Packaging: A Vision
Will Andrews

Changing The World of Storage




B
SPECTRA

SINCE 1979

First-class binary packages

* Options without compiling

* Installs and upgrades that do everything they
would if an user built from sources

Changing The World of Storage

-It’s long been a tradition in FreeBSD ports that to get the proper set of features or
behavior, one must compile.

-But for many users, this is a significant time sink that’s simply not necessary or
desirable. And FreeBSD can do better.



SPEET::A );

SINCE 1979

Multiple package repositories

* Enable partial repositories so users can
maintain local versions of some packages and
still use unmodified dependencies elsewhere

* Metadata on the repository to enable pre
download action confirmation

Changing The World of Storage

-Multiple package repositories sounds simple, but it implies a number of features
important to many users

-First, the dependency resolution mechanism must be able to reference other
packages that are sufficient enough to meet their requirements, and not
necessarily exactly the same version it was built against.

-Second, since the dependency resolution may not be able to satisfy all of a
package’s requirements on a given repository, metadata files must exist on
the repository to bridge the gap. This also allows pre-download confirmation
for users.

-Third, the version comparison dependency resolution mechanism would also
enable incremental updates of package repositories. Packages would not
need to be built as part of one giant set; instead, package builds can be done
incrementally. This would save a lot of time building them and transporting
them around mirror sites etc.

-Fourth, once all of that is done, packages not part of the main build can be
supported properly. This enables commercial vendors that ship their
software as packages like everything else, either directly to users or as part of
appliances. It also enables larger sub-groups of packagers that need to test
their packages, to provide only the packages they modified.



SPECTRA )

SINCE 1979

Maintainable local modifications

* For using binary packages

— Enable users to keep local packages and still
upgrade the unmodified dependencies

* For building source packages

— Drop-in plugins that modify build behavior to
incorporate new base system features or
implement local mass-build functions e.g. ccache

— ...while still enabling easy upgrades of the build
system core

Changing The World of Storage

This is a continuation of the previous slide. FreeBSD can do better not just for binary
packages, but also for local source build modifications.

-Supporting plugins for the build system would enable custom behavior only
pertinent on certain versions of FreeBSD, without needing to include it in the core.

-Plugins also enable custom behavior only available on systems with certain other
infrastructure, e.g. cluster compiling with ccache. This can be true of commercial
vendors using FreeBSD.

-Plugins enable these behaviors while still allowing the core to be upgraded
independently. As long as the interfaces remain stable, of course.



e —
SPECTRA )
SINCE 1979

Integrated large-scale builds

* Central maintenance and improvements
* Common documentation
* Better integration with the build system itself

Changing The World of Storage

For over 10 years, there has been several different facilities for mass building of
packages. Sadly, none of them fully integrates with the package system. They’re
built on top of it, and as separate projects. That costs users time if they need to build
a large package set in a manageable fashion. By integrating these features into the
package system itself, perhaps via the plugin mechanism, we could have something
that has better integration, documentation, and a less balkanized developer
community around it.



——
SPECTRA )

SINCE 1979

Management APls

* Integration into third party/vendor tools

— Many commercial users need a way to integrate
product management with FreeBSD’s

* GUI and web Ul frontends
— GNOME, KDE, PHP, Rails, ...

* Functional parity with standard tool set

Changing The World of Storage

This one is relatively straightforward. There is a need to provide APIs for third party
and vendor tools that allow packages to work much the same way they would if the
user was using the standard tool set. Most other OSs have GUI and web Ul tools that
operate by taking advantage of the APIs available to accomplish this goal.



SPECTRA J
SINCE 1979

Full-featured source language

* Make is not a programming language

* Bourne shell over-extended to implement
many basic ports features

* Many potential features not reasonably
feasible with existing toolchain

» Using a different language could tap a much
larger developer base

* Precedent in management tools & tinderbox

Changing The World of Storage

FreeBSD Ports has its roots in the tools that were available in 1995 and it shows. In
the last 15 years, despite the hard work of many smart people, the feature set of the
build system core continues to improve at a glacial pace. Anyone that has worked on
a major feature involving large changes to bsd.port.mk knows how difficult it often is
to implement those features using the existing tools, especially compared to other,
modern scripting languages. Make is excellent as a build tool, but it’s been contorted
beyond its intended use to do what ports needs to do. In light of that, FreeBSD
should move to a different language more suited to the job. There is precedent in
external tools that build on ports that point to this fact.




——
SPECTRA J
SINCE 1979

Base system support

* More effective management of multiple
versions via variant symlinks, without
resorting to ugly hacks

— Autotools made easy!

* Managing base system installation using
packages to enable better integration and
choices for users

Changing The World of Storage

There’s no reason why the “base system” and package system need to be separated.
In fact, both could help each other out with certain problems.

-Kernel support that improve the usability of packages would make life easier for
many users. One possibility could be to use variant symlinks to provide different
versions of autotools.

-Userland support could include advanced build features like dependency tracing as
proposed by jbuild.

-Incremental updates for the base system could be a lot easier as they’d no longer
need to be done via an all-or-nothing updating mechanism. If binary packages
supported options, then optional behavior for the base system could also be
supported this way.



e
SPEC TRA J
SINCE 1979

Automatic config management

* Implemented in many other packaging
systems for quite some time

* Reduces the amount of work an administrator
must do, whether performing a “fresh install”
or an upgrade

* Could use the same techniques for managing
base system upgrades too

Changing The World of Storage

This is a great feature where a package can use its knowledge of installed packages
and their high-level configuration to perform automatic configuration of the
packages. So, for example, installing PHP could cause it to be automatically added to
Apache or another web server’s configuration. Of course, such behavior could be
disabled or otherwise manageable by the administrator.

The base system could leverage the same framework.



Faster package build process

* Using a modern language alone would make
the package mechanism run faster

* Implement an automatic dependency
resolution mechanism that gets rid of
needless third party build actions, speeding up
source build time

Changing The World of Storage



What’s next?

* Let’s build the packaging system that provides
the best user experience feasible on FreeBSD!

* Work has already been done on a prototype
system that implements many of these ideas

Changing The World of Storage



