
4 FreeBSD Journal

Tracing,
Analysis,&
Experimentation

TEACHINGOperating Systems
with FreeBSD Through

Tracing,
Analysis,&
Experimentation

S E E
T E X T
O N L Y

March/April 2016 5

deal about operating systems, or large systems in general. For graduate students, studying operating
systems is done through a research readings course, where students read, present, discuss, and write
about classic research where they are evaluated on a term project and one or more exams.

For practitioners, those who have already left the university, or those who entered computer science
from other fields, there have been even fewer options. One of the few examples of a course aimed at
practicing software engineers is the series “FreeBSD Kernel Internals” by Marshall Kirk McKusick, with
whom both authors of this article worked on the most recent edition of The Design and
Implementation of the FreeBSD Operating System. In the “FreeBSD Kernel Internals” courses, students
are walked through the internals of the FreeBSD operating system with a generous amount of code
reading and review, but without modifying the system as part of the course.

For university courses at both the undergraduate and graduate level, we felt there had to be a mid-
dle way where we could use a real-world artifact such as FreeBSD, which is deployed in products
around the world, while making sure the students didn’t get lost in the millions of lines of code at their
disposal.

Deep-dive Experimentation
Starting in 2014, Robert and George undertook to build a "deep-dive experimentation” course for
graduate students taught by Robert N. M. Watson at the University of Cambridge, as well as a practi-
tioner course taught at conferences in industrial settings by George Neville-Neil.

In the deep-dive course, students learn about and analyze specific CPU/OS/protocol behaviors using
tracing via DTrace and performance using the hwpmc(4) system. Using tracing to teach mitigates the
risk of OS kernel hacking in a short course, while allowing the students to work on real-world systems
rather than toys. For graduate students, we target research skills and not just OS design. The deep-dive

Many people who study computer science at universities encounter
their first truly large system when studying operating systems. Until
their first OS course, their projects are small, self-contained, and

often written by only one person or a team of three or four. Since the first
courses on operating systems were begun back in the 1970s, there have
been three ways in which such classes have been taught. At the undergradu-
ate level, there is the “trial by fire,” in which students extend or recreate clas-
sical elements and forms of OS design, including kernels, processes, and
filesystems. In trial-by-fire courses the students are given a very large system
to work with and they are expected to make small, but measurable, changes
to it. Handing someone a couple million lines of C and expecting them to get
something out of changing a hundred lines of it seems counterintuitive at the
least. The second undergraduate style is the “toy system.” With a toy system
the millions of lines are reduced to some tens of thousands, which makes
understanding the system as a whole easier, but severely constrains the types
of problems that can be presented, and the lack of fidelity, as compared to a
real, fielded operating system, often means that students do not learn a great

By George V. Neville-Neil and Robert N. M. Watson

Fig 1.
BeagleBone

Black board used in
teaching. The single

USB cable is used to pro-
vide both power and

communications with a
lab workstation or stu-

dent notebook computer.

6 FreeBSD Journal

course is only possible due to development of integrated tracing and profiling tools, including DTrace
and CPU performance counters present in FreeBSD.

The aims of the graduate course include teaching the methodology, skills, and knowledge required
to understand and perform research on contemporary operating systems by teaching systems-analysis
methodology and practice, exploring real-world systems artifacts, developing scientific writing skills,
and reading selected original systems research papers.

The course is structured into a series of modules. Cambridge teaches using 8-week academic terms,
providing limited teaching time compared to US-style 12-to-14-week semesters. However, students are
expected to do substantial work outside of the classroom, whether in the form of reading, writing, or
lab work. For the Cambridge course, we had six one-hour lectures in which we covered theory,
methodology, architecture, and practice, as well as five two-hour labs. The labs included 30 minutes of
extra teaching time in the form of short lectures on artifacts, tools, and practical skills. The rest of the
students’ time was spent doing hands-on measurement and experimentation. Readings were also
assigned, as is common in graduate level courses, and these included both selected portions of module
texts and historic and contemporary research papers. Students produced a series of lab reports based
on experiments done in (and out) of labs. The lab reports are meant to refine scientific writing style to
make it suitable for systems research. One practice run was marked, with detailed feedback given, but
not assessed, while the following two reports were assessed and made up 50% of the final mark.

Three textbooks are used in the course, including The Design and Implementation of the FreeBSD
Operating System, 2nd Edition, as the core operating systems textbook; The Art of Computer Systems
Performance Analysis: Techniques for Experimental Design, Measurement, Simulation, and Modeling,
which shows the students how to measure and evaluate their lab work; and DTrace: Dynamic Tracing in
Oracle Solaris, Mac OS X and FreeBSD, covering the use of the DTrace system.

Although many courses are now taught on virtual machine technology, we felt it was important to
give the students experience with performance measurement. Instead of equipping a large room of

Fig. 2. DTrace is a critical part of the course’s teaching approach—students trace kernels and applications to
understand their performance behavior. They also need to understand—at a high level—how DTrace works, in
order to reason about the "probe effect" on their measurements.

March/April 2016 7

servers, we decided, instead, to teach with
one of the new and inexpensive embed-
ded boards based around the ARM series
of processors. Initially we hoped to use
the Raspberry Pi as it is popular, cheap,
and designed at the same university at
which the course would first be taught.
Unfortunately, the RPi available at the time
did not have proper performance counter
support in hardware due to a feature
being left off the system-on-chip design
when it was originally produced. With the
RPi out of the running, we chose the
BeagleBone Black, which is built around a
1-GHz, 32-bit ARM Cortex A-8, a super-
scalar processor with MMU and L1/L2
caches. Each student had one of these
boards on which to do lab work. The BBB
has serial console and network via USB. We provided the software images on SD cards that formed the
base of the students’ lab work. The software images contain the FreeBSD operating system, with DTrace
and support for the on-board CPU performance counters, and a set of custom micro-benchmarks. The
benchmarks are used in the labs and cover areas such as POSIX I/O, POSIX IPC, and networking over TCP.

Eight Weeks, Three Sections
The eight weeks of the course are broken up into three major sections. In weeks one and two, there is a
broad introduction to OS kernels and tracing. We want to give the students a feel for the system they are
working on and the tools they’ll be working with. During these first two weeks, students are assigned
their first lab, in which they are expected to look at POSIX I/O performance. I/O performance is measured
using a synthetic benchmark we provide in which they look at file block I/O using a constant total size
with a variable buffer size. The conventional view is that increasing the buffer size will result in fewer sys-
tem calls and improved overall performance, but that is not what the students will find. As buffer sizes
grow, the working set first overflows the last-level cache, preventing further performance growth, and
later exceeds the superpage size, measurably decreasing performance as page faults require additional
memory zeroing.

The second section, covering weeks three through five, is dedicated to the process model. As the
process model forms the basis of almost all modern programming systems, it is a core component of
what we want the students to be able to understand and investigate during the course and afterwards in
their own research. While learning about the process model, the students are also exposed to their first
micro-architectural measurement lab in which they show the implications of IPC on L1 and L2 caching.
The micro-architectural lab is the first one that contributes to their final grade.

The last section of the course is given over to networking, specifically the Transport Control Protocol
(TCP). During weeks six through eight, the students are exposed to the TCP state machine and also
measure the effects of latency on bandwidth in data transfers.

Challenges and Refinements
The graduate course has been taught twice at Cambridge, and we have reached out to other universities
to talk with them about adopting the material we have produced. In teaching the course, we discovered
many things that worked, as well as a few challenges to be overcome as the material is refined. We can

Fig 3. Students learn not just about the abstract notion of a
UNIX "process," but also the evolution of the approach over
the decades: dynamic linking, multithreading, and contempo-
rary memory allocators such as FreeBSD’s "jemalloc."

confirm that tracing is a great way to teach
complex systems because we were able to get
comprehensive and solid lab reports/analysis
from the students, which was the overall goal
of the course. The students were able to use
cache hit vs. system-call rates to explain IPC per-
formance. They produced TCP time-sequence
plots and graphical versions of the TCP state
machine all from trace output. Their lab reports
had real explanations of interesting artifacts,
including probe effects, superpages, DUM-
MYNET timer effects, and even bugs in DTrace.
Our experiment with using an embedded board
platform worked quite well—we could not have
done most of these experiments on VMs.
Overall, we found that the labs were at the
right level of difficulty, but that too many exper-
imental questions led to less focused reports—
a concern addressed in the second round of
teaching.

On the technical side, we should have com-
mitted to one of R, Python, or iPython
Notebooks for use by the students in doing
their experimental evaluations and write-ups.
Having a plethora meant that there were small
problems in each, all of which had to be solved
and which slowed down the students’ progress.
When teaching the course for the first time,
there were several platform bumps, including
USB target issues, DTrace for ARMv7 bugs, and
the 4-argument limitation for DTrace on ARMv7.

Teaching Practitioners
Teaching practitioners differs from teaching university students in several ways. First, we can assume
more background, including some knowledge of programming and experience with Unix. Second,
practitioners often have real problems to solve, which can lead these students to be more focused
and more involved in the course work. We can't assume everything, of course, as most of the stu-
dents will not have been exposed to Kernel Internals or have a deep understanding of corner cases.

Our goals for the practitioner course are to familiarize people with the tools they will use, includ-
ing DTrace, and to give them practical techniques for dealing with their problems. Along the way
we’ll educate them about how the OS works and dispel their fears of ever understanding it.
Contrary to popular belief, education is meant to dispel the students fear of a topic so that they can
appreciate it more fully and learn it more deeply.

The practitioner’s course is currently two eight-hour days. The platform is the student’s laptop or a
virtual machine. First taught at AsiaBSDCon 2015 and AsiaBSDCon 2016, the next course will be at
BSDCan 2016.

8 FreeBSD Journal

Fig 4. Labs 3 and 4 of the course require students to track
the TCP state machine and congestion control using DTrace,
and to simulate the effects of latency on TCP behavior using
FreeBSD’s DUMMYNET traffic control facility.

Five-day, 40-hour course Hardware or VM Platform
Video Recordings
Like the graduate-level course, this course is broken down into several sections and follows roughly
the same narrative arc. We start by introducing DTrace using several simple and yet powerful “one
liners.” A DTrace one liner is a single command that yields an interesting result.

Figure below shows an example one-liner wherein every name lookup on the system is shown
at run time.

dtrace -n ’vfs:namei:lookup:entry \

{ printf("%s", stringof(arg1));}’

CPU ID FUNCTION:NAME

2 27847 lookup:entry /bin/ls

2 27847 lookup:entry /libexec/ld-elf.so.1

2 27847 lookup:entry /etc

2 27847 lookup:entry /etc/libmap.conf

2 27847 lookup:entry /etc/libmap.conf

The major modules are similar to the university course and cover locking, scheduler, files and the
filesystem, and finally networking. The material is broken up so that each one-hour lecture is followed
by a 30 minute lab in which students use the VMs on their laptops to modify examples given during
the lectures or solve a directed problem. Unlike classes where we have access to hardware, the stu-
dents do not take any performance measurements with hwpmc(4) since the results would be unreli-

March/April 2016 9

Premier VPS Hosting

www.rootbsd.net

RootBSD has multiple datacenter locations,
and offers friendly, knowledgeable support staff.

Starting at just $20/mo you are granted access to the latest
FreeBSD, full Root Access, and Private Cloud options.

10 FreeBSDJournal

able and uninformative.
Having taught the practitioner course several times, we have learned a few things. Perhaps the

most surprising was that the class really engages the students. Walking around the class during
the labs, we didn't see a single person checking email or reading social media—they were actually
solving the problems. The students often came up with novel answers to the problems presented,
and this was only after being exposed to DTrace for a few hours. Their solutions were interesting
enough that we integrated them back into the teaching during the next section. Finally, and obvi-
ous from the outset, handing a pre-built VM to the students significantly improves class startup
time, with everyone focused on the task at hand, rather than tweaking their environment. Since the
FreeBSD Project produces VM images for all the popular VM systems along with each release, it is
easy to have the students pre-load the VM before class, or to hand them one on a USB stick when
they arrive.

It’s All Online!
With the overall success of these courses, we have decided to put all the material online using a
permissive, BSD-like publishing license. The main page, can be found at www.teachbsd.org and our
github repo, which contains all our teaching materials for both the graduate and practitioner cours-
es can be found in github: https://github.com/teachbsd/course, where you can fork the material for
your own purposes as well as send us pull requests for new features or any bugs found in the con-
tent. We would value your feedback on, and suggestions for improvements to, the course—and
please let us know if you are teaching with it! •

GEORGE V. NEVILLE-NEIL works on networking and operating system code for fun and
profit. He also teaches courses on various subjects related to programming. His areas of
interest are code spelunking, operating systems, networking and time protocols. He is the
coauthor with Marshall Kirk McKusick and Robert N. M. Watson of The Design and
Implementation of the FreeBSD Operating System. For over 10 years he has been the colum-

nist better known as Kode Vicious. He earned his bache-
lor’s degree in computer science at Northeastern
University in Boston, Massachusetts, and is a member of
ACM, the Usenix Association, and IEEE. He is an avid bicy-
clist and traveler and currently lives in New York City.

DR. ROBERT N. M. WATSON is a University Lecturer in
Systems, Security, and Architecture at the University of
Cambridge Computer Laboratory; FreeBSD developer and
core team member; and member of the FreeBSD
Foundation board of directors. He leads a number of cross-
layer research projects spanning computer architecture,
compilers, program analysis, program transformation,
operating systems, networking, and security. Recent work
includes the Capsicum security model, MAC Framework
used for sandboxing in systems such as Junos and Apple
iOS, and multithreading in the FreeBSD network stack. He
is a coauthor of The Design and Implementation of the
FreeBSD Operating Systems (Second Edition).

