •

DR. MARSHALL KIRK MCKUSICK writes books and
articles, teaches classes on UNIX- and BSD-related
subjects, and provides expert-witness testimony
on software patent, trade secret, and copyright
issues particularly those related to operating sys-
tems and filesystems. He has been a developer
and commiter to the FreeBSD Project since its
founding in 1993. While at the University of
California at Berkeley, he implemented the 4.2BSD
fast filesystem and was the Research Computer
Scientist at the Berkeley Computer Systems
Research Group (CSRG) overseeing the develop-
ment and release of 4.3BSD and 4.4BSD

BENNO RICE is a software engineer for Dell EMC's
Isilon division and also a committer and core team
member for FreeBSD.


