»

BUI
FOU
~ FOR

T%A

CURE,
~ TRUSTED
'COMPUTING
BASES

st

by Brooks Dayvis

BSD operating systems have been around since the

1980s, and the history of UNIX extends all the way back
to 1969, but despite orders of magnitude growth in per-
formance, storage, and memory capacity, we still use CPUs
with computing models that are remarkably similar to the
PDP-11 on which the early versions of UNIX were run. We
have a flat virtual address space (now 64 bits instead of
16), TLB-based process virtualization of memory, and

permissions at page granularity.

his model has many advantages and has served us well for many years, but it also suffers from

serious disadvantages. Multiple classes of memory corruption bugs including buffer overflows

are consistent sources of vulnerabilities despite years of work to address them. As a community,

we employ many mitigation techniques such as address-space layout randomization (ASLR) and
compartmentalization (also known as privilege-separation), but these have significant costs. ASLR has a
non-negligible performance overhead, provides protection that is statistical not absolute, and certain
common programming models such as pre-fork servers allow efficient automated attacks.
Compartmentalization limits the impact of failures of other mitigations by confining risky parts of pro-
grams to environments where their privilege is limited. On compartmentalizing software, programmers
transform programs into distributed computations, increasing context switch overhead and TLB pres-
sure while converting single-address-space programs into distributed systems with all the attendant
complexity. This means compartmentalization is commonly used only where it is a trivial match to the
application’s programming model (uniqg (1)) or where vulnerabilities would be the most critical
(sshd (1), Chrome, or Firefox).

Developed under the auspices of the DARPA CRASH (Clean-slate design of Resilient, Adaptive,
Secure Hosts) program, CHERI (Capability Hardware Enhanced RISC Instructions) is a hardware/soft-
ware co-design project that challenges the assumptions we’ve made about hardware software inter-
faces for the last 40-plus years. We have developed extensions to the MIPS64 ISA that provide robust,
fine-grained, hardware-enforced, process-scope memory capabilities that enforce object boundaries
and permissions in a manner compatible with C pointers. We have further extended these capabilities
to provide robust, efficient, in-process compartmentalization. Our extensions are implemented as a
MIPS coprocessor allowing incremental deployment of CHERI features.

March/April 2016

25

26

bit

1

256-bit

To develop and demonstrate these features, we have implemented an FPGA soft-core CPU, ported
FreeBSD to it, and extended FreeBSD with support for CHERI capabilities [Woodruff]. We have added sup-
port to LLVM and Clang to use capabilities in C, both a hybrid mode where specially annotated pointers
become capabilities and another where all pointers are capabilities [Chisnall]. Additionally, we have
extended our FreeBSD port (CheriBSD) to support in-process compartmentalization of code and demon-
strated the viability of the approach with the tepdump program and z1ib library [Watson].

CHERI Capabilities

CHERI capabilities are unforgeable references to regions of virtual address space. They are stored in mem-
ory accompanied by a tag bit that verifies their validity (vs. some arbitrary arrangement of bits) and are
manipulated in special capability registers. Capabilities contain a base, length, offset relative to the base,
permissions, and a type. Instructions that manipulate capabilities may only shrink the region bounced by
the base and length or reduce permissions. Attempts to increase the scope or permissions of a capability
raise a hardware exception. Thus, capabilities provide monotonically decreasing rights.

All memory accesses are performed through a capability. This may occur directly via new capability-
based load and store instruction or indirectly via the default data capability (DDC). When running capabili-
ty-unaware or hybrid programs, DDC is set to a capability with rights to the whole address space. This
allows all legacy load and store instructions to work as expected in hybrid or pure-MIPS binaries.

Because all memory accesses are via capabilities, the portion of address space that is reachable by a
given thread is the transitive closure of the address space reachable by the set of capabilities in the regis-
ter file. That is to say, all memory that can be accessed by a capability currently in the register file or via a
capability that can be loaded from the memory the register file grants access to. Thus, compartmentaliza-
tion can be achieved by transforming the contents of the register set. This is achieved with the ccall
instruction, which takes a paired code and data capability having the same type, stores the current regis-
ter contents, and sets up a new register set executing in the code capability and having access to argu-
ment registers and registers specified in the data capability. To exit a sandbox, a CReturn instruction
restores the register set from a trusted stack.

In our primary prototype, capabilities are 256 bits and strongly aligned with a tag bit stored in a sepa-
rate, inaccessible portion of DRAM. The current layout is shown in the figure below.

-1 v
objtype (24-bits) permissions (31-bits) S
2 length (64-bits)
'_5 —
% offset (64-bits)
(&)
base (64-bits)

The primary overhead of using capabilities comes from the increased memory and especially cache
footprint of code where pointers become capabilities. Pointer-intensive benchmarks have measurable
overhead, but thus far real-world programs such as tcpdump show no significant penalty.

C Support

Unlike many past capability systems, we designed CHERI capabilities with the explicit goal of using them
as C pointers. This has had considerable impact on our ISA and the contents of our capabilities. Most sig-
nificantly, our capabilities include not only base and length, but offset, because real-world C programs
often temporarily address values outside their allocated range.

FreeBSD Journal

Our initial focus on supporting capabilities in C was adding a new annotations __capability to
pointers that we wished to restrict. For example, we annotated a version of tcpdump where we protected
the packet pointer preventing out-of-bounds access from producing spurious results. The thousands of lines
requiring annotation and the thousands of merge conflicts produced in the first import of a new tcpdump
code base convinced us that a pure-capability mode was required for CHERI to be usable. We can currently
compile nearly all C code in pure-capability mode and do so for most compartmentalized code. We contin-
ue to use hybrid mode in support code in 1ibe that must be capability aware, and in transitions between
MIPS64 and pure-capability code (usually around the edges of compartmentalized code).

Supporting CHERI capabilities as pointers also has a number of ABI subtleties that are beyond the scope
of this article.

CheriBSD

To ensure that our ideas are truly viable, we have made it a goal from the start to run a real operating sys-
tem and application stack on CHERI and to allow incremental adoption of CHERI features in software. To
this end, we first brought up FreeBSD on CHERI adding support for those features required to support our
prototype board without support for capabilities [Davis]. We separately added kernel support for running
programs containing capabilities. This includes process startup, context switch code, signal handling, and
debugging. The table below shows a breakdown of the modest set of changes required.

Component Files Modified Lines Added Lines Removed
Headers 19 1,424 11
CHERI initialization 2 49 4
Context management 2 392 10
Exception handling 3 574 90
Memory copying 2 122 0
Virtual memory 5 398 27
Object capabilities 2 883 0
System calls 2 76 0
Signal delivery 3 327 71
Process monitoring/debugging 3 298 0
Kernel debugger 2 264 0

To support hybrid capability programs, we modified 1ibe slightly to make memory manipulation func-
tion (memcpy (), memmove (), gsort ()) capability aware to allow structures to contain capabilities. With
these changes we continue to support unmodified MIPS64 binaries, and, in fact, most of our userspace
programs are capability aware only in so far as it is easier (and potentially faster due to copying more bytes
per instruction) to unconditionally use capability-aware memory manipulation functions. We have also pro-
vided capability aware variants of string and memory manipulation functions. For example, a capability
away (and thus memory-safe) strepy_c () implementation is shown below.

___capability char *
strcpy c(_ capability char * restrict to,
__capability const char * _ restrict from)

{

___capability char *save = to;

for (; (*to = *from); ++from, ++to);

return(save);

}

Due to the initially weak support for MISP64 in clang we modified the FreeBSD build system to allow
select libraries to be built with our modified clang version while compiling the rest of the system with the

March/April 2016 | 27

28

base gcc. We have also modified the build system to build pure-capability versions to all libraries similar
to the way the normal build system builds 32-bit versions of libraries on 64-bit systems. This both
allows us to more thoroughly test compiler support and to link unmodified libraries into compartmen-
talized sections of code that use pure-capability mode.

libcheri

Compartmentalization in CheriBSD is currently implemented in the 1ibcheri library. It provides an
interface to load sandbox classes and create sandbox objects. Sandbox objects are effectively mini-
address spaces within a process—1libcheri maps a region of address space, loads a compartmental-
ized object into it, and securely calls methods implemented by that object. In our current implementa-
tion, compartmentalized code is typically pure-capability code in order to take advantage of memory
safety guarantees and to simplify passing of capabilities from outside the sandbox, but other models are
possible. For example, a bit of wrapper code could allow an unmodified 32-bit library to run in a sand-
box within a 64-bit program.

Conceptually, 1ibcheri sandboxes are libraries with the added twist that multiple instances of each
library can be instantiated and those instances can fail and be reset independently. This allows risky
code such as tcpdump packet decoding or z1ib decompression to be placed in a sandbox where fail-
ure has reduced consequences as the sandboxed code has no direct ability to make system calls and
greatly reduced ability to impact the main process.

We have used libcheri compartmentalization to protect the main tepdump process (often run as
root!) from the packet dissection and printing code (handcrafted C to process untrustworthy and fre-
quently corrupt data from the network). We are able to protect against a wide range of attack models
from simple crashes to infinite loop-based denial of service attacks and even supply chain attacks where
a packet triggers a bug in a malicious dissector. With these changes active, the impact of a crashing or
denial of service bug is limited to the loss of formatted output for the given packet and a brief slow-
down as we reload the sandbox instance.

In addition to protecting applications like tepdump from their internals, we have also implemented
library compartmentalization where we present an API- and ABI-compatible interface to a compartmen-
talized z1ib library. This allows completely unmodified, dynamically linked gzip, gif2png, and simi-
lar programs to gain the benefits of a compartmentalized and memory safe z1ib without even recom-
piling. This strategy of library compartmentalization allows the effort of compartmentalization to benefit
as many consumers as possible with the least effort.

Contributions to FreeBSD

In the course of our work on CHERI and CheriBSD, we have contributed a number of changes back to
FreeBSD. During our initial bring-up, we improved support for CFl flash devices, ported support for Flat
Device Trees and the FreeBSD boot loaders to MIPS, and generally improved MIPS support. We have
merged this work upstream as well as drivers for specific Altera and Terasic hardware on our Terasic
DE4 reference board.

As we've worked on CHERI, our stricter interpretation of the C standard has found occasional cor-
rectness issues in code in FreeBSD. As we've found general issues, we've merged these changes as they
will benefit both potential CHERI-based platforms and other memory safety systems like Intel’s MXP
once C language support is implemented.

We have also supported the development of QEMU user mode support to allow us to build packages
for use on our FPGAs. Building packages on embedded boards like the EdgeRouter™ Lite is slow, but
building them on a 100Mhz FPGA with slow I/O is completely impractical and so we’ve had to support
the creation of new infrastructure.

Finally, should hardware implementations of CHERI emerge, CheriBSD stands ready as a reference
platform and a base for mainline CHERI support in FreeBSD.

Future Work

We are currently exploring a new system call interface where system call argument pointers are capabili-

FreeBSD Journal

ties. This will allow us to run significant numbers of unmodified programs in pure-capability mode. Our
hope is that we can build and safely run a FreeBSD userspace with full spatial memory in the near
future. We expect to find a number of subtle bugs as we enforce bounds on such a large codebase.

Library compartmentalization is a powerful tool for improving the safety of diverse codebases. We
have implemented a number of compartmentalization prototypes, but need to port a wider range of
libraries. Doing so will help us determine the sorts of tools we need to develop to ease the process. We
have already done some work in this area with our SOAAP project [Gudka], but have mostly focused on
application compartmentalization. Library compartmentalization poses a similar but related set of issues.
In some cases, it may be practical and advisable to implement process-based library compartmentaliza-
tion for some libraries. Libraries with buffer-based interfaces such as z1ib are ill-suited to this, but
libraries with stream-oriented interfaces may achieve reasonable performance even in a process-oriented
environment.

As cache pressure is one of the main performance impacts of CHERI, we are currently perusing a 128-
bit compressed capability model for CHERI. Our experiments show this lowers the overhead significantly
at the cost of a loss of granularity for large objects. We hypothesize that the loss of granularity largely
maps to existing practices of rounding up allocations, but work is ongoing to confirm this.

Further Reading

This article only scratches the surface of our work on CHERI. Our three conference papers cover it in
much greater detail and show the evolution of our ideas as we have developed more software support.
The CHERI capability model: Revisiting RISC in an age of risk [Woodruff] covers the key memory safety
properties of CHERI. Beyond the PDP-11: Processor support for a memory-safe C abstract machine
[Chisnall] shows changes required to implement C on top of CHERI. Finally, CHERI: A Hybrid Capability-
System Architecture for Scalable Software Compartmentalization [Watson-Oakland] details our compart-
mentalization strategy.

Those interested in the nuts and bolts of the ISA may find Capability Hardware Enhanced RISC
Instructions: CHERI Instruction-Set Architecture [Watson-ISA] to be of interest.

Trying CHERI
We have released a QEMU implementation of CHERI which tracks our our CheriBSD, Clang, and LLVM
progress on our Github repository https:/github.com/CTSRD-CHERI/.

We have made our CHERI CPU FPGA implementation and snapshots of related software available as
open source at http:/chericpu.org. FPGA releases are infrequent and lag the current state of develop-
ment. If you have a need for the FPGA version, please contact us.

BROOKS DAVIS is a Senior Software Engineer in the Computer Science Laboratory at SRI International
and a Visiting Research Fellow at the University of Cambridge Computer Laboratory. He has been a FreeBSD
user since 1994, a FreeBSD committer since 2001, and was a core team member from 2006 to 2012. Brooks
earned a Bachelor’s Degree in Computer Science from Harvey Mudd College in 1998. His computing inter-
ests include security, operating systems, networking, high-performance computing, and, of course, finding
ways to use FreeBSD in all these areas. When not computing, he enjoys cooking, brewing, gardening, wood-
working, blacksmithing, and hiking.

RE.F E R E/NCES

[Chisnall] David Chisnall, Colin Rothwell, Brooks Davis, Robert N. M. Watson, Jonathan Woodruff, Simon W. Moore, Peter G.
Neumann, and Michael Roe. “Beyond the PDP-11: Processor support for a memory-safe C abstract machine,” Proceedings of
Architectural Support for Programming Languages and Operating Systems (ASPLOS 2015), Istanbul, Turkey. (March 2015)
http://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201503-asplos2015-cheri-cmachine.pdf

[Davis] Brooks Davis, Robert Norton, Jonathan Woodruff, and Robert N. M. Watson. “Bringing Up MIPS,” FreeBSD Journal.
(January/February 2015)

[Gudka] Khilan Gudka, Robert N. M. Watson, Jonathan Anderson, David Chisnall, Brooks Davis, Ben Laurie, llias Marinos, Peter G.
Neumann, and Alex Richardson. “Clean Application Compartmentalization with SOAAP,” Proceedings of the 22nd ACM
Conference on Computer and Communications Security (CCS 2015), Denver, Colorado. (October 2015)
http:/Awww.cl.cam.ac.uk/research/security/ctsrd/pdfs/2015ccs-soaap. pdf

CONTINUES NEXT PAGE

REFERENCES conTINUED

[Watson-Oakland] Robert N. M. Watson, Jonathan Woodruff, Peter G. Neumann, Simon W. Moore, Jonathan Anderson, David
Chisnall, Nirav Dave, Brooks Davis, Khilan Gudka, Ben Laurie, Steven J. Murdoch, Robert Norton, Michael Roe, Stacey Son, and
Munraj Vadera. “CHERI: A Hybrid Capability-System Architecture for Scalable Software Compartmentalization,” Proceedings of
the 36th IEEE Symposium on Security and Privacy (“Oakland”), San Jose, California. (May 2015)
http://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201505-0akland2015-cheri-compartmentalization.pdf

[Watson-programmers-guide] Robert N. M. Watson, David Chisnall, Brooks Davis, Wojciech Koszek, Simon W. Moore, Steven J.
Murdoch, Peter G. Neumann, and Jonathan Woodruff. “Capability Hardware Enhanced RISC Instructions: CHERI Programmer’s
Guide,” Technical Report UCAM-CL-TR-877, University of Cambridge, Computer Laboratory. (September 2015) Current CHERI
programmer’s guide http://Awww.cl.cam.ac.uk/techreports/UCAM-CL-TR-877.pdf

[Watson-ISA] Robert N. M. Watson, Peter G. Neumann, Jonathan Woodruff, Michael Roe, Jonathan Anderson, David Chisnall,
Brooks Davis, Alexandre Joannou, Ben Laurie, Simon W. Moore, Steven J. Murdoch, Robert Norton, and Stacey Son.
“Capability Hardware Enhanced RISC Instructions: CHERI Instruction-Set Architecture,” Technical Report UCAM-CL-TR-876,
University of Cambridge, Computer Laboratory. (September 2015) Current CHERI ISA specification
http://www.cl.cam.ac.uk/techreports/fUCAM-CL-TR-876.pdf

[Watson-BERI-software] Robert N. M. Watson, David Chisnall, Brooks Davis, Wojciech Koszek, Simon W. Moore, Steven J.
Murdoch, Peter G. Neumann, and Jonathan Woodruff. “Blue spec Extensible RISC Implementation: BERI Software Reference,”
Technical Report UCAM-CL-TR-869, University of Cambridge, Computer Laboratory. (April 2015)
http://www.cl.cam.ac.uk/techreports/lUCAM-CL-TR-869.pdf

[Watson-BERI-hardware] Robert N. M. Watson, Jonathan Woodruff, David Chisnall, Brooks Davis, Wojciech Koszek, A. Theodore
Markets, Simon W. Moore, Steven J. Murdoch, Peter G. Neumann, Robert Norton, and Michael Roe. “Blue spec Extensible
RISC Implementation: BERI Hardware Reference,” Technical Report UCAM-CL-TR-868, University of Cambridge, Computer
Laboratory. (April 2015) http://www.cl.cam.ac.uk/techreports/lUCAM-CL-TR-868.pdf

[Woodruff] Jonathan Woodruff, Robert N. M. Watson, David Chisnall, Simon W. Moore, Jonathan Anderson, Brooks Davis, Ben
Laurie, Peter G. Neumann, Robert Norton, and Michael Roe. “The CHERI capability model: Revisiting RISC in an age of risk,”
Proceedings of the 41st International Symposium on Computer Architecture (ISCA 2014), Minneapolis, Minnesota. (June
14-16, 2014) http://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201406-isca2014-cheri.pdf

This paper is approved for public release; distribution is unlimited. It was developed with funding from the Defense Advanced Research
Projects Agency (DARPA) under Contract FA8750-10-C-0237. The views, opinions, and/or findings contained in this paper are those of the
authors and should not be interpreted as representing the official views or policies of the U.S. Department of Defense.

Serverm Rack-mount networking server

Designed for BSD and Linux Systems
/A Up to 5.5Gbit/s routing power!
A e e

w
Made for ‘ FreeBSD

®= BGP & OSPF routing ® CDN & Web Cache / Proxy -
» Firewall & UTM Security Appliances = E-mail Server & SMTP Filtering

Ix Intel 1350 AM4

= Intrusion Detection & WAF » Anti-DDoS and clean pipe filtering 8 -2 ix G 45 ports
len:/s SFP (Flber) Ports Chipset

ntel X540
X540

IOGbE Copper F‘orts Ch-pset
2 t

®= 6 NICs w/ Intel igh(4) driver w/ bypass |

» Hand-picked server chipsets

= Netmap Ready (FreeBSD & pfSense)

Chipset

= Up to 14 Gigabit expansicn ports
= Up to 4x10GbE SFP+ expansion Designed. Certified. Supported

contactus@serveru.us | www.serveru.us | 8001 NW 64th St. Miami, LF 33166 | +1(305) 421-9956

30 | FreeBSD Journal

