
S E E
T E X T
O N L Y

In this article, we will take a look at SaltStack, a
Python-based configuration management solu-
tion that is feature rich and has a reputation for

ease of use and scalability. SaltStack also does a
very good job in abstracting various OS-specific
implementation details from administrator; for
example, the same syntax is used to install native
OS packages on GNU/Linux as well as on FreeBSD.
This makes the task of managing heterogeneous
environments much easier, while also encouraging
code reuse when possible, regardless of the plat-

form being targeted.
SaltStack is also designed to support large-scale

installations. This is primarily due to the architec-
tural decision of using a publish-subscribe mes-
saging model where the Master does not have to
craft a configuration directive for each node man-
aged; rather, it can broadcast directives on a chan-
nel that clients (Minions in Salt parlance) subscribe
to, and, accordingly if the directive applies to
them. Communication via the pub/sub method is
also encrypted, with user-definable key rotation.

30 FreeBSD Journal

Configuration management comes in many flavors and
philosophies. From simple Makefile-based automation tasks

to fully orchestrated deployment and administrative environ-
ments, there are a multitude of approaches one can take.

By Peter Wright

A P R I M E R

SaltStack
on FreeBSD

March/April 2017 31

Another feature that SaltStack has implemented
that is beneficial for larger installations is what is
called event-driven infrastructure (EDI). This allows
Salt clients to react to changes in local system
state, or events external to SaltStack itself. This is
a popular feature for cloud-based infrastructure
where capacity is managed dynamically in relation
to load on the overall system.

This article is intended as a primer and will take
a quick tour of the SaltStack architecture, illustrat-
ing that the barrier of entry to start using it is
actually quite low. We will also walk through a
real-world example of configuring a FreeBSD-
based Redis server, then finally highlight some
interesting features that I encourage readers to
investigate on their own.

Architecture Overview
The architecture of SaltStack is relatively straight-
forward, yet, due to several design decisions, it is
actually quite scalable and easy to customize to
suit the specific needs of a given environment.
The primary node in a SaltStack cluster is called a
Master, and client systems are referred to as
Minions. The Master is responsible for publishing
messages for the Minions. The Master also man-
ages who is a valid member of a given cluster by
accepting an initial key from a Minion, then keep-
ing track of new keys from Minions as they are
automatically rotated. In regard to Master/Minion
communication, SaltStack uses ZeroMQ as the
foundation for its pub/sub message queue.

SaltStack also has the concept of a Grain, akin
to Facter in Puppet, which stores system variables
such as the name of your OS, the amount of
cores available, and what a given Minion’s pri-
mary IP address is. This is very helpful when
developing templates, and is something that will
be illustrated below. SaltStack also has the con-
cept of a Pillar that is used to store user-defined
variables such as file paths or even passwords.
Templates in SaltStack are achieved by using Jinja,
and can be used to insert logic into your SaltStack
configurations. It is common for them to leverage
both Grains and Pillars, allowing for greater flexi-
bility and more succinct configuration directives.

Real World Example
With this background, let’s use a real world exam-
ple of setting up the Redis key/value datastore on
a FreeBSD server using SaltStack. First we will set
up a SaltStack Master and Minion; then we will
walk through a simple SaltStack “statefile” which
will deploy a basic Redis configuration.

Preparing a Host to Use
SaltStack
Installing SaltStack is straightforward using
pkg(7); in fact, the same package is used for
installing a SaltStack Master or Minion.

% sudo pkg install py27-salt

We will skip configuring the salt_master and
salt_minion daemons, as that is covered quite
well by the SaltStack documentation. After con-
figuring both systems and successfully starting the
salt_master daemon, you can then start the
salt_minion, which will connect to the Master
sending over its initial public key for acceptance.
You can view and accept the key using the “salt-
key” command on your Master like so:

$ sudo salt-key
Accepted Keys:
Denied Keys:
Unaccepted Keys:
test0.com.puter
Rejected Keys:

Above, we can see that we have a pending key
from “teset0.com.puter”. Before accepting the
key, you can run “salt-key -f test0.com.puter” on
the Master to view and confirm the fingerprint of
this key matches the fingerprint of the Minion.
Once you have verified the key, you can now
accept it like so:

Getting Comfortable with
SaltStack Commands

At this point, we now have a Minion securely
paired with our Master, and we can verify this by
using a function built into SaltStack that allows
for arbitrary commands to be executed. Here we
instruct the Master to publish a message stating
all hosts matching the test* regular expression to
run the “hostname” command. Any systems
matching the regex will execute the argument to
cmd.run and will post its output back on the
message queue for the Master to consume:

$ sudo salt-key -a test0.com.puter
The following keys are going to be accepted:
Unaccepted Keys:
test0.com.puter
Proceed? [n/Y] y
Key for minion test0.com.puter accepted.

32 FreeBSD Journal

This example actually tells us several other inter-
esting things about SaltStack. Firstly, the Salt com-
mand accepts regular expressions as inputs for
hosts to target commands against. So, if I were to
have a cluster of systems with a common element
in their hostnames, I could succinctly target all of
them via the Salt CLI tool. Secondly, Salt supports
running ad-hoc commands against registered
Minions. For example, using this functionality, I can
execute an ad-hoc query to verify all my web-
servers have the appropriate Apache 2.4 package
installed. But let’s take a look at a more traditional
use of SaltStack, applying a configuration state
(called a SaltState) to our new node.

Using SaltState Files to
Manage Minions
SaltStack configuration directives are stored in
what are called statefiles denoted with the .sls
extension. Each SaltStack installation has what is
called a “top file” that defines the overall structure
and association of SaltStates to hosts under man-
agement. For our purposes we will start with a
very simple top file that associates two states to
our node like so:

1 base:
2 '*':
3 - motd
4
5 dev:
6 'test*':
7 - redis_demo
8

SaltStack statefiles follow standard YAML syntax
and hierarchy rules. In our example above, lines
1–3 define a base class that matches all systems
associating a salt state file named “motd”. The
motd statefile looks like this:

1 {% if grains['os'] == 'FreeBSD' %}
2 /etc/motd:
3 file.managed:
4 - source:salt://global_files/motd_freebsd
5 - user: root
6 - group: wheel
7 - mode: 644
8 {% endif %}

This example statefile actually has embedded
some Jinja templating code inside it, which, in our
case, determines if the host we are running on is
FreeBSD, and if so, we apply the “motd_freebsd”
file to the host with the defined ownership and
permissions. The Minion executing the statefile will
search its grain inventory checking to see if the
value of the “os” key matches FreeBSD. If it
matches, we copy over our FreeBSD motd file to
/etc/motd, ensuring its ownership and mode.

You can also interact with Grains using the
SaltStack CLI like so:

$ sudo salt 'test*' grains.get os
test0.iad0.tribdev.com:

FreeBSD

Summary

of minions targeted: 1
of minions returned: 1
of minions that did not return: 0
of minions with errors: 0

$

The above command, when invoked on the
Master, targets all configured Minions whose name
matches the ‘test*’ regular expression. You can
view all available key/value pairs for a given node
by substituting “grains.get” with “grains.items”.

Being able to embed templating and logic inside
a state configuration file is powerful; but SaltStack
also allows you to use templating for file resources,
which we’ll cover next.

Detour into Environment
Separation
This is a good time to take a quick tour of how
SaltStack organizes files on disk. On my Master, my
directory structure of statefiles and file resources
looks like so: (next page)

$ sudo salt 'test*' cmd.run 'hostname'
test0.com.puter:

test0.com.puter

Summary

of minions targeted: 1
of minions returned: 1
of minions that did not return: 0
of minions with errors: 0

March/April 2017 33

One thing you should notice is that our top.sls
file is in a separate location as the redis_demo.sls
file; redis_demo.sls is a child of the dev/states
directory hierarchy. What I have done here is cre-
ate a separation of environments using this struc-
ture. Specifically, the root level contains the top.sls
file and our motd_freebsd file. States in this loca-
tion are all hosts as they have a global scope.
Then I have created a “dev” directory structure
that contains our redis statefile and supporting file
resources. This dev environment is reflected in the
previous top file via lines 5–7, and as you’ll see in
line 6, we are more restrictive in the hosts that are
matched via our regular expression. You can also
have an arbitrary number of environments in

SaltStack, which is very handy. For example, I have
several development environments in addition to a
pre-production and production environment at my
larger SaltStack installation. This allows me to fed-
erate who has access to which environments
while also helping me ensure changes done in one
environment do not affect other environments.

A More Complex Statefile
Now that we’ve broken down environments and
SaltStack filesystem layouts, let’s take a look at
our redis_demo.sls file that installs several pack-
ages and references a templatized file resource:

$ cd $SALT_ROOT
$ find .
./states/top.sls
./states/global_files/motd_freebsd
./states/dev/states/redis_demo.sls
./states/dev/states/dev_files/redis_demo.conf
./states/dev/states/dev_files/redis_rc

TM

Get caught up today
Order Back Issues @ www.freebsdfoundation.org/journal

• Nov/Dec 2015 / Olivier Cochard-Labbé, The BSD Router Project

• Jan/Feb 2016 / Peter Holm, Using Fuzzy Testing to Build Industrial-
Strength Systems • March/April 2016 / Brooks Davis, Cheri

• May/June 2016 / Andy Waafa, ARMv8 • July/Aug 2016 / Chris Johns et al,

FreeBSD and RTEMS • July/Aug 2016 / Michael Lucas, Tuning ZFS

JOURNAL

DID YOU MISS?DID YOU MISS?

34 FreeBSD Journal

Lines 1–9 define the characteristics of a file
deployed to /usr/local/etc/redis.conf. Lines 3–4
create a dependency on the packages defined in
lines 24–27 to be installed before this file
resource can be deployed. Next, we reference a
Jinja template that is our main Redis configura-
tion file at line 5. Finally, through lines 11–22, we
ensure a directory exists, with correct permissions
for Redis to checkpoint data to disk; and we also
ensure the Redis daemon is enabled via rc.

Let’s take a look at the redis_demo.template,
as that will further illustrate how you can lever-
age SaltStack Grains and templating to write one
configuration file that can be deployed on multi-
ple systems:

1 {% set pri_ipv4 = grains[‘ipv4][0] %}
2
3 protected-mode no
4 port 6379
5 tcp-backlog 511
6 bind {{ pri_ipv4 }}
7 timeout 0
8
9 tcp-keepalive 300

The above snippet represents the first nine
lines of a Redis configuration file; it illustrates

how Grains and templates can be combined in a
pretty powerful manner.

The first line defines a variable “pri_ipv4” and
populates it with the first value present in the
ipv4 key as reported by the SaltStack Grains sys-
tem. To view what that Grain will look like in a
shell you can execute the following:

$ sudo salt 'test*' grains.get ipv4
test0.iad0.tribdev.com:

- 10.3.16.51
- 127.0.0.1

Summary

of minions targeted: 1
of minions returned: 1
of minions that did not return: 0
of minions with errors: 0

SaltStack returns these values as a list, and, as
such, we have to specify the element in the list
that represents the value we would like to use.
So, when the Minion evaluates this salt stage, it
scans the grain system for a key named “ipv4”
and sets the pri_ipv4 variable with the public IPv4
address that is stored. This data is then inserted
into the local configuration file on the Minion as
per line 6, where “{{ pri_ipv4 }}” is substituted
with the IP addresses.

This is a very simple example, but the power
should be pretty evident. For example, imagine
you manage a fleet of systems spanning several
sub-domains. Using Grains and templates, you
can abstract many of the per-domain and system
configurations in your template and even use
logic to determine which parts of a template are
rendered on a given Minion. SaltStack also makes
it trivial to extend the default Minions by writing
simple Python classes.

Applying SaltState
Configurations
Now that we have gone through our statefiles,
it’s time to apply them to our Minion. We will do
this by executing the following command from
the Master:

$ sudo salt 'test*' state.apply

This command applies all relevant states—as
defined in our top.sls file—to systems whose
hostnames begin with test. The output looks like
so: (next pages)

1 /usr/local/etc/redis.conf:
2 file.managed:
3 - require:
4 - pkg: redis_pkgs
5 - source: salt://dev_files/redis_demo.template
6 - template: jinja
7 - user: root
8 - group: wheel
9 - mode: 644
10
11 /var/db/redis/:
12 file.directory:
13 - user: redis
14 - group: redis
15 - mode: 755
16
17 /etc/rc.conf.d/redis:
18 file.managed:
19 - source: salt://dev_files/redis_rc
20 - user: root
21 - group: wheel
22 - mode: 644
23
24 redis_pkgs:
25 pkg.installed:
26 - pkgs:
27 - redis

$ sudo salt 'test*' state.apply
test0.iad0.tribdev.com:

ID: /etc/motd
Function: file.managed
Result: True
Comment: File /etc/motd is in the correct state
Started: 23:01:06.397619
Duration: 581.967 ms
Changes:

ID: redis_pkgs
Function: pkg.installed
Result: True
Comment: The following packages were installed/updated: redis
Started: 23:01:07.450629
Duration: 1107.676 ms
Changes:

redis:

new:
3.2.6
old:

ID: /usr/local/etc/redis.conf
Function: file.managed
Result: True
Comment: File /usr/local/etc/redis.conf updated
Started: 23:01:08.560307
Duration: 535.906 ms
Changes:

diff:

+++
@@ -1,1052 +1,82 @@
-# Redis configuration file example.

< omit multi-page diff of redis.conf>

ID: /var/db/redis/
Function: file.directory
Result: True
Comment: Directory /var/db/redis is in the correct state
Started: 23:01:09.096296
Duration: 0.803 ms
Changes:

ID: /etc/rc.conf.d/redis
Function: file.managed
Result: True
Comment: File /etc/rc.conf.d/redis updated
Started: 23:01:09.097172
Duration: 521.206 ms
Changes:

March/April 2017 35

CONTINUES NEXT PAGE

36 FreeBSDJournal

diff:
New file
mode:
0644

Summary for test0.iad0.tribdev.com

Succeeded: 5 (changed=3)
Failed: 0

Total states run: 5
Total run time: 2.748 s

Summary

of minions targeted: 1
of minions returned: 1
of minions that did not return: 0
of minions with errors: 0

Success! We installed the Redis binary,
deployed our custom configuration files for redis
and also ensured /etc/motd was deployed and up-
to-date. I removed a very long diff that SaltStack
reported when the default redis.conf was over-
written. Let’s take a look at that configuration
though, and ensure that our template and Grain
data was applied correctly:

And there we have it! The 0th value of the
ipv4 grain has been substituted in our configura-
tion file and it matches the IPv4 address that is
associated with xn0 on this host.

Conclusion
This article has barely scratched the surface of
SaltStack’s capabilities as a configuration manage-
ment engine. Despite that, hopefully it has given
a good overview of its capabilities and demon-
strated the flexibility of this tool. In practice, there
are several key concepts and components that I

have not covered here that the user will want to
explore. We’ll touch on them briefly, giving you a
chance to read up on the SaltStack documenta-
tion yourself.

The first concept I completely ignored was
nodegroups, which is a method for grouping
nodes of similar function together. For example, if
I have 10 Minions who act as Apache servers, I

could create a node-
group in my Master
configuration named
‘webservers’. I would
then be able to reference
this nodegroup in state
files, thus not constrain-
ing me to hostname reg-
ular expressions as my
previous example
demonstrated. Here is an
example of referencing a
nodegroup in my top.sls.

dev:
web-servers
- match: nodegroup
- dev_base

The above example will apply the “dev_base”
salt state to all Minions I’ve put in my
“webservers” nodegroup.

The second feature I bypassed in my demo
above was Salt Pillars. They are very similar to Salt
Grains, in that they are a key/value registry that

$ head -n 10 /usr/local/etc/redis.conf
protected-mode no
port 6379
tcp-backlog 511
bind 10.3.16.51
timeout 0

tcp-keepalive 300
$ ifconfig xn0 | grep inet

inet 10.3.16.51 netmask 0xffffff00 broadcast 10.3.16.255
$

March/April 2017 37

can be queried via statefiles or templates. What
sets Pillars apart from Grains is the fact that they
are used for user-defined variables. One common
use-case would be to store DB credentials as a
Pillar key/value pair, which is then referenced by a
configuration template on a Minion. Furthermore,
SaltStack has a GPG renderer that takes GPG-
encrypted input and renders it in un-encrypted
form in the Pillar for use by Minions. This method
allows administrators to store credentials in a
SCCS, yet ensures the encrypted payload itself is
protected. •

Links

PETER WRIGHT is a systems architect
currently working at Tronc Inc.
helping build scalable and secure sys-
tems based on FreeBSD, SaltStack
and AWS for the publishing industry.
A longtime member of NYCBUG,
despite living in Santa Monica, he is
always keen to introduce people
to FreeBSD. If he's not hacking Unix,
you'll probably find him at his
favorite beach surfing with his son.

Getting Started with SaltStack (official tutorial):
https://docs.saltstack.com/en/getstarted/

SaltStack Documentation:
https://docs.saltstack.com/en/latest/contents.html

SaltStack Nodegroups:
https://docs.saltstack.com/en/latest/topics/targeting/nodegroups.html

SaltStack GPG Renderer:
https://docs.saltstack.com/en/latest/ref/renderers/all/salt.renderers.gpg.html

T

Write
For Us!
Write

For Us!

Contact Jim Maurer (jmaurer@freebsdjournal.com)
with your article ideas.

JOURNAL
TM
TM

TM

