
Sandboxing Techniques

16 FreeBSD Journal

oday's users need more protection than tradi-
tional Unix systems have been able to deliver.
The authors of operating systems have tradi-

tionally had a great deal of interest in systemic notions
of privilege (e.g., the authority to inject code into the
kernel via modules), but the users of computing sys-
tems often require finer-grained models of access con-
trol (e.g., the ability to share a single contact or dele-
gate management of a single calendar). Rather than
protecting multiple users from each other, the operat-
ing systems of today's end-user devices must protect
single users from their applications and those applica-
tions from each other. Historic Unix-derived systems
have not made this task easy; in some cases, the pro-
tection users need has not even been possible.

Protection was a first-class objective of early, gener-
al-purpose operating systems and the hardware on
which they ran [Lamp69, And72, SS72]. This early
focus led naturally to the exploration and design of
rigorous, general-purpose protection primitives such
as capabilities [DV66] and virtual memory [BCD69,
Lamp69]. In the transition from Multics to Unix domi-
nance, this focus was lost. The result was a highly
portable operating system that would go on to domi-
nate contemporary thinking about operating systems,
but with security features primarily organized around
one threat model: users attacking other users (includ-
ing accidental damage done by buggy software under
development). This security model—Discretionary

A Comparison of Unix

Why sandboxing is
different from historic
approaches to Unix
security, how we got
where we are, and how
Capsicum compares with
Linux’s seccomp(2) and
OpenBSD’s pledge(2).

BY JONATHAN ANDERSON

T

This work has been sponsored by the Research and Development Corporation of Newfound-
land and Labrador (contract 5404.1822.101) and the NSERC Discovery program (RGPIN-2015-
06048), the Defense Advanced Research Projects Agency (DARPA), and the Air Force Research
Laboratory (AFRL) (contract FA8650-15-C-7558).

S E E
T E X T
O N L Y

Sept/Oct 2017 17

Access Control (DAC)—can be implemented with
Unix owner/group/other permissions or with
Access Control Lists (ACLs), but it does not pro-
vide adequate support for application sandbox-
ing. FreeBSD, Linux, and MacOS eventually
acquired frameworks for enforcing systemic secu-
rity policies such as multi-level security and
integrity enforcement [WFMV03, WCM+02,
Wat13], collectively known as Mandatory Access
Control (MAC). Such policies represent the inter-
ests of system owners and administrators and
provide an additional dimension along which
enforcement can be specified, but they are bet-
ter-suited to tasks such as protecting high-
integrity files from low-integrity data than to sup-
porting sandboxing in unprivileged applications.

The goal of sandboxing is to protect users
from their own applications when those applica-
tions are exposed to untrusted content. Complex
applications are regularly exposed to content
from malicious sources, often embedded within
difficult-to-parse protocols and file formats. This
is especially true on the Internet, where even the
most basic use cases involve ASN.1 parsing (for
TLS) as well as parsing documents, Web pages,
images, and videos as well as interpreting scripts
or encoding/decoding cookies. Even the humble
file(1) command was patched in 2014 for vul-
nerabilities in its parsing code [SA14:16]. Once a
process is compromised by malicious content, the
goal of a sandboxing policy is to limit the poten-
tial for damage to a small set of known outputs.
For example, a compromised word processor may
be able to corrupt its output files, but it should
not be able to search through a user's home
directory for private keys or credit card details.
Sandboxing-specific features (or, as they are
sometimes referred to, attack-surface–reduction
features) such as FreeBSD's Capsicum,
OpenBSD's pledge(2), and Linux's seccomp(2)
have appeared comparatively recently; we com-
pare their effectiveness below.

Sandboxing with DAC/MAC
Prior to the introduction of sandboxing features
in commodity operating systems, valiant efforts
were made to confine or sandbox applications
with the tools that were available. These efforts
met with varying degrees of success, depending
on how well the designed security policy fit onto
a discretionary or mandatory access control (DAC
or MAC) model. The most successful applications

of sandboxing required relatively small code
changes to meet their security objectives, which
tended to fit the coarse-grained security model
of DAC or the system-security perspective of
MAC. Less successful forays into sandboxing
required thousands of lines of code, sometimes
with large amounts of hand-crafted assembly, a
requirement for system (superuser) privilege
and—often—a failure to truly enforce the desired
security policy.

An early—and relatively successful—imple-
mentation of sandboxing was Provos et al’s privi-
lege separation of the OpenSSH server [PFH03].
This work used discretionary access control fea-
tures to prevent a compromised SSH server
process from exercising the privileges of the
superuser. The SSH server requires superuser priv-
ilege in order to bind to TCP port 22, but it is
desirable that a compromised SSH process not be
able to access system resources such as the
filesystem before a user has authenticated (i.e.,
the server should be put into a pre-auth sand-
box); it is also desirable that the server post-
authentication only be able to exercise the
authority granted to the authenticated user (from
within a post-auth sandbox). Provos et al split the
SSH server process into a trusted monitor process
that retained superuser privilege and untrusted
child processes that would use the superuser
privilege to drop privilege, changing their user
and group IDs to those of unprivileged users. In
the pre-auth sandbox, an SSH server process
could run as the nobody user and have its root
directory changed to an empty directory using
the chroot(2) system call. In the post-auth
sandbox, a process would have its UID/GID
changed to those of the authenticated user. This
approach to sandboxing was successful for two
reasons:

1. User-oriented policy: The goal of SSH
privilege separation is to keep compromised
processes from exercising the authority of the
superuser. This policy goal aligns well with
the Unix DAC model: it can be expressed
entirely in terms of UIDs, GIDs, and filesystem
directories with Unix permissions. The policy
does not protect a user from misbehavior
post-authentication: it protects the system
and other users.
2. Extant privilege: Operations such as
changing a process's UID or root directory
require superuser privilege, which the SSH

•

18 FreeBSD Journal

server undergoing privilege separation already
possessed. The sshd process was already a
security-critical piece of software run as root:
privilege separation was a monotonic decrease
in authority. This is not the case for the more
general case of sandboxing, however: it is
undesirable to require unprivileged software to
run as root in order to drop privilege.

At the other end of the spectrum, we have pre-
viously compared several DAC- and MAC-based
approaches to sandboxing renderer processes in
the Chromium web browser [WALK10]. In that
work, we found that DAC and MAC mechanisms
were a poor fit for the application compartmen-
talization use case. DAC is designed to protect
users from each other, but in the case of a Web
browser—or any other sophisticated, multiprocess
user application—the security goal is to limit the
damage that can be done by a rogue process
after it is compromised by untrusted content.
DAC alone cannot control access to unlabeled
objects such as System V shared memory (in
Linux) or FAT filesystems (in Windows). As with
OpenSSH, chroot(2) can be used to put a
process into an environment of limited filesystem

access, but unlike OpenSSH, the superuser privi-
lege required to use chroot(2) is not naturally
found in Web browsers (or office suites, music
players, other desktop applications, etc.). Thus, in
order to avail of the DAC-based protection that
did exist, portions of the application had to be
shipped with the setuid bit set on a root-
owned binary!1

Mandatory Access Control (MAC) is also a poor
fit for application sandboxing. It requires a dual
coding of policy: once in the code that describes
what the application does and once in a separate
policy that describes what the application is
allowed to do. The SELinux policy from our origi-
nal Capsicum comparison involved thousands of
lines of policy, but even modern AppArmor pro-
files encoded in a domain-specific language can
require hundreds of lines of subtle and complex
policy, not including policy elements included from
system policy libraries (e.g., #include
<abstractions/ubuntu-browsers.d/
java>). It can be very difficult to write and main-
tain complex MAC policies, with failures in func-
tionality (e.g., a lack of access to @{PROC}/[0-
9]*/oom_score_adj) being more obvious to

1 Today's Chrome no longer uses the DAC-based sandbox on Linux, but the above comments about chroot(2) and
privilege still apply to the new sandboxing model.

By Brooks Davis, Robert Norton, Jonathan Woodruff & Robert N. M. Watson

Choose ebook, print, or combo. You’ll learn to:
• Use boot environment, make the riskiest sysadmin tasks boring.
• Delegate filesystem privileges to users.
• Containerize ZFS datasets with jails.
• Quickly and efficiently replicate data between machines.
• Split layers off of mirrors.
• Optimize ZFS block storage.
• Handle large storage arrays.
• Select caching strategies to improve performance.
• Manage next-generation storage hardware.
• Identify and remove bottlenecks.
• Build screaming fast database storage.
• Dive deep into pools, metaslabs, and more!

ZFS experts make their servers
Now you can too. Get a copy of.....

WHETHER YOU MANAGE A SINGLE SMALL SERVER OR INTERNATIONAL DATACENTERS, SIMPLIFY YOUR STORAGE
WITH FREEBSD MASTERY: ADVANCED ZFS. GET IT TODAY!

Link to:

Sept/Oct 2017 19

developers than lapses in protection (e.g., allowing
access to /usr/bin/xdg-settings, which
relies on the PATH environment variable not being
hijacked). This complexity is a hint that we are
attempting to fix the square peg of sandboxing
into the round hole of MAC.

"Sandboxing" with System-call
Interposition
Before comparing today's approaches to sandbox-
ing, it is essential to understand an intermediate
approach that was attempted in the late 1990s
and early 2000s. This approach was attractively
simple, but ultimately failed to provide the security
benefits it advertised. Those who fail to learn from
this now-discredited approach are condemned to
repeat its mistakes in their "new" approaches to
application sandboxing.

A seminal attempt to generalize policy enforce-
ment for arbitrary applications without system priv-
ilege was Fraser, Badger and Feldman's Generic
Software Wrappers [FBF00], which inspired systems
such as Provos's systrace [Prov03]. These sys-
tem-call interposition systems used userspace
wrappers or shallow modifications to the system-
call layer of an OS kernel to intercept system calls.
Once intercepted, these calls' arguments could be
inspected and a policy decision could be made as
to whether or not the call should be allowed. For
example, instead of using chroot(2) to limit a
process's access to the filesystem, every open(2)
call could be inspected and the filename argument
could be compared against a whitelist of paths the
process was allowed to open. System call policies
could be described in languages that, while requir-
ing dual coding as in MAC, had the benefits of
concision and comprehensibility, as shown in

Figure 1. System call wrappers had the twin bene-
fits of being relatively simple to implement and rel-
atively simple to use. Unfortunately, their simplicity
translated into a failure to engage with the com-
plexities of concurrent accesses in operating sys-
tems, as demonstrated by Watson in 2007
[Wat07].

Objects named by Unix system calls are concur-
rent on multiple levels. At the shallowest level, all
of a process's threads are contained within the
same virtual address space and can thus manipu-
late the same data—this includes strings being
passed as arguments to system calls. When system
call wrappers work in userspace, a malicious
process can submit a system call for execution with
a path that is known to be whitelisted and then,
while the wrapper's policy check is executing,
modify the value of the memory containing the
filename to a different path. Thus, the path that is
checked against the policy can be different from
the path that is eventually accessed. To use
Watson's language, this is a Time-of-check-to-
time-of-use (TOCTTOU) vulnerability [Wat07].

TOCTTOU vulnerabilities are not merely found at
this shallow layer of interception, however. If they
were, interception would only need to be done via
RPC to be secure. System call wrappers are vulner-
able in a deeper, more fundamental way: even if
the name used to reach an OS object such as a file
remains constant, the meaning of that name can
change. Path lookup is an incremental operation in
Unix: looking up a file named
/home/jon/foo.txt will involve interactions
with at least four vnodes in a virtual filesystem (the
root node, two directories and the file itself). While
each individual lookup (e.g., retrieving the jon
directory entry) must be done with due care for

Fig. 1
Policies governing system
call wrapper behavior for the
Generic Software Wrapper
Toolkit and systrace (repro-
duced from [FBF00] and
[Prov03], respectively).

20 FreeBSD Journal

concurrency, e.g., while holding a lock, the over-
arching path lookup is not an atomic operation.
A path is a list of instructions, not a name. While
one process is walking a directory hierarchy,
another can be changing the filesystem, moving
files, moving directories, even changing symbolic
links. System-call interposition, even if performed
via RPC with no possibility of in-
memory path substitution, can-
not guarantee that the file
named by a path at the time a
policy decision was made is the
same file that will be looked up
by the system call doing the
lookup.

Fundamentally, the weakness of system-call
interposition is that its policy decisions (i.e.,
checks) are not made atomically with the effects
of those decisions. This is not a vulnerability that
requires a patch, but a fundamental limitation of
the approach; it is why such methods are no
longer used on contemporary operating systems
(OpenBSD expunged systrace in April of last
year [Gros16]). However, even though system-call
interposition systems have been deprecated, the
underlying concept returns to haunt more mod-
ern sandboxing frameworks.

A Comparison of Sandboxing
Frameworks
More recently, open-source Unix derivatives have
implemented new frameworks to aid in applica-
tion sandboxing. These frameworks include, most
comparably, Linux's seccomp(2), OpenBSD's
pledge(2), and FreeBSD's Capsicum (cap-
sicum(4))2. Although they were all created with
the goal of enabling simple sandboxing, they
have achieved varying degrees of success.

Linux: seccomp(2)
Since 2005, Linux has included a feature called
"secure computing mode," or seccomp(2) for
short [Cor09]. The original version of
seccomp(2) provided a strong, comprehensible
security policy: processes in "secure computing
mode" can use the read(2) and write(2)
system calls to operate on files they have previ-
ously opened (or had delegated to them),
sigreturn(2) to support signal delivery, and

the exit(2) system call to terminate the process.
It is simple for a process to enter seccomp
mode, as shown (in abridged form3) in Figure 2.
This policy had the benefit of clarity and it did
permit processes to operate as filters performing
otherwise-pure computation, but very few appli-
cations are able to perform meaningful work

within such a restrictive sandbox. For example,
we previously found that Chrome's use of the
"pure" seccomp(2) mode required over a thou-
sand lines of security-critical assembly-language
code to forward system calls outside of the sand-
boxed process and into a trusted process that
would perform the system calls on its behalf
[WALK10].

To provide a richer environment for comput-
ing, modern seccomp(2) allows programs to
specify their own security policy beyond the four
system calls enumerated above. In this new ver-
sion of seccomp(2), a process can specify a pro-
gram to check each system call's validity before
executing it. This program is written in the BPF
bytecode format. The BSD Packet Filter (BPF)
[MV93], inspired by the CMU/Stanford Packet
Filter (CSPF), itself inspired by earlier work on the
Xerox Alto [MRA87], is a virtual machine that
interprets bytecode. It was originally designed to
facilitate high-performance networking by allow-
ing userspace processes to describe a filter for
the kernel to apply to network packets without
giving up the safety of the kernel/user mode sep-
aration. When applied to seccomp(2), BPF pro-
vides a syntax for describing programs that check
system calls within the Linux system call handler.

An example of a simple system-call whitelist-
ing filter is shown in Figure 3. This illustrates
the extreme flexibility and programmability of
seccomp-bpf: almost any check that can be
imagined on a system call's arguments can be
expressed in an assembly-like language like BPF.
However, the corollary to this is that because
anything can be checked by the programmer,

Fig. 2 Entering the original, "pure" version of Linux's secure computing mode is trivial.
Once a process is in seccomp mode it can never leave.

2 Discussion of Apple's Sandbox framework and its MAC Framework underpinnings is left to other sources [Wat13].
3 Full source code for the examples in this section can be found at https://github.com/trombonehero/sandbox-examples.

Sept/Oct 2017 21

everything must be checked by the programmer. In
order to build a meaningful whitelist of system calls,
not only must the offset of the syscall number with-
in a larger structure be exposed to user-mode pro-
grams, the provided filter must also inspect the cur-
rent architecture in order to interpret the syscall
number (Linux uses different system call numbers
on different architectures). Furthermore, as seman-
tics are left to the programmer, it is possible—
indeed, all too easy—to construct inconsistent sys-
tem call policies that deny some operations while
allowing equivalent operations to be performed. For
example, the policy in Figure 3 does not allow unre-
stricted open(2) calls, but it permits openat(2),
which can be made to behave equivalently to
open(2). A seccomp-bpf filter is intimately tied to
the details of the program whose behavior it filters,
making it the responsibility of the application
authors, but constructing a seccomp-bpf system
call filter requires meticulous attention to the sorts of
details (assembly programming in BPF opcodes, lay-
outs and semantics of Linux kernel syscall handling
structures) that are entirely outside of most applica-
tion authors' experience and working knowledge.

Beyond simple syscall whitelists, seccomp-bpf
is both more complex and more problematic. It is
possible to construct seccomp-bpf filters on sys-
tem call arguments such as filenames, but as with
GSWTK and systrace, it is impossible to check
paths meaningfully at the system-call handling layer.
A program may be permitted to access
/var/tmp/*, but if /var/tmp/foo is a symbolic

link that can be updated in a race with the BPF fil-
ter, what policy has truly been enforced? The ope-
nat example at https://github.com/trombonehero/
sandbox-examples demonstrates how a process
restricted using seccomp-bpf can escape from its
intended bounds, in this case creating files outside
of an application's intended working directory.

For all of these reasons, seccomp-bpf alone is
insufficient to truly sandbox arbitrary application
code. A complete application sandbox must also
use the Linux clone(2) system call to sequester a
process within a new IPC namespace (to cut off
access to the host's global System V IPC name-
space), network namespace (interfaces, routing,
firewall, /proc and /sys/class/net, etc.),
mount namespace (similar to chroot(2)), and PID
namespace (to cut off inappropriate uses of
kill(2)). Creating such namespaces requires the
CAP_SYS_ADMIN privilege, which is effectively
equivalent to superuser privilege on Linux4. Thus,
creating an effective application sandbox on Linux
requires running programs as root or creating
setuid binaries.

OpenBSD: pledge(2)
Since v5.9 was released in 2016, OpenBSD has
shipped with pledge(2), a mechanism for putting
a process into a "restricted-service operating
mode"5. The manual page for pledge(2) does not
describe it as a security mechanism [Pled17], but
other communications by its developers do
[deRa15]. The essence of pledge(2) is a simpler,

Fig. 3
An example of a simple
seccomp-bpf filter that
allows the brk(2),
close(2), and openat(2)
system calls to proceed
(based on an example from
Bernstein [Bern17]).

4 The POSIX.1e draft standard [Pos1e] specified fine-grained superuser privileges called "capabilities" such as CAP_NET_RAW,
CAP_SETGID or CAP_SYS_ADMIN as decompositions of traditional superuser privilege. These "capabilities" are different from
the traditional computer science definition of capabilities [DV66], which are discussed below. The POSIX.1e draft was with-
drawn and is not in force, but portions of it have been implemented by various operating systems (e.g., FreeBSD's audit
implementation and Linux's "capability" framework).
5 The previous tame(2) mechanism was introduced in v5.8 but not enabled by default.

22 FreeBSDJournal

more easily used take on the seccomp(2) con-
cept. Instead of defining a BPF program to filter
out system calls, pledge(2) groups system calls
into categories such as stdio (which includes
read(2), write(2), dup(2), and
clock_getres(2)) and rpath (which allows
read-only filesystem effects from chdir(2), ope-
nat(2), etc.). It is possible to make a pledge with
the empty string, in which case no further system
calls but _exit(2) are permitted, but this can
result in processes aborting when atexit(3)
code triggered by C startup routines in _start()
call mprotect(2) on libc.
pledge(2) is considerably simpler to use than

equivalent seccomp-bpf functionality. Figure 4
shows an example of pledge(2) use that applies
a system call filter to the current process using

more system calls than that of Figure 3. However,
as with seccomp-bpf, this simple, superficial fil-
tering of system calls provides illusive security
guarantees. The provided system call categories
may usefully describe the requirements of trivial
OpenBSD base system applications, but for com-
plex applications, categories such as wpath are
effectively meaningless. If an application needs to
open private files for writing, then wpath must
be "pledged," but wpath also authorizes open-
ing any file on the filesystem with the correct
DAC mode for writing. Unlike seccomp-bpf,
pledge(2) makes policy construction simple,
but like its Linux analog, it makes the construc-
tion of inconsistent or meaningless policies easy
to do by default.

The pledge(2) system call also takes a
paths argument containing a whitelist of allow-
able paths, but that functionality has been
marked as "unavailable" in the pledge(2) man-
ual page since early 2016 [Pled17]. Were it avail-
able, the shallow whitelisting functionality would
suffer from the same TOCTTOU vulnerabilities as
systrace and seccomp-bpf. However, the
greatest weakness of pledge(2) is that a com-
promised process can disable the security mecha-
nism if the original pledge(2) call included the
exec system-call category. Despite claims that

"abilities can never be regained" [Pled17] and
"in OpenBSD, once a mitigation is working well,
it cannot be disabled" [deRa15], pledge(2) does
not have the one-way property of seccomp(2) or
capsicum(4). In those systems, a process that
enters a restricted state remains there together
with all of its subsequently-created children, but
an OpenBSD process's pledge(2)-restricted state
is cleared on exec(2).

As with seccomp-bpf (and GSWTK/
systrace before that), system call filtering with
pledge(2) is insufficient to apply a meaningful
security policy to applications more complex than
read–compute–write filters. The difference is that,
although it is the simpler framework to use,
pledge(2) is not backed by clone(2)-based
mechanisms for implementing more rigorous

security policies. Thus, as with the
now-discontinued-by-OpenBSD sys-
trace, pledge(2) should be seen as
a debugging and mitigation feature to
catch unskilled adversaries rather than
a rigorous mechanism on which to

build security policies.

FreeBSD: capsicum(4)
The Capsicum compartmentalization framework is
different from seccomp-bpf and pledge(2) in
two key ways. First, Capsicum employs a princi-
pled, coherent model for restrictions on processes
when applications are compartmentalized. This is
implemented by Capsicum's capability mode.
Second, Capsicum employs fine-grained, monoto-
nic reduction of authority on specific OS objects
accessed via attenuated file descriptors, called
capabilities.

Capability Mode
Like seccomp-bpf and pledge(2), cap-
sicum(4) supports putting processes into a
restricted mode in which system calls behave dif-
ferently from "normal" processes. The key dis-
tinction is how the restrictions are chosen. Rather
than a superficial focus on specific system calls,
many of which have overlapping responsibilities
and provide independent means of accomplish-
ing the same objective, Capsicum focuses on a
fundamental principle underlying them all: access
to global namespaces.

In Capsicum, the cap_enter(2) system call
causes a process to enter capability mode, in
which all access to OS objects (files, sockets,
processes, shared memory, etc.) must be done

Fig. 4 A system call filtering policy is considerably simpler to
install with pledge(2) than with seccomp-bpf.

Sept/Oct 2017 23

through capabilities (described below) rather than
using ambient authority. Ambient authority
describes the normal authority of a process to act
on behalf of its user, doing anything that the user
is permitted to do by the Unix DAC model. This
includes access to other processes via PID, files via
path or NFS file handle, sockets via protocol
addresses, shared memory via System V IPC name
or POSIX shared memory path, etc. By contrast, a
process in capability mode is not allowed to
access any new resources via global namespaces
(path, PID, protocol address, etc.). Resources rep-
resented by already-open file descriptors (or
descriptors passed into a process via Unix message
passing) are normally subject to restrictions
described below (under "capabilities"). New file
descriptors may also be derived from existing
descriptors using system calls such as accept(2)
or even openat(2), provided that only local
names are used. In the case of openat(2), this
requires that path search start relative to an
already-open directory descriptor, not AT_FDCWD,
and that path evaluation only traverse "down"
inside a directory and not "up" via "..". This
restriction on path lookup is enforced within
FreeBSD's namei() function, deep within the ker-
nel and atomic with the lookup being policed.

The policy enforced by Capsicum's capability
mode is internally consistent, as it is based on a
fundamental principle rather than shallow system
call syntax. It can enforce the same restrictions as
the limited, internally-consistent use cases of
seccomp-bpf and pledge(2): if a process
enters capability mode with no resources held but
readable/writable file capabilities, no side effects
can be caused on the system except those
described by the descriptors. To enable more
sophisticated behaviors, Capsicum provides capa-
bilities to facilitate principled sharing of resources
within a coherent security model.

Capabilities
The historic concept of a capability in computer
science is that of an identifier for an object com-
bined with operations that can be performed on
it. This sense of the word was described by Dennis
and Van Horn in the late 1960s [DV66], and its
echoes can be heard in Unix today. In Dennis and
Van Horn's conception, a capability was an index
into a list of capabilities maintained by the super-
visor on behalf of a process. This concept carried
forward into Multics and then morphed into the
file descriptor as we know it today in Unix [RT78].

Like capabilities, file descriptors are indices into a
supervisor-maintained list of OS objects; they are
also associated with operations that may be per-
formed on them based on the flags they were
opened with (e.g., O_RDONLY). Unlike capabili-
ties, however, file descriptors carry unexpected,
implicit authority with them that cannot be
monotonically reduced. For example, an applica-
tion cannot open(2) a descriptor with flag
O_RDWR, dup(2) it, commute the new descriptor
to a read-only descriptor, and share it with an
untrusted worker process. Even when a file
descriptor is opened read-only, the Unix DAC
model will still permit system calls like fchmod(2)
to—perhaps unexpectedly—manipulate file meta-
data.

Capsicum's implementation of capabilities pro-
vides for the monotonic reduction of fine-grained
rights ("authorities") on specific objects. It does
this by attaching rights such as CAP_READ,
CAP_FSTAT, CAP_MMAP, CAP_FCHMOD, etc.,
to descriptors. These classes of behaviors corre-
spond to methods on kernel objects and are relat-
ed to sets of system calls that require them. For
example, to open a read-write file relative to a
directory with openat(2), that directory descrip-
tor must have at least CAP_READ, CAP_WRITE,
and CAP_LOOKUP enabled for it. Outside of capa-
bility mode, unsandboxed processes using ambi-
ent authority with system calls such as open(2)
are returned file descriptors with all rights implicit-
ly granted. This preserves compatibility with tradi-
tional Unix semantics while allowing for uniform
enforcement of capability rights both inside and
outside capability mode. Rights on descriptors can
be attenuated using cap_rights_limit(2),
descriptors can be inherited by or passed to sand-
boxed processes, and new descriptors derived

The policy enforced by
Capsicum's capability mode
is internally consistent, as it
is based on a fundamental
principle rather than shallow
system-call syntax.”

24 FreeBSDJournal

References cont inue next page

R e f e r e n c e s
[And72] Anderson, J. P. "Computer Security Techology Planning
Study", ESD-TR-73-51, Electronic Systems Division, US Air Force,
1972, URL: https://csrc.nist.gov/publications/history/ande72.pdf.
[AGW17] Anderson, J.; Godfrey, S.; and Watson, R. N. M.
"Toward Oblivious Sandboxing with Capsicum”, FreeBSD Journal,
July/August 2017, URL: https://www.freebsdfoundation.org/
past-issues/security.
[Bern17] Bernstein, O. "Denying Syscalls with Seccomp",
Eigenstate, retrieved August 2017, URL: https://eigenstate.org/notes/
seccomp.html.
[BCD69] Bensoussan, A.; Clingen, C.; and Daley, R. "The multics
virtual memory", in SOSP '69: Proceedings of the Second
Symposium on Operating Systems Principles, 1969, pp. 30–42,
DOI: 10.1145/961053.961069.
[Cor09] Corbet, J. "Seccomp and sandboxing", LWN.net, 2009,
URL: http://lwn.net/Articles/332974.
[Cor12] Corbet, J. "Yet another new approach to seccomp",
LWN.net, 2012, URL: http://lwn.net/Articles/475043.
[deRa15] de Raadt, T. "pledge(): a new mitigation mechanism",
2015, accessed September 2017, URL:
http://www.openbsd.org/papers/hackfest2015-pledge.
[DV66] Dennis, J. and Van Horn, E. "Programming semantics for

multiprogrammed computations", Communications of the ACM
9(3), 1996, pp. 143–155, DOI: 10.1145/365230.365252.
[FBF00] Fraser, T.; Badger, L.; and Feldman, M. "Hardening COTS
software with generic software wrappers", in Proceedings of the
2000 DARPA Information Survivability Conference and Exposition
(DISCEX), 2000, DOI: 10.1109/DISCEX.2000.821530.
[Gros16] Grosse, J. "systrace(1) is removed for OpenBSD 6.0",
2016, URL: http://daemonforums.org/showthread.php?t=9795.
[Lamp69] Lampson, B. "Dynamic protection structures", in AFIPS
'69 (Fall): Proceedings of the AFIPS 1969 Fall Joint Computer
Conference, 1969, DOI: 10.1145/1478559.1478563.
[MRA87] Mogul, J. C.; Rashid, R. F.; and Accetta, M. "The Packet
Filter: An Efficient Mechanism for User-level Network Code", in
Proceedings of the 11th Symposium on Operating Systems
Principles (SOSP), 1987, pp. 39–51, URL:
https://dl.acm.org/ft_gateway.cfm?id=37505.
[MV93] McCanne, S. and Jacobson, V. "The BSD Packet Filter: A
New Architecture for User-level Packet Capture", in Proceedings
of the USENIX Winter 1993 Conference, 1993, URL:
https://www.usenix.org/legacy/publications/library/
proceedings/sd93/mccanne.pdf.

from existing ones (e.g., via accept(2) or
openat(2)) derive their rights from their parent
objects. This allows delegation with confidence.

Sandboxing with Capsicum
Capsicum allows application authors to apply rig-
orous security policy to their applications with—in
some cases—a minimum of effort. Today, even
moderately complex applications such as hypervi-
sors and Web browsers can support rich use cases
by opening resources (including resource-bearing
resources such as directories and server sockets),
limiting the rights associated with those resources
and then entering capability mode. The work
required to sandbox the bhyve hypervisor in this
way is shown in Figure 5. Efforts are ongoing to
make the Capsicum model applicable to broader
classes of applications, including applications that

require access to external resources such as
powerboxes [Yee04], even when they are oblivi-
ous to sandboxing features [AGW17].

Starting from a rigorous foundation, Capsicum
is a platform that can support complex behaviors.
Since its security policies are both simple and
coherent, application authors can build support-
ing services on this foundation without requiring
expertise in kernel internals or the fear of con-
structing an incoherent security policy. We there-
fore see Capsicum as a generative platform that
enables application authors to focus on what they
do best, using rigorous security-enabling tools
without requiring extreme security expertise. It is
our hope that providing authors with tools for
safe software construction will enable future
applications to better protect users, not just from
each other, but from their own applications. •

Fig. 5 Only minimal code changes
were required to add Capsicum
support to the bhyve hypervisor.
caph_cache_catpages()
pre-opens a directory,
caph_limit_std{out,err}()
limits the rights held on stdout
and stderr, and cap_enter()
enters capability mode.

Premier VPS Hosting

www.rootbsd.net

RootBSD has multiple datacenter locations,
and offers friendly, knowledgeable support staff.

Starting at just $20/mo you are granted access to the latest
FreeBSD, full Root Access, and Private Cloud options.

[Pled17] “pledge—restrict system operations", in OpenBSD System
Calls Manual, 2016–17, retrieved September 2017,
URL:https://man.openbsd.org/pledge.2.
[Pos1e] Portable Applications Standards Committee of the IEEE
Computer Society, "Draft Standard for Information Technology—Portable
Operating System Interface (POSIX)—Part 1: System Application Program
Interface (API)—Amendment #: Protection, Audit and Control Interfaces
[C Language]", IEEE Draft Standard (withdrawn), 1997, URL:
http://wt.tuxomania.net/publications/posix.1e/download.html.
[Prov03] Provos, N. "Improving Host Security with System Call Policies",
in Proceedings of the 12th USENIX Security Symposium, 2003,
URL: https://dl.acm.org/citation.cfm?id=1251371.
[PFH03] Provos, N.; Friedl, M.; and Honeyman, P. "Preventing Privilege
Escalation", in Proceedings of the 12th USENIX Security Symposium,
2003, pp. 231–242, URL: https://www.usenix.org/legacy/events/
sec03/tech/provos_et_al.html.
[RT78] Ritchie, D. and Thompson, K. "The UNIX time-sharing System",
in Bell System Technical Journal 57(6), 1978, pp. 1905-1929, DOI:
10.1002/j.1538-7305. 1978.tb02136. x.
[SA14:16] FreeBSD. "Multiple vulnerabilities in file(1) and
libmagic(3)", 2016, URL: https://www.freebsd.org/security/advisories/
FreeBSD-SA-14:16.file.asc.
[SS72] Schroeder, M. D. and Saltzer, J. H. "A Hardware Architecture for
Implementing Protection Rings", in Communications of the ACM 15(3),
1972, pp. 157–170, DOI: 10.1145/361268.361275.
[Wat07] Watson, R. N. M. "Exploiting concurrency vulnerabilities in sys-
tem call wrappers", in Proceedings of the 2007 USENIX Workshop on
Offensive Technologies (WOOT), 2007, URL: http://static.usenix.org/
event/woot07/tech/full_papers/watson/watson.pdf.
[Wat13] Watson, R. N. M. "A Decade of OS Access-Control
Extensibility", in Communications of the ACM 56(2), 2013, pp. 52–63,
DOI: 10.1145/2408776.2408792.

[WALK10] Watson, R. N. M.; Anderson, J.; Laurie, B.; and Kennaway, K.
"Capsicum: practical capabilities for UNIX", in Proceedings of the 19th
USENIX Security Symposium, 2010, URL: https://www.usenix.org/
legacy/events/sec10/tech/full_papers/Watson.pdf.
[WCM+02] Write, C.; Cowan, C.; Morris, J. et al. "Linux Security
Modules: General Security Support for the Linux Kernel", in Proceedings
of the 11th USENIX Security Symposium, 2002, URL: https://
www.usenix.org/legacy/event/sec02/full_papers/wright/wright.pdf.
[WFMV03] Watson, R.; Feldman, B.; Migus, A.; and Vance, C. "Design
and implementation of the Trusted BSD MAC framework", in
Proceedings of the 2003 DARPA Information Survivability Conference
and Exposition (DISCEX '03), 2003, DOI: 10.1109/DIS-
CEX.2003.1194871.
[Yee04] Yee, K. "Aligning security and usability", IEEE Security and
Privacy 2(5), 2004, DOI: 10.1109/MSP.2004.64.

Sept/Oct 2017 25

JONATHAN ANDERSON is an Assistant
Professor in Memorial University of
Newfoundland's Department of Electrical
and Computer Engineering, where he works
at the intersection of operating systems,
security, and software tools such as
compilers. He is a FreeBSD committer
and is always looking for new graduate
students with similar interests.

JONATHAN ANDERSON is an Assistant
Professor in Memorial University of
Newfoundland's Department of Electrical
and Computer Engineering, where he works
at the intersection of operating systems,
security, and software tools such as
compilers. He is a FreeBSD committer
and is always looking for new graduate
students with similar interests.

References cont inued

