
32 FreeBSD Journal

CLOUDABI IN THEORY

CloudABI is a runtime for which you can
develop POSIX-like software. CloudABI is dif-
ferent from FreeBSD's native runtime in that

it enforces programs to use dependency injection.
Dependency injection is a technique that is normal-
ly used in the field of object-oriented programming
to make components (classes) of a program easier
to test and reuse. Instead of designing classes that
attempt to communicate with the outside world
directly, you design them so that communication
channels are expressed as other objects on which
the class may perform operations (dependencies).

A good example of dependency injection is a
web server class that depends on a separate socket
object being provided to its constructor. Such a class
can be unit tested very easily by passing in a mock
socket object that generates a fictive HTTP request
and validates the web server’s response. This class is
also reusable, as support for different network pro-
tocols (IPv4 vs. IPv6, TCP vs. SCTP), cryptography
(TLS), rate limiting, traffic shaping, etc., can all be
added as separate helper classes. The implementa-
tion of the web server class itself can remain
unchanged. A web server class that directly creates
its own network socket through the socket(2)

CloudABI?
W H A T S G O I N G O N W I T H

B Y E D S C H O U T E N

S E E
T E X T
O N L Y

The September/October 2015 issue of FreeBSD Journal featured an

article on CloudABI, an open-source project I started working on earli-

er that same year. As a fair amount of time has passed since the article

appeared, let’s take a look at some of the developments that have

taken place in the meantime and what is being planned next. But first,

a recap of what CloudABI is and what using it looks like.

system call wouldn’t allow for this.
The goal behind CloudABI is to introduce

dependency injection at a higher level. Instead of
applying it to classes, we want to enforce entire
programs to have all of their dependencies injected
explicitly on startup. In our case, dependencies are
represented by file descriptors. Programs can no
longer open files using absolute pathnames. Files
are only accessible by injecting a file descriptor cor-
responding to either the file itself or one of its par-
ent directories. Programs can also no longer bind
to arbitrary TCP ports. They can be injected with
pre-bound sockets.

What is nice about this model is that it reduces
the need for jails, containers, and virtual machines.
These technologies are often used to overcome
limitations related to the inability to run multiple
configurations/versions of the same software
alongside, due to a lack of isolation provided by
UNIX-like systems by default. With
CloudABI, it is possible to obtain such iso-
lation by simply injecting every instance of
a program with different sets of files,
directories, and sockets.

It becomes very easy for an operating
system to sandbox processes following
this approach. By requiring all dependen-
cies to be injected, the operating system
can simply deny access to everything else.
There is no need to maintain security poli-
cies separately, as is the case with frame-
works like Linux’s SELinux and AppArmor.
If an attacker manages to take over con-
trol of a CloudABI-based process, he/she
will effectively only be able to access the
resources the process needs to interact
with by design.

CloudABI has been influenced a lot by
Capsicum, FreeBSD’s capability-based secu-
rity framework. CloudABI differs from
Capsicum in that Capsicum still allows you
to run startup code without having sand-
boxing enabled. The process has to switch
over to “capabilities mode” manually, using
cap_enter(2). CloudABI executables are
already sandboxed by the time the first
instruction of the program gets executed.

The advantage of Capsicum’s model is
that it makes it possible to integrate sand-
boxing into conventional UNIX programs,
which are typically not designed to have
all of their dependencies injected. The
advantage of CloudABI’s model is that it

allows us to remove all APIs that are incompatible
with sandboxing. This reduces the effort needed to
port software tremendously, as parts that need to
be modified to work with sandboxing now trigger
compiler errors, as opposed to runtime errors that
may be hard to trigger, let alone debug.

A side effect of removing all of these sandbox-
ing-incompatible APIs is that it makes CloudABI
so compact that it can be implemented by other
operating systems relatively easily. This means
that you can use CloudABI to build a single exe-
cutable that runs on multiple platforms without
recompilation.

CLOUDABI IN PRACTICE

To demonstrate what it looks like to use CloudABI
in practice, let’s take a look at a tiny web server for
CloudABI that is capable of returning a fixed HTML
response back to the browser.

#include <sys/socket.h>
#include <argdata.h>
#include <program.h>
#include <string.h>
#include <unistd.h>

void program_main(const argdata_t *ad) {
// Extract socket and message from config.
int sockfd = -1;
const char *message = "";
{

argdata_map_iterator_t it;
argdata_map_iterate(ad, &it);
const argdata_t *key, *value;
while (argdata_map_next(&it, &key, &value)) {

const char *keystr;
if (argdata_get_str_c(key, &keystr) != 0)

continue;
if (strcmp(keystr, "http_socket") == 0)

argdata_get_fd(value, &sockfd);
else if (strcmp(keystr, "html_message") == 0)

argdata_get_str_c(value, &message);
}

}

// Handle incoming requests.
// TODO: Actually process HTTP requests.
// TODO: Use concurrency.
for (;;) {

int connfd = accept(sockfd, NULL, NULL);
dprintf(connfd,

"HTTP/1.1 200 OK\r\n"
"Content-Type: text/html\r\n"
"Content-Length: %zu\r\n\r\n"
"%s", strlen(message), message);

close(connfd);
}

}

May/June 2017 33

34 FreeBSD Journal

What you may notice immediately is that
CloudABI programs get started through a function
called program_main(), as opposed to using
C’s standard main() function. The
program_main() function does away with C’s
string command-line arguments and replaces it
with a YAML/JSON-like tree structure called
Argdata. In addition to storing values like
booleans, integers, and strings, Argdata can have
file descriptors attached to it. This is the mecha-
nism that is used to inject dependencies on start-
up. This web server expects the Argdata to be a
map (dictionary), containing both a socket for
accepting incoming requests (http_socket) and
a HTML response string (html_message).

The following shell commands show how this
web server can be built and executed. The web
server can be compiled using a cross compiler
provided by the devel/cloudabi-toolchain
port. Once built, it can be started with
cloudabi-run, which is provided by the
sysutils/cloudabi-utils port. The
cloudabi-run utility reads a YAML file from
stdin and converts it to an Argdata tree, which
is passed on to program_main(). The YAML file
may contain tags like !fd, !file, and !socket.
These tags are directives for cloudabi-run to
insert file descriptors at those points in the
Argdata tree. Only file descriptors referenced by
the Argdata end up in the CloudABI process.

This example shows that CloudABI can be used
to build strongly sandboxed applications in an
intuitive way. With the configuration passed to
cloudabi-run, this web server is isolated from the
rest of the system completely, with the exception of
the HTTP socket on which it may accept incoming
connections. By using Argdata, we can also omit a
lot of boilerplate code from our web server, like con-
figuration file parsing and socket creation. All of this

functionality is implemented by cloudabi-run
once and can be reused universally.

HARDWARE ARCHITECTURES

When CloudABI was released in 2015, we only
provided support for creating executables for x86-
64. As I believe CloudABI is a very useful tool for
sandboxing software on embedded systems and
appliances as well, we ported CloudABI to also
work nicely on ARM64 around the same time the
previous article on CloudABI was published. In
August 2016, we ported CloudABI to the 32-bit
equivalents of these architectures (i686 and
ARMv6).

An interesting aspect of porting over CloudABI
to these systems was to obtain a usable toolchain.
When CloudABI was available only for x86-64, we
already used Clang as our C/C++ compiler. Clang
is nice in the sense that a single installation can be
used to target multiple architectures very easily. It
can automatically infer which architecture to use
by inspecting argv[0] on startup. This meant
that we only needed to extend the existing
devel/cloudabi-toolchain port to install
additional symbolic links pointing to Clang for
every architecture that we support.

At the same time, we still made use of GNU
Binutils to link our executables. Binutils has the
disadvantage that an installation can only be used
to target a single hardware architecture. Even

worse, the Binutils codebase always
requires a large number of modifi-
cations for every pair of operating
system and hardware architecture it
should support.

At around the time we started
working on supporting more archi-
tectures, the LLVM project was mak-
ing a lot of progress on their own
linker, LLD. What is pretty awesome
about LLD is that it’s essentially free
of any operating system specific
code. It’s capable of generating

binaries for many ELF-based operating systems out
of the box, simply by using sane defaults that
work well across the board. Compared to GNU
Binutils, it also has a more favorable license (MIT
vs. GPLv3).

When we started experimenting with LLD, we
noticed there were still some blockers that pre-
vented us from using it immediately. An important
step during the linking process is that the linker

$ x86_64-unknown-cloudabi-cc -o webserver webserver.c
$ cat webserver.yaml
%TAG ! tag:nuxi.nl,2015:cloudabi/

http_socket: !socket

type: stream
bind: 0.0.0.0:8080

html_message: <marquee>Hello, world!</marquee>
$ cloudabi-run webserver < webserver.yaml &
$ curl http://localhost:8080/
<marquee>Hello, world!</marquee>

•

May/June 2017 35

applies relocations: a series of rules stored in
object files that describe how machine code
needs to be adjusted to point to the correct
addresses of variables and functions when being
linked into a program or library. We observed that
LLD applied several types of relocations incorrect-
ly, causing resulting executables to access invalid
memory addresses almost instantly. This was due
to the fact that the LLD developers had mainly
focused on getting dynamically linked executables
to work, whereas CloudABI uses static linkage.

After filing bug reports and sending various
patches upstream, we managed to get LLD work-
ing reliably for at least x86-64, i686, and ARM64.
For full ARMv6 support we had to wait until LLD
4.0 got released, as ARMv6 uses a custom format
for C++ exceptions metadata (EHABI) that LLD
didn’t yet support.

LLD worked so well for us that at one point we
decided to stop using GNU Binutils entirely.
Together with Google’s Fuchsia operating system,
CloudABI is now one of the systems that has
switched over to LLD completely. The
devel/cloudabi-toolchain port now
installs a toolchain based on LLVM 4.0, setting up
symbolic links for *-unknown-cloudabi-ld to
point to LLD.

OPERATING SYSTEMS AND

EMULATORS

One of the original requirements for running
CloudABI programs was that you needed an
operating system kernel capable of executing
them natively. On FreeBSD, this is very easy to
achieve, as FreeBSD 11 and later ship with the
kernel modules for that by default (called
cloudabi32.ko and cloudabi64.ko, both
depending on common code in cloudabi.ko).
The Linux kernel patchset has also matured over
time, but hasn’t been upstreamed, meaning that
users still need to install custom-built kernels. On
systems like macOS, it’s undesirable to install a
modified operating system kernel.

To lower the barrier for at least experimenting
with CloudABI on these systems, we’ve developed
an emulator capable of running CloudABI exe-
cutables on top of unmodified UNIX-like operat-
ing systems. The emulator works by mapping the
executable in the same address space and jump-
ing to its entry point. Code is executed natively,
without being interpreted or recompiled dynami-
cally. System calls end up calling into the emula-

tor, which forwards
them to the host oper-
ating system.

While working on this,
we wanted to prevent any
complexity in the emulator that
could easily be avoided by improv-
ing CloudABI itself. For example,
CloudABI executables for our 64-bit archi-
tectures are now required to be position inde-
pendent. Whereas systems like HardenedBSD and
OpenBSD are mainly interested in using Position
Independent Executables (PIE) to allow for
Address Space Layout Randomization (ASLR), we
see it as a useful tool for guaranteeing that
CloudABI executables can be mapped by the
emulator without conflicting with address ranges
used by the emulator internally.

Another improvement we’ve made is that
CloudABI executables no longer attempt to
invoke system calls through special hardware
instructions like int 0x80 and syscall direct-
ly. This is important, as we don’t want CloudABI
executables to call into the host system’s kernel
while emulated. They must call into the emulator
instead. The runtime is now required to provide an
in-memory shared library (a virtual Dynamic Shared
Object, vDSO) to CloudABI executables on startup,
exposing one function for every system call sup-
ported by the runtime. When running in an emula-
tor, the vDSO points to system call handlers in the
emulator. When running natively, the kernel pro-
vides a vDSO to the process that contains tiny
wrappers that do use the special hardware
instructions to force a switch to kernel mode:

An advantage of using a vDSO this way is that
it makes it a lot easier to add and remove system
calls over time. As system calls are now identified
by strings, not numbers, third parties can easily
place extensions under a custom prefix that does-
n’t clash with CloudABI’s set of system calls (e.g.,
acmecorp_sys_*, as opposed to
cloudabi_sys_*). Programs can easily detect
which system calls are present and absent during
startup by simply scanning the vDSO’s symbol table.

ENTRY(cloudabi_sys_fd_sync)
mov $15, %eax
syscall
ret

END(cloudabi_sys_fd_sync

Advertise Here

CLIMB
WITH US!
� LOOKING
for qualified

job applicants?

� SELLING
products

or services?

Let FreeBSD Journal
connect you with a

targeted audience!

Email
walter@freebsdjournal.com

OR CALL

888/290-9469

Finally, we’ve also made some improvements to the
way CloudABI implements Thread-Local Storage (TLS). It
is now designed in a way that the emulator can more
efficiently switch between the context used by the host
and guest process. This is achieved by requiring that the
Thread Control Block (TCB) of the guest always retains a
pointer to the TLS area of the host. When performing a
system call, the emulator can temporarily reinstate its
own TLS area by extracting it from the TCB of its guest.

One of the goals behind building an emulator using
this approach is that having an easy way of embedding
the execution of CloudABI programs is useful for many
purposes unrelated to emulation. One can now design a
system call tracing utility like truss(8) entirely in user
space without depending on any special kernel interfaces
like ptrace(2). Other interesting use cases include user
space deadlock detectors for multithreaded code, and
fuzzers to inject random failures.

The user space emulator for CloudABI has in the
meantime been integrated into cloudabi-run and can
easily be enabled by passing in the -e command line
flag. Below is a transcript of how one can build and run a
CloudABI program on macOS.

BETTER C++ SUPPORT

When CloudABI was developed initially, our main focus
was to get code written in C to work. After CloudABI’s C
library became relatively complete and a fair number of
packages for software written in C started to appear, we
shifted our focus toward improving the experience of
porting software written in C++ to CloudABI.

$ cat hello.c
#include <argdata.h>
#include <program.h>
#include <stdio.h>
#include <stdlib.h>

void program_main(const argdata_t *ad) {
int fd = -1;
argdata_get_fd(ad, &fd);
dprintf(fd, "Hello, world!\n");
exit(0);

}

$ x86_64-unknown-cloudabi-cc -o hello hello.c
$ cat hello.yaml
%TAG ! tag:nuxi.nl,2015:cloudabi/

!fd stdout
$ cloudabi-run hello < hello.yaml
Failed to start executable: Exec format error
$ cloudabi-run -e hello < hello.yaml
Hello, world!

TM

May/June 2017 37

Early on we had managed to get LLVM’s C++
runtime libraries (libcxx, libcxxabi, and
libunwind) to work, but they still required a lot
of local patches. In many cases, these patches
were cleanups not specific to CloudABI. They
made the code more portable in general. Since the
previous article was published, we’ve been able to
get almost all of these patches integrated. At the
same time, we’ve also been able to package Boost,
a commonly used framework for C++.

An interesting piece of software written in C++
that we’ve ported to CloudABI is LevelDB. LevelDB
is a library that implements a heavily optimized
sorted key-value store, using a data structure
called a log-structured merge-tree. It is used within
Google as a building block for BigTable, a database
system that powers many of their web services.

Porting LevelDB really demonstrated the
strength of CloudABI: by omitting any interfaces
incompatible with Capsicum, it was trivial for us to
find the parts of code that needed to be patched
up to work well with sandboxing. In the case of
LevelDB, it pointed us straight to leveldb::Env,
the class that implements all of the filesystem I/O.
We’ve made it possible to use LevelDB in sand-
boxed software by changing this class to hold a
file descriptor of a directory to which filesystem
operations should be confined. Whereas you
would normally use LevelDB’s API to access a data-
base as follows:

You can make use of LevelDB on CloudABI like this:

With libraries like these readily available, we’re
now able to start working on bringing entire pro-
grams to CloudABI. One of the lead developers of
Bitcoin, Wladimir van der Laan, happened to dis-
cover that most of the libraries used by Bitcoin’s

reference implementation, like Boost and LevelDB,
had already been ported and packaged by us. As a
result, Wladimir has been able to successfully port
bitcoind to CloudABI.

The initial goal of this project is to isolate Bitcoin
from other processes running on the same system.
A future goal is to use CloudABI to perform privi-
lege separation, so that security flaws in the net-
work protocol handling can’t be used by an
attacker to obtain direct access to the wallet stor-
ing the user’s Bitcoins.

RUNNING SANDBOXED

PYTHON CODE

In late 2015, I gave a talk about CloudABI at the
32C3 security conference in Hamburg. During this
talk, I briefly mentioned that I had plans to port
the Python interpreter to CloudABI. This seemed to
have made an impression on the audience, as I got
an email from Alex Willmer not long after the con-
ference, offering to help out.

During the months that followed, Alex and I
worked together a lot, coming up with patches
both for Python and CloudABI’s C library to get
Python to build as cleanly as possible. After get-
ting the interpreter to build, Alex worked on
extending Python’s module loader, importlib,
to allow you to include paths to sys.path using
directory file descriptors, as opposed to using

leveldb::Options opt;
opt.create_if_missing = true;
opt.env = leveldb::Env::Default();
leveldb::DB *db;
leveldb::Status status = leveldb::DB::Open(opt, "/var/...", &db);
db->Put(leveldb::WriteOptions(), "my_key", "my_value");

leveldb::Options opt;
opt.create_if_missing = true;
opt.env = leveldb::Env::DefaultWithDirectory(db_directory_fd);
leveldb::DB *db;
leveldb::Status status = leveldb::DB::Open(opt, ".", &db);
db->Put(leveldb::WriteOptions(), "my_key", "my_value");

38 FreeBSD Journal

pathname strings. Finally, I worked on integrating
the Python interpreter with Argdata, so that it
can be launched through cloudabi-run.

Below is a demonstration of what it looks like
to run a simple “Hello, world” script using our
copy of Python. During its lifetime, the interpreter
only has access to Python’s modules directory, the
script we’re trying to execute, and the terminal to
which the script should write its message .

Though it may at first seem somewhat com-
plex to run Python this way, the requirement for
injecting all dependencies of Python explicitly
does have the advantage that it’s now a lot easier
to maintain multiple Python environments. Each
of these environments may have different ver-
sions of third-party modules installed. This
approach effectively means there is no longer any
need to use Python’s own virtualenv to

achieve isolation between envi-
ronments. This can already be
accomplished by injecting
Python with the right set of file
descriptors.

The example given above is,
of course, only intended to
scratch the surface of how you
can use CloudABI’s copy of
Python. On the CloudABI devel-
opment blog, you can find an
article that explains how you
can use socketserver and
http.server to build your
own sandboxed web services. In
the meantime, we’re also work-
ing on porting the Django web
application framework. A pre-
liminary version that is capable
of serving requests has already
been packaged.

$ cat hello.py
import io
import sys

stream = io.TextIOWrapper(sys.argdata['terminal'],
encoding='UTF-8')

print(sys.argdata['message'], file=stream)
$ cat hello.yaml
%TAG ! tag:nuxi.nl,2015:cloudabi/

path:
- !file

path: /usr/local/x86_64-unknown-cloudabi/lib/python3.6
script: !file

path: hello.py
args:

terminal: !fd stdout
message: Hello, world!

$ cloudabi-run \
/usr/local/x86_64-unknown-cloudabi/bin/python3 < hello.yaml

Hello, world!

By Brooks Davis, Robert Norton, Jonathan Woodruff & Robert N. M. Watson

Choose ebook, print or combo. You’ll learn:
• Use boot environment, make the riskiest sysadmin tasks boring.
• Delegate filesystem privileges to users.
• Containerize ZFS datasets with jails.
• Quickly and efficiently replicate data between machines
• Split layers off of mirrors.
• Optimize ZFS block storage.
• Handle large storage arrays.
• Select caching strategies to improve performance.
• Manage next-generation storage hardware.
• Identify and remove bottlenecks.
• Build screaming fast database storage.
• Dive deep into pools, metaslabs, and more!

ZFS experts make their servers
Now you can too. Get a copy of.....

WHETHER YOU MANAGE A SINGLE SMALL SERVER OR INTERNATIONAL DATACENTERS, SIMPLIFY YOUR STORAGE
WITH FREEBSD MASTERY: ADVANCED ZFS. GET IT TODAY!

Link to:

FORMALIZATION OF THE BINARY

INTERFACE

All of CloudABI’s low-level data types and constants
were originally defined through a set of C header
files. The problem with these header files was that
they became pretty complex over time. As we allow
you to run 32-bit CloudABI executables both on
32-bit and 64-bit systems, we had to maintain
copies of the definitions that either assumed the tar-
get’s native pointer size (used by user space) or that
assumed 32-bit or 64-bit pointers explicitly (used by
kernel space). CloudABI’s system call table was
translated to FreeBSD’s in-kernel format and kept in
sync by hand.

To clean this up, Maurice Bos has worked on
a project to formalize CloudABI. All CloudABI data
types, constants, and system calls are now
described in a programming language independ-
ent notation in a file called cloudabi.txt. Below
is an excerpt of what the definitions related to the
cloudabi_sys_fd_read() system call look like:

From this file, we now automatically generate C
header files, system call tables, vDSOs, and
HTML/Markdown documentation. We eventually
want to use this framework to generate low-level
bindings for other languages as well (e.g., Rust, Go),
so that they can be ported to CloudABI without
depending on any definitions that are copied by
hand.

ARGDATA:

NOW A SEPARATE LIBRARY

Though Argdata was originally designed just to be
used for passing startup configuration to CloudABI
programs, it’s actually a pretty flexible and efficient
binary serialization library under the hood.
Compared to MessagePack, a similar encoding for-
mat, it allows for efficient random access of data
without performing full deserialization. Compared
to libnv(3), a serialization library in FreeBSD’s
base system, it has a more conventional data model
and a simpler API.

Earlier this year, Maurice Bos expressed interest
in using Argdata as a format for serializing RPC
messages in a non-CloudABI application written in
C++. As the Argdata library was tightly integrated
into CloudABI’s C library, Maurice spent some time
making it more portable and turning it into a sepa-
rate library.

At the same time, he also wrote some really
good C++ bindings for Argdata, making use of var-

ious features provided by
modern revisions of the lan-
guage (C++11, C++14,
C++17). Maps and sequences
can be iterated using C++’s
range-based for loops. By
making use of
std::optional<T>, C++’s
implementation of a ‘”maybe
type,” it becomes easier to
deal with potential type mis-
matches. Strings are returned
as std::string_view
objects, meaning they can be
used by C++ code without
copying them out of the seri-
alized data or allocating
copies on the heap.

opaque uint32 fd
| A file descriptor number.

struct iovec
| A region of memory for scatter/gather reads.
range void buf

| The address and length of the buffer to be filled.

syscall fd_read
| Reads from a file descriptor.
in

fd fd
| The file descriptor from which data should be
| read.

crange iovec iovs
| List of scatter/gather vectors where data
| should be stored.

out
size nread

| The number of bytes read.

May/June 2017 39

40 FreeBSD Journal

Below is an example of what the C++ bindings
look like when used in practice. When compared
to the web server provided in the introduction
that uses the C API, the C++ code is a lot more
compact and easier to understand.

NEXT PROJECT:

CLOUDABI FOR KUBERNETES?

Over the last couple years there has been a lot of
development in the area of cluster management
systems. These systems allow you to treat a large
group of servers as a single pool of computing
resources on which you can schedule jobs. One
system that is gaining popularity is Kubernetes,
designed by Google and funded through the
Linux Foundation’s recently founded Cloud Native
Computing Foundation (CNCF). Kubernetes can
run any software that has been packaged as a
container (using Docker, rkt, etc.).

What I’ve observed while using Kubernetes is
that it has a number of quirks stemming from the
fact that it has to be able to run software that is
not dependency injected. For example, because
programs running in containers are free to bind to
arbitrary network ports, every job (“pod”) in the

cluster must have a unique IPv4 address. This
makes Kubernetes consume a lot of network
addresses and makes routing tables of nodes in the
cluster very complex. Conversely, as most conven-
tional software can only connect to a single net-

work address to reach
backend services,
Kubernetes does lots of
TCP-level load balancing
for internal traffic, which
makes tracing and debug-
ging very complicated.

The fact that jobs in
the cluster are able to cre-
ate arbitrary network con-
nections also means that
security between pods
can only be achieved if all
containers running in the
cluster are configured to
make use of cryptogra-
phy, authentication, and
authorization (e.g., using
SSL with a per-service cus-
tom trust chain).
Unfortunately, people
hardly ever bother setting
that up correctly, meaning
it is generally not safe to
operate a single
Kubernetes cluster for a
multitenant environment.

An interesting devel-
opment for us is that as of version 1.5,
Kubernetes no longer communicates with the sys-
tem’s container engine directly. When Kubernetes
wants to start a container on a node in the clus-
ter, it sends an RPC for that to an additional
process, called the Container Runtime Interface
(CRI). This mechanism is intended to allow people
to experiment with custom container formats
more easily by developing their own CRIs.

In our case, we could implement our own CRI
that allows us to run CloudABI processes directly
on top of Kubernetes. By using CloudABI, we
can enforce jobs running on the cluster to have
all of their network connectivity injected by a
helper process. This helper process can ensure all
traffic in the cluster is encrypted, authorized, and
load balanced. Software running on the cluster
will no longer need to care about the model of
the underlying network.

#include <argdata.hpp>
#include <cstdlib>
#include <optional>
#include <program.h>

void program_main(const argdata_t *ad) {
// Scan through all configuration options and
// extract values.
std::optional<int> database_directory, logfile, http_socket;
for (auto [key, value] : ad->as_map()) {

if (auto keystr = key->get_str(); keystr) {
if (*keystr == "database_directory")

database_directory = value->get_fd();
else if (*keystr == "logfile")

logfile = value->get_fd();
else if (*keystr == "http_socket")

http_socket = value->get_fd();
}

}

// Terminate if we didn’t get started with all
// necessary descriptors.
if (!database_directory || !logfile || !http_socket)

std::exit(1);

…
}

WRAPPING UP

I hope this article has shown that a lot of interest-
ing things have happened with CloudABI over the
last year and that there are even more exciting
things planned. As CloudABI is part of FreeBSD 11
and most new features have already been merged
into 11-STABLE, CloudABI has become an easy-to-
use tool for creating secure and testable software.
If you maintain a piece of software that could ben-
efit from this, be sure to experiment with building
it for CloudABI.

As most of the discussion around CloudABI
takes place on IRC, feel free to join #cloudabi on
EFnet if you have any questions or simply want to
stay informed about what’s going on.

LINKS

CloudABI on FreeBSD:
https://nuxi.nl/cloudabi/freebsd/

CloudABI development blog: https://nuxi.nl/blog/

CloudABI on GitHub: https://github.com/NuxiNL

BitCoin for CloudABI: https://laanwj.github.io/

May/June 2017 41

ED SCHOUTEN has been a developer at the FreeBSD Project since 2008. His contributions include
FreeBSD 8's SMP-safe TTY layer, the initial import of Clang into FreeBSD 9, and the initial version of the
vt(4) console driver that eventually made its way into FreeBSD 10.

CloudABI has been developed by the author’s company, Nuxi, based in the Netherlands. It will always
be available as open-source software, free of charge. Nuxi offers commercial support, consulting, and
training for CloudABI. If you are interested in using CloudABI in any of your products, be sure to get in
touch with Nuxi at info@nuxi.nl.

BUILD
SOMETHING
GREATER.

Dell is now part of the Dell Technologies family. So
you can make your mark in everything from storage
and big data to the Internet of Things.

Apply at Dell.com/careers

