
S E E
T E X T
O N L Y

12 FreeBSD Journal

The FreeBSD operating
system has been used in
many products that require
strong security proper-
ties—from storage appli-
ances, to network switches
and routers as well as
gaming consoles. Over the
20-plus years of FreeBSD’s
development, there have
been significant additions
to the system in the area
of security.

Blending Tracing
& Security on
FreeBSD

CADETS

By Jonathan Anderson,
George V. Neville-Neil,
Arun Thomas, and
Robert N. M. Watson

May/June 2017 13

The Jails [1] system introduced what
today would be considered a lightweight
version of virtualization. The Mandatory
Access Control (MAC) framework was

added in 2002 to provide fine-grained, system-
wide control over what users and programs could
do within the system [2]. The Audit subsystem
added the ability to track—on a system-call-by-sys-
tem-call basis—what actions were occurring on
the system and who or what was initiating those
actions [3]. More recently Capsicum has intro-
duced capabilities into the operating system that
are the basis for application sandboxes [4].

As part of a new research project, the Causal
Adaptive Distributed, and Efficient Tracing System
(CADETS), we are adding new security primitives
to FreeBSD as well as leveraging existing primitives
to produce an operating system with the maxi-
mum amount of transparency. Apart from the
security implications, having better visibility into
systems will help us to improve overall perform-
ance and provide new runtime debugging tools.

In this article, we’ll cover our work with DTrace
and the Audit system, which form the core com-
ponents of the work, and talk about the chal-
lenges of using DTrace as an always on tracing
system to track security and other events.

Starting at the Beginning
One of the main components of FreeBSD we are
exploiting in CADETS is DTrace. Originally devel-
oped for Sun’s Solaris operating system in the early
years of the 21st century [5], DTrace was meant to
solve the following problem: most software sys-
tems have some sort of logging framework, which
usually depends on the ubiquitous printf func-
tion and formats text and sends it to some form
of console.

printf("Hello world!");

All C programmers know the code shown
above and every programmer knows the equiva-
lent idiom in their own language, whether it’s
Python, Rust, Go, or PHP. There are a few prob-
lems with using print statements for logging sys-
tems. The first problem is that print statements
have a high performance overhead. If you’ve ever
wondered about how much work is done on the
programmer’s behalf by printf then see Brooks
Davis’s “Everything you ever wanted to know

about ‘hello, world.’” [6] Using print statements
for a logging system in code that is supposed to
have, otherwise, low overhead, is not an option,
and so most logging systems are enabled or dis-
abled at either compile time, using an
#ifdef/#endif statement, or at runtime, by
wrapping the logging in an if statement.
An example of this idiom in the C language is
shown below.

The next problem with print-based logging sys-
tems is that they are both static and prone to
errors. If the programmer did not expose a piece
of information via the logging system before the
code was built, then it will not be possible, with-
out modifying the code, to learn about any other
data upon which the same function might be
operating.

Together, these two problems mean that most
high-performance systems, such as operating sys-
tems, are shipped without logging enabled, and
when logging is enabled, the data that is available
is limited to whatever the original programmer
wished to expose.

As open-source developers, we are used to the
idea that we can “just recompile the code,” but in
production systems, that’s not always possible.
Imagine you have sold a system to a large bank.
At 3 a.m., the system has a fault of some sort and
logs an error. Someone in the IT department gets a
message reporting the fault, they call support, sup-
port calls a programmer, the programmer then
says, “Stop the system, rebuild the code, and
rerun it with logging turned on.” Handling errors
in that way is terrible both for the customer and
for the developer. The customer will be annoyed at
having to rebuild and restart their system, and the
developer is unlikely to get helpful information
because the error is now far in the past. Enter
Dynamic Tracing.

DTrace was designed to always be available for
use, without reducing system performance and
without running the risk of outright crashing the
system. The clearest way to think about DTrace is
as a runtime debugger with significant logging
and statistical capabilities. DTrace avoids the over-
head of printf based logging systems by using a

#ifdef LOGGING
if (log)

printf("You have written %d bytes", len);
#endif /* LOGGING */

14 FreeBSD Journal

few tricks to subvert the execution of compiled
code. The complete details are covered in The
Design and Implementation of the FreeBSD
Operating System [7], but, briefly, DTrace can
override the entry or exit point of any function
that is compiled into the kernel or into a user-
space program. The way in which functions are
collected into libraries and programs is a well-
defined process, and each function has a set of
instructions that indicate where the function
begins. When DTrace traces a function, it
replaces a few instructions with some of its own
so that when the code reaches that point,
DTrace’s code gets called first, and it can collect
and process the function’s argument. The practi-
cal upshot of this is that when DTrace is not in
use, it has zero overhead.

Tracing for Security
How can we apply DTrace to the problems of
security? One aspect of security is finding where
the bad actor lies in a system. A key question to
ask when looking at a system is “Who did what
to whom and when?” We’ll refer to this as
“Question 1.” Establishing the tree of operations
such that we can trace it back to its root is one
part of forensic analysis that can help us find our
bad actor and also show us what we need to
change to prevent future security breaches.

Imagine that, regardless of the performance
cost, we had complete transparency into every
operation performed on a computer system.
With sufficient time, analysis, and tooling, we
would be able to take the output generated by
the tracing system and find out the answer to
Question 1.

DTrace gives us the basis on which to build
such a system, but there remain some challenges.
In the previous section, we stated that using
some clever tricks to replace certain instructions
at runtime, DTrace would have zero overhead
when not in use. That feature of DTrace was
what made it viable to ship it, by default, with
Solaris, and the FreeBSD and Mac OS in the first
place. It was not until there was a way to ship a
tracing system that didn’t have a performance
impact on a running system that such a system
could be fielded. What happens when DTrace
begins tracing? Depending on what is being
traced and how much data is being collected, the
overall performance of the system will be impact-
ed to a greater or lesser degree. If the overhead

introduced by tracing gets too high, then the ker-
nel will terminate the tracing as a form of self-
preservation. The second tenet of the DTrace sys-
tem, that the tracing system must not unduly tax
the system, is one of the key challenges of using
DTrace as a security technology. An attacker that
knows there might be tracing will first cause
there to be a great deal of irrelevant load on the
system, causing the tracing system to exit, and
then they will go about attacking the system.
Another component of the CADETS project looks
at the provenance of traces in order to thwart
such attacks on the tracing system itself.

The majority of the current use cases for
DTrace involve using it as a runtime debugger,
turning on tracing when someone suspects there
is a problem on a system, rather than leaving the
tracing running all the time. A small subset of
users have built complex telemetry systems
around DTrace, including Fishworks [8], but in
these first attempts at always-on tracing the
number of things being traced was a small subset
of the possible tracepoints. To build a system that
has complete visibility, we need to not only have
always-on tracing, but to increase the perform-
ance of the tracing system such that the over-
head collecting the data does not overwhelm the
system’s ability to do productive work. Another
requirement of a tracing system targeted at secu-
rity is that trace records cannot be dropped or
lost due to high load. DTrace was designed in
such a way that under high load it was accept-
able to drop trace records, long before the kernel
might terminate the dtrace collection process
due to the system being unresponsive. A system
that is trying to collect trace data for later foren-
sic analysis turns that concept on its head.

Any system where tracing is always on will gen-
erate a lot of data, and that data will need to be
analyzed to track down attackers and how they
are able to compromise the system. There are sev-
eral systems for taking arbitrary textual output
from various tools and trying to make some sense
of it, including Splunk [9]. The goal of the CADETS
project is to produce data for use by such tools. It
will be much easier for consumers if the data is in
a machine-readable format.

Trace Records for
Software Tools
As we began our work using DTrace as an

May/June 2017 15

always-on tracing system, we quickly realized that
parsing the voluminous output generated by the
system would present a problem not only for
human analysts, but also for any tools that would
be consuming the data. One of the first features
we added to DTrace for CADETS was machine-read-
able output. Using the libxo library, we converted
DTrace to not only produce plain text, but also
XML, JSON, and HTML, the three output formats
supported by libxo. At the time that we added
machine-readable output, the Illumos version of
DTrace did have a way of outputting JSON, but this
was via a print-like operation rather than a perva-
sive change. In the CADETS version of DTrace, a
single command-line option changes all the output

the user sees from DTrace from plain text into a
machine-readable format.
The code samples above show the differing output
between the plain, textual output, and machine-
readable output. Our example asks DTrace to trace
all calls into the write system call. Example 1
shows the default, textual output from the
dtrace command, which is arranged in columns.
To write a tool that parses the output requires
knowing quite a bit about the output, because the
columns are only labeled at the start of the output.
Example 2 shows the same tracepoint, but with the
addition of the -O json command line argument,
instructing dtrace to give us all output in JSON

format. The machine-readable output tags each
element, starting with the probe, which is an
object that contains several elements, including the
cpu, id, func and name, all of which appeared,
untagged, in the machine-unreadable output of
Example 1. One addition for machine-readable out-
put is the timestamp element, which reports the
time that the probe fired, in nanoseconds, since the
UNIX epoch. While a DTrace script can output the
time using either the timestamp or walltime
stamp variables, we believed that having a time
stamp in every machine-readable record would sim-
plify building tools for security forensics. While
probes may fire in parallel on different cores, indicat-
ed by the cpu variable, modern Intel-based systems

have a synchronized
timestamp, which
DTrace uses, meaning
that the time stamps
are an excellent indica-
tion of the order of
operations on a single
system.

DTrace and
Audit
The audit subsys-
tem has been a part
of FreeBSD since
2004 and is an
optional kernel com-
ponent, along with a
user space daemon
auditd, which
implements a “fine-
grained, configurable
logging of security
related events [10].

It was built to meet the “Common Criteria (CC)
Common Access Protection Profile (CAPP) evalua-
tion,” a security standard set out by the U.S.
Government [11]. The audit subsystem adds a set of
handcrafted tracepoints via C macros to parts of the
kernel where access to data and resources take place.
For example, in a system with audit enabled, any
time a file descriptor is accessed, a note is made in an
audit record. Audit records are periodically flushed to
permanent storage.

Our recent work with DTrace and security led
us to desire a bridge between the audit system
and DTrace. Robert Watson added an audit
provider to the DTrace system in FreeBSD. A

```
# dtrace -n 'syscall::write:entry'
dtrace: description 'syscall::write:entry' matched 2 probes
CPU ID FUNCTION:NAME

0  59780 write:entry 
0  59780 write:entry 

Example 1```

```
dtrace -O json -n 'syscall::write:entry'
dtrace: description 'syscall::write:entry' matched 2 probes
CPU ID FUNCTION:NAME
{

"probe": {
"timestamp": 3594774042481656,
"cpu": 1,
"id": 59780,
"func": "write",
"name": "entry"

}
Example 2

16 FreeBSD Journal

DTrace provider gives access to a set of tracepoints
from within DTrace. Some well-known examples
of providers are those dealing with Function
Boundary Tracepoints (fbt), System Calls (syscall),
and network protocols (tcp, udp, ip). The audit
provider gives DTrace the ability to record informa-
tion about audit events that occur on the system
while also applying DTrace features, such as filter-
ing events via predicates and collecting statistical
information via aggregations.

Using the audit system in the absence of DTrace,
we did not have a convenient way to write runtime
analysis scripts that allowed us to more finely target
the processes that we wanted to investigate. The
audit system will target a particular process, but we
wanted to be able to collect data only when that
process took a particular action.

Consider a scenario where we want to see who
is talking to a web server; we might decide that
we only want to know about connections that are
coming from a specific set of Internet addresses,
perhaps because we know those addresses have
already been identified as part of a botnet. With
the Audit Provider we can write a simple D script
that asks only for the audit events relating to con-

nect(2), and then filter those events based on the
IP addresses they contain. Performing this data
reduction as close to the source of the information
as possible not only reduces the overall load on
the system, but it also reduces the amount of data
a human analyst or software tool has to look at
during the later analysis phase.

OpenDTrace:
The Future of DTrace
Besides Illumos, two other operating systems proj-
ects have ported and adopted DTrace. FreeBSD
has had a port of DTrace since 2008 and Apple’s
Mac OS since 2007, where it is also integrated
into the Instruments performance-analysis tool.
With the demise of Sun Microsystems in 2010, the
development of DTrace split, with some work
being done within Oracle, but much of it moved
onto Illumos, the fully open-source follow-on to
OpenSolaris. Both FreeBSD and Mac OS continued
to bring in changes from Illumos, but these were,
for the most part, bug fixes rather than large new
features. All three groups have done what they
could to share code among themselves, but there

Premier VPS Hosting

www.rootbsd.net

RootBSD has multiple datacenter locations,
and offers friendly, knowledgeable support staff.

Starting at just $20/mo you are granted access to the latest
FreeBSD, full Root Access, and Private Cloud options.

are significant differences among all three kernels.
DTrace, although it was written in a good,
portable style, requires many specialized hooks
into the operating system, and this has resulted in
some level of code drift. For example, the FreeBSD
version of DTrace works on both ARMv8 and
ARMv7 processors, but this is not yet true on
Illumos. As part of our CADETS work, we realized
that we wanted to add new features to DTrace
and also to further abstract the code from any
particular operating system, which led us to create
OpenDTrace.

The aim of OpenDTrace is to provide a single,

unified upstream for DTrace code that can then
be easily imported into other operating systems,
including FreeBSD, Mac OS, and Illumos, as well
as others. The approach is similar to that taken by
OpenBSM [12] and OpenZFS [13]. With this uni-
fied code base in place, we can then add features
that apply to all the downstream OS consumers of
DTrace far more quickly than we do today. .

Acknowledgment
The authors thank Ripduman Sohan for com-
ments that greatly improved the manuscript. •

May/June 2017 17

[1] “Jails: Confining the omnipotent root.” Poul-Henning Kamp <phk@FreeBSD.org> Robert N. M. Watson
<rwatson@FreeBSD.org> (2000)
[2] Watson, R.; Feldman, B.; Migus, A.; and Vance, C. “Design and implementation of the Trusted BSD MAC framework,”
Proceedings—DARPA Information Survivability Conference and Exposition, DISCEX 2003, 1(Discex Iii), 38–49.
http://doi.org/10.1109/DISCEX.2003.1194871 (2003)
[3] Watson, R. N. M. and Salamon, W. “The FreeBSD Audit System,” UKUUG LISA Conference, 1–6. (2006)
[4] Watson, R. N. M.; Anderson, J.; Laurie, B.; and Kennaway, K. “Capsicum: practical capabilities for UNIX,” 19th Usenix Security
Symposium, (Figure 1), 3. http://doi.org/10.1145/2093548.2093572 (2010).
[5] Cantril, B.; Shapiro, M. and Leventhal, A. “Dynamic Instrumentation of Production Systems.” (2004)
[6] Davis, B. Everything you ever wanted to know about “hello, world”* (*but were afraid to ask), BSDCan. (2016)
[7] McKusick, M.; Neville-Neil, G.; and Watson, R. N. M. The Design and Implementation of the FreeBSD Operating System,
Second Edition. Boston, Massachusetts: Pearson Education. (2014)
[8] http://dtrace.org/blogs/bmc/2008/11/10/fishworks-now-it-can-be-told/
[9] https://www.splunk.com
[10] https://www.freebsd.org/cgi/man.cgi?query=audit&sektion=4
[11] https://www.niap-ccevs.org/pp/pp_os_ca_v1.d.pdf
[12] http://www.trustedbsd.org/openbsm.html
[13] http://open-zfs.org/wiki/Main_Page

JONATHAN ANDERSON is an Assistant Professor in
Memorial University of Newfoundland's Department of
Electrical and Computer Engineering, where he works
at the intersection of operating systems, security, and
software tools such as compilers. He is a FreeBSD com-
mitter and is always looking for new graduate students
with similar interests.

GEORGE V. NEVILLE-NEIL works on networking
and operating system code for fun and profit. He
also teaches courses on various subjects related to
programming. His areas of interest are code
spelunking, operating systems, networking, and time
protocols. He is the coauthor with Marshall Kirk
McKusick and Robert N. M. Watson of The Design and
Implementation of the FreeBSD Operating System. For
over 10 years he has been the columnist better
known as Kode Vicious. He earned his bachelor’s

degree in computer science at Northeastern
University in Boston, Massachusetts, and is a mem-
ber of ACM, the Usenix Association, and IEEE. He is
an avid bicyclist and traveler and currently lives in
New York City.

ARUN THOMAS is a researcher at BAE Systems R&D
and the principal investigator of the the Causal,
Adaptive, Distributed, and Efficient Tracing System
(CADETS) project.

DR ROBERT N. M. WATSON is a Senior Lecturer
(Associate Professor) at the University of Cambridge
Computer Laboratory, where he leads research span-
ning operating systems, security, and computer archi-
tecture. He is a FreeBSD developer, member of the
FreeBSD Foundation Board of Directors, and coauthor
of The Design and Implementation of the FreeBSD
Operating System (second edition).

R E F E R E N C E S

This work has been sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air Force Research Laboratory (AFRL),
under contract FA8650-15-C-7558. The views, opinions, and/or findings contained in this paper are those of the authors and should not be
interpreted as representing the official views or policies, either expressed or implied, of the Department of Defense or the U.S. Government.

