— \

¥

By Trent Tho /
\
ever had to navigate the system administratio 3
, You've probably come across virtualization as a
to make your life a little easier. Instead of having
KS full of computer hardware, virtualization allows'y
sentially turn one computer into many computers,
g precious space and computing cycles. Virtualizat
nelp with small tasks, such as installing VirtualBox
MWare on a workstation to test drive the new hotte
JUX distribution. The tech giant Amazon uses Xe
lon to power its Amazon Web Services cloud |
which made them over $12 billion in 201
ourse, the purpose of this article isnt tc
billionaire but to help make your |

asier. We're going to do thi

 key technologie



GETTING STARTED WITH

0N YME

iohyve’s Origin

ZFS is the filesystem and logical volume manager
that has been in FreeBSD since FreeBSD 7 in 2008,
when it was still considered experimental. It origi-
nated at Sun Microsystems (now Oracle) in 2005,
when it was released with the OpenSolaris operat-
ing system, and since then has been ported to
many other operating systems. Key features in ZFS
include automatic data integrity, software RAID
(called RAID-Z), creating logical volumes that act as
raw disks (Zvols), and snapshots (and the ability to
roll back to previous snapshots). We'll get into why
these features are important to iohyve later.

Of course, we also need some sort of virtualiza-
tion technology to help turn one computer into
many computers. Indeed, FreeBSD has had jails
since about FreeBSD 4 (longer than ZFS support).
FreeBSD jails provide a lightweight way to virtualize
the FreeBSD userland, meaning you can only virtu-
alize FreeBSD, as all of your jails will share the
same FreeBSD kernel. It's a great way to turn one
FreeBSD host into many FreeBSD “virtual
machines,” each with their own IP addresses and
separation from each other (one jail cannot access
data in another jail by default, and by design).
Solaris has a similar technology called Solaris
Zones, which is still used today by virtualization
solutions like SmartOS (based on OpenSolaris).
Linux also has its own containers, provided by LXC
and even Docker. The problem with most of these
solutions is that they cannot virtualize other oper-
ating systems. For instance, you can’t run Linux in
a jail, or FreeBSD in a Docker container.

This is where hardware-assisted virtualization
comes in to help. Using CPU technologies like VT-x
on Intel CPUs or AMD-V on AMD CPUs, a special
software suite called a hypervisor allows one oper-
ating system to virtualize another. Note that | didn’t
use the word “emulate.” An emulator, such as
QEMU, only emulates a processor, while a hypervi-
sor connects a virtual machine to the CPU itself,
thus having huge performance increases over emu-
lation. There are a few different solutions that I've
mentioned, including Xen. Xen is a powerful hyper-
visor, and is even available on FreeBSD. Since its
beginnings around 2003, it has grown considerably.
Linux distributions have a built-in hypervisor called
KVM (Kernel-based Virtual Machine). Linux KVM
has been around since 2007, and is even used by
SmartOS to virtualize other operating systems
where Zones won't cut it. The hypervisor that

iohyve uses is bhyve, which has been built into
FreeBSD since FreeBSD 10 in 2014. You'll note that
this is considerably young in comparison to the
other hypervisors mentioned. The bhyve hypervisor
is @ much more lightweight hypervisor, with its ker-
nel module and userland utilities taking up less than
500k of space. The bhyve hypervisor has also been
ported to other operating systems including Mac OS
X where it is called xhyve, and is used by Docker to
do the heavy lifting for their Linux containers.

The bhyve hypervisor may be lightweight, but it
is a powerful tool with many features. A few years
ago while navigating my own system administra-
tion waters, | needed to virtualize some Linux
servers. After trying many different solutions, |
landed on FreeBSD, mainly for the ZFS support. At
the time, | was using Oracle VirtualBox with
phpVirtualBox as a GUI to remotely administer vir-
tual machines. | configured VirtualBox to store all
the virtual machines on a single ZFS dataset. This
worked okay, as | would be able to make snap-
shots of the dataset to make backups, but | wasn't
able to store virtual machines on separate ZFS
datasets, which, to me, made more sense. That
way | can make snapshots of individual virtual
machines and not a snapshot of all the virtual
machines. For a very short time, | tried to modify
VirtualBox to create a new dataset to put a virtual
machine into, but this turned out to be more work
than | wanted to put in. Around that same time, |
was playing with FreeBSD jails, and was even using
them to separate phpVirtualBox from the
VirtualBox host so if someone exploited the PHP
webserver, they would be stuck in the jail, and not
on the VirtuaBox host itself. At first, | used ezjail-
admin to implement this, but quickly dropped it
for iocage, a jail manager that utilized ZFS in a way
that was similar to what | wanted to do with
VirtualBox (each jail is on its own ZFS dataset).

As previously mentioned, jails are wonderful,
but they can only “virtualize” FreeBSD, not other
operating systems like Linux. | really loved the idea
of iocage though. Not only did each jail have its
own dataset, but it also stored the properties of
each jail in the ZFS user properties of the dataset,
essentially eliminating the need for configuration
files or a dependency on a database. | was also
attracted to the iocage project because they used
shell scripting, meaning that the code was easily
understood at a glance, and didn't require any
compilation. The iocage project has since moved

July/August 2017




on from these two attractions, mainly due to its
enormous growth since then, where they have
opted for UCL configuration to speed things up
(ZFS user properties queries can be very slow on a
busy system) and have switched to Python to alle-
viate the headaches of writing a massive shell
script. At first, my idea was to add bhyve support
to iocage, but it quickly became clear that this
was like putting a square peg in a round hole,
while the size of the round hole was constantly
being changed (with iocage growing at such a
fast rate, it was hard to keep up with the
changes).

Eventually one afternoon, | hacked out a basic
script that mimicked the simple command line
interface of iocage to mate bhyve and ZFS togeth-
er. In the beginning, it consisted of just one script,
and had very limited abilities like only support for
FreeBSD virtual machines, and support for only
one virtual disk that was stored as a file. |
uploaded the script as a text file to GitHub's Gist
repository and showed it to a handful of people.
They all wanted more, and so | eventually created
an actual GitHub repository, which is still around.
This allowed me to turn a hacked-out script into a
full-fledged project, with a wiki that can be used
like a handbook, an issue tracker to help with bug
reporting, and the ability for anyone to help con-
tribute with pull requests. Since its creation,
iohyve has grown with more and more features
and bug fixes being added along the way. One
defining moment in iohyve history was the sug-
gestion to use ZFS ZVOLs as a way to better utilize
ZFS. ZVOLs can be created and snapshotted just
like regular datasets; however, they appear to the
operating system as basically disk devices. This is
very similar to the way many Linux KVM and Xen
solutions store their virtual machines on LVM par-
titions, cutting some performance overhead.
Eventually, the ability to also run the other BSDs,
like NetBSD and OpenBSD, as well as various
Linux distributions, had support in iohyve with the
addition of grub2-bhyve support, which essential-
ly acts like the GRUB bootloader for bhyve (as the
name implies). This is because bhyve doesn’t have
a built-in BIOS to load the important bits of the
operating system. There was bhyveload which will
load the FreeBSD-based operating systems, and
grub-bhyve, to help
boot operating sys-
tems that can use
GRUB to boot.
Eventually, bhyve gained support for UEFI booting,
meaning there was no longer a need to use
bhyveload or grub-bhyve, as the UEFI firmware
could be used to load the operating system, just

FreeBSD Journal

like many modern computers use to load operat-
ing systems today on “bare metal.” With this UEFI
firmware, you can run many different types of
operating systems, including modern versions of
the Microsoft Windows operating system family.
Another recent feature addition to bhyve was the
ability to have a graphical console provided by
UEFI-GOP. Originally, bhyve only had support for
an emulated serial console, meaning the virtual
machines didn’t have support for a GUI with a
mouse and keyboard, like Oracle VirtualBox's
remote display feature. Since FreeBSD 11, bhyve
has come built in with this UEFI-GOP support as a
basic VNC server. Since BSDCan 2016, iohyve has
had the ability to utilize this VNC server to help
install operating systems that have graphical
installers like CentOS and Windows. Although
that's a cool feature, we won't get much into
UEFI-booted bhyve virtual machines.

How to Use iohyve

So enough of the boring iohyve origin story. Let's
learn how to actually use iohyve! For the purpos-
es of this tutorial, | will be using FreeBSD 11
Release. Although most of the hottest new fea-
tures (and feature branches) of bhyve are done on
the current branch, | chose to go with a release
simply for the ability to keep updates easy with
freebsd-update and pkg. Your mileage may vary.
An important part of iohyve, ZFS, can be installed
and set up during the installation process. Even
though you may want to keep your iohyve virtual
machines, or “guests,” on a separate zpool, | still
chose to go with FreeBSD installed on ZFS. If you
have the overhead to run virtual machines, you
have the overhead to run ZFS (terms and condi-
tions may apply). | often chose to lump all the
disks | have in a box (even if it’s just one) into a
zpool and install FreeBSD onto it (usually as
zroot). Once the installation is done, you are given
the opportunity to drop to a shell to make any
changes before rebooting into your new and fresh
FreeBSD installation. | take this opportunity to
install some dependencies and utilities to help
with making the new installation ready to go.
Your “stack” may be different, but this is just one
| find useful to get started. Here's the one-liner
that uses pkg:

pkg install sudo nano tmux git htop bhyve-firmware grub2-bhyve

The use of sudo is pretty straightforward:
bhyve requires root (for now) and | don't trust
users. Instead of giving them access to the root
account, | delegate this through sudo. | know



some of you are giving me weird looks with the
use of nano, but it's what I've been using to edit
config files since I've been editing config files.
Sure, edit in base is simpler than vi, but nano’s
interface is more muscle memory than thinking at
this point. Next on the list is tmux, the terminal
multiplexor. This is handy for a number of reasons,
the first of which is: you can keep your sessions
opened even if your SSH session dies. Since bhyve
doesn’t utilize a graphical console by default, all
communication can be done over null modems
(like a serial connection). The use of tmux allows
for you to open a new tmux window or pane for
each new console to an iohyve guest. I'll go into
how it can be used to help monitor your iohyve
host. | like to use git because even if you can
install iohyve via ports or pkg, you can make sure
you're getting the latest and greatest bug fixes
from the iohyve GitHub master branch. I also install
htop honestly to get the cool CPU graph output,
for better resource monitoring at a glance. The
bhyve-firmware package installs the bhyve UEFI
firmware. We won't be going into that, but it's
good to have on hand just in case. You can find
more info on iohyve and UEFI in the man page.
Lastly is grub2-bhyve, which allows us to run
other BSDs or Linux distributions as iohyve guests.
After everything is installed, | add my default
user to the sudoers file and reboot into the new
installation. From here on out, | use SSH to con-
nect to the machine. In theory, this can all be done
via the console as well. The first thing | do after
logging in is start a new tmux session with simply:

tmux

| should warn you, if you've never used tmux
before, it's awesome, and is kind of like GNU
screen. Next, | install a new copy of iohyve from
GitHub with:

git clone
https://github.com/pr1ntf/iohyve.qgit

You can also fetch the latest master ZIP file if
you look for it. There are also releases available,
that are also available as a port and package. Now
we can install it (if we are using sudo) with:

cd iohyve/
sudo make install clean
el =

Voila! The magic of makefiles moves everything
where it needs to be, including a man page entry
and an RC script. Now we need to set up iohyve

itself. One setup command only needs to be run
once; the other needs to be run anytime you start
your iohyve host. This can be easily done with the RC
script, but we'll get to that shortly. First, we set up
iohyve on a zpool. In the example, | use the built-in
zroot pool. You can use whatever pool you've set up.

sudo iohyve setup pool=zroot

Next, we want to set up required kernel mod-
ules and networking for our iohyve host. You can
do this manually yourself, but if your iohyve host is
just going to be used for iohyve, | suggest using
this method. Note this method doesn’t work with
wireless. There is some documentation out there
on using iohyve with wireless, but for our purpos-
es, we are going to set up networking attached to
an Ethernet device. All of your iohyve guests will
be attached to a bridge, and that bridge is
attached to an interface. There are more compli-
cated setups than this, but those features are new
to iohyve, and bugs are still being worked out as
of this writing. Check the man page for more info.
In the following example, | am going to use the
em0 interface on my iohyve host. You can see on
which interfaces you have working networking by
a simple ifconfig.

sudo iohyve setup kmod=1 net=em0

You can make sure iohyve does this on every
boot by adding the following to your rc.conf:

iohyve enable="YES"”
iohyve flags="kmod=1] net=em0”

Next, we are going to set up our first iohyve
guest. We'll create the guest, then change some
properties of the guest so that we can run Ubuntu
Linux. Next, we'll fetch an Ubuntu ISO directly to
iohyve’s local ISO repository. Any installation I1SO
needs to be in the iohyve repository, and needs to
be added to the repository by iohyve itself (you
cannot simply move an ISO to a directory).

First the creation, in this case | want to name it
ubantuserver and | want the guest to have a
16GB virtual hard drive:

sudo iohyve create ubantuserver 16GB

Next we need to change some properties. I'm
going to give the guest a description, change the
RAM and CPU to give it more resources (2 Gig of
ram and two virtual CPUs), and configure it to
utilize grub-bhyve to boot the Ubuntu kernel.
We can do this in one simple iohyve command:

July/August 2017




You can check to see if everything is set up prop-
erly with:

iohyve info -v

Be sure to put your description string between
two double quotes. You don’t have to set a
description if you don’'t want to; the default
description is the timestamp of when the guest
was created. Next, we are going to fetch the ISO
from Canonical. Since we aren’t going to be
using a GUI to install, we will grab the server edi-
tion from my fastest mirror (your mirror may vary,
see the Ubuntu website for more info):

sudo iohyve fetchiso
http://mirror.pnl.gov/releases/xenial/ubuntu-16.04.2-server-amd64.iso

sudo iohyve set ubantuserver description="Ubuntu 16.04 Server” ram=2048M cpu=2
loader=grub-bhyve os=Ubuntu

Now move on to your tmux window with the
console open and if everything worked, you
should see a GRUB menu if you're fast enough,
or a wall of text scrolling by. If you have a GRUB
prompt that looks like “grub>" then double-
check your os property settings on the guest.
Different distributions have different quirks that
iohyve can work with. Your installation should go
like any other Ubuntu installation, just be sure to
choose the LVM install (which is the default). If
you choose to install directly onto ext4 without
LVM, you may want to set your os property to
“debian"” as the quirks should be similar to non-
LVM Ubuntu installs. Sometimes you can get ker-

nel messages in your console while
installing, specifically during partitioning.

This will automatically fetch the ISO and put it
where it needs to be. If you have already fetched
the ISO, you can run something like:

sudo iohyve cpiso /full/path/to/iso.iso

Now here’s the part where tmux becomes real-
ly useful. We're going to create a tmux window
by typing Ctrl+B then “c”. Ctrl+B is the default
action key, similar to Ctrl+A in screen. The “c”
creates the new window, pressing Ctrl+B and
then “n” will cycle to the next window, and
Ctrl+B and then “p” brings you to the previous
window. In our new tmux window we are going
to open a console to the new guest:

sudo iohyve console ubantuserver

Nothing should be there yet, because we
haven't started the guest yet. Let's go over to our
previous tmux window using the key command
described above (Ctrl+B then C). We can see a list
of ISOs that are in the local iohyve repository with:

iohyve isolist

There we should see the ISO we fetched:

ubuntu-16.04.2-server-amd64.1iso.

So to begin our installation, we run the follow-
ing command to boot up the new guest with the

attached Ubuntu ISO:

sudo iohyve install ubantuserver

FreeBSD Journal

This is fine, and just a product of using a
serial console. If everything goes well, you
should be prompted to reboot. Click okay and
then head back over to your previous tmux win-
dow. If iohyve won't automatically reboot the
guest, you can make sure it is no longer running
and then start the guest for its first full boot:

iohyve list
sudo iohyve start ubantuserver

On your tmux window with the console open,
you should start to see the new Ubuntu Guest
boot up. From there you can do whatever it is
you want to do with Ubuntu. If you don't like
Ubuntu, take a peek at the man page to see
what OSes work with iohyve’s ability to manage
quirks. You can rinse and repeat as long as you
have the resources to do so. To keep an eye on
my resources, | create a special tmux window
with four different panes. Check the tmux man
page for how to create and size panes, but if you
are lazy like | sometimes am, you can just run
these four commands in a different tmux win-
dow. Using panes just gives it a fancy “control
panel” feel to it. First we run htop as root, and
filter it to only view processes that start with
“bhyve”. This will give us visibility into what
bhyve guests are using how much CPU and RAM
(with those fancy bar graphs!). In the next tmux
window or pane, | like to have a current view of
the installed guests and what resources they
have, and whether or not they are running with
iohyve info. The next two are systat outputs that
give both a view of disk usage and network
usage. Remember to correlate the “tap” inter-
faces in the systat output to the output of
iohyve info.



sudo htop
iohyve info —sv
systat —iostat
systat —ifstat

Hopefully you now have the knowledge to
maybe start moving some of those Linux servers
lying around to a virtual host, or maybe just to
have a nice sandbox to test new things in to help
you learn a new skill. You may find that you like
to monitor your resources differently, or that you
only need to run FreeBSD guests, or only
Windows guests. | hope that iohyve helps you
navigate the system administration waters. If you
have problems or questions with iohyve, or you'd
like to request a new feature, or even contribute
to iohyve, head on over to the GitHub page
(https:/github.com/pr1ntf/iohyve) and someone
will eventually get to you. The iohyve project is
run by volunteers, so don’t expect an instant
response, but we'll generally respond to a GitHub
issue (https://github.com/pr1ntf/iohyve/issues)
eventually.

TRENT THOMPSON is a security engineer by
day and a FreeBSD and virtualization hobbyist
by night, maintaining and contributing to The
iohyve Project. When not doing BSD-related
activities, you can find him tinkering with
something else technical around the house,
like musical synthesizers, model rockets, or
micro-computers from the 1980s.You can
never have too many hobbies.

BUILD
SOMETHING

GREATER.

Dell is now part of the Dell Technologies family. So
you can make your mark in everything from storage
and big data to the Internet of Things.

Apply at Dell.com/careers

July/August 2017 | 9



