40

In FreeBSD

DI, What prompted you to create the Ports
System and what were your design goals? For
example, what else, if anything, was avail-
able at that time for managing software on
BSD or other UNIX variants and what fea-
tures did your design want to address?

H | created the Ports Collection largely as a
simple experiment in automation. At the

time, | couldn’t help but notice that all the
software | tended to add to any new FreeBSD
installation followed the same basic steps: Go
grab the source tarball from some known loca-
tion, extract it into a working directory, configure
it, build it, and install the results.

This process was also generally considered
“easy enough” that no one had really tried to
automate the process, at least not in the sense of
simply impedance-matching to whatever source
location(s) and configuration/build processes the
software used “natively” (vs. entirely repackaging
it into some closed ecosystem), and this made me
curious: Why were we being forced to remember
all those various URLs for the source tarballs and
manually do the same fetch/extract/configure/
build steps—often many times—for each new
FreeBSD install? It wasn't particularly hard, but it
also seemed like one of those repetitive tasks for
which computers were invented!

So anyway, that was really about it as far as
the motivation was concerned. | just wanted to
see if the process could be automated, and | used
make(1) because it was already essentially
designed to do that exact type of job-automate
repetitive task. | just needed to write the make
macros to allow one to create a port's makefile
relatively succinctly.

| also didn't really approach the experiment
with any “design process” in mind—I simply kept
porting things, going after some of the more
unusual/difficult to port pieces of software as a
test of the overall concept, and evolved the make
macros to meet the needs of the various chal-

FreeBSD Journal

BY DRU LAVIGNE

In this issue’s Ports Report column, Frederic Culot notes
that the FreeBSD Ports Collection will turn 20 on August 21,
2014. To commemorate this anniversary, | recently inter-
viewed JORDAN HUBBARD, its creator.

..

lenges | ran into along the way. Once | got to
about 200 ports or so, | concluded that the con-
cept had been adequately proven and my curiosi-
ty entirely satisfied, so | approached Satoshi
Asami, who was already contributing a lot of
ports and seemed far more motivated than | to
carry the ball forward. He's really the one who
substantially bootstrapped the Ports Collection
into what it is today. They didn’t call him the first
“portsmeister” for nothing!

DL, What was your long-term vision for
ports? For example, did you expect this to
become the de facto way of installing soft-
ware on BSD, or were you expecting this to
be a stage one in a longer-term plan?

I'm not sure | can say that | had any
long-term vision specifically for the Ports
Collection, but | certainly had some

longer-term goals for the notion of “software
husbandry”—as | like to refer to it—as a whole.
The Ports Collection and the corresponding pack-
age management tools (| also wrote the first ver-
sion of those) were largely just components of
those goals.

What | really wanted was for third-party soft-
ware to be really easy to discover and install by
end-users, with the “messy details” of actually
getting it onto their systems (or off again) being
abstracted away to the point where all they need-
ed to do was fire up some package browsing
tool, click on a suitable category (or search in a
search box), and select the things they wanted
from a menu in order to install (or deinstall) it. |
also wanted the framework used to build that
third-party software to be fully exposed and
accessible to developers, since someone obviously
needs to feed the other end of the pipeline in
order to have a third-party software collection at
all. I knew the collection would not grow unless it
was relatively easy to add to and update. Some of
those goals were fulfilled, others not, and still

others only with caveats, and that's a good segue
to your next question!

DL Knowing what you know now, is there
anything you wish you had included in the
design of the Ports System?

Oh yes, definitely! | could probably list
hundreds of things | wish I'd done differ-
ently, but for the sake of brevity, Il just
list what | consider to be the most significant
ones:

1. I'wish | had not used make(1). | knew the
Berkeley make macro system backwards and for-
wards so it was very easy for me to use it at the
time, but what | failed to consider was the fact
that makefiles are also very difficult to manipulate
programmatically, so you can’t easily sweep
through the entire collection and make wholesale
changes when you want to rearrange/refactor
things or do any kind of real analysis of the Port
Collection as a whole. It also made “automation
of the automation” (like “easy ports creator”
tools and such) a lot harder, since makefiles don't
lend themselves to introspection. As a data
description format, they leave a lot to be desired.

2. The use of make(1) also broke a cardinal rule
that | wasn't really aware of at the time (hey, it
was the '90s—we were still idealistic). It mixed the
active and the passive data together in one place,
or if you prefer an English language metaphor, the
“verbs” and the “nouns” describing a port and its
actions were hopelessly intertwined in the same
metadata. This made it effectively impossible to
audit what a port was doing—or what it wished
to do in advance—at build time. Since a lot of
ports also need to execute at least their installa-
tion phases as root, that was a really unfortunate
design choice from a security perspective. A dedi-
cated port building machine can always do its
work in a chroot or jail sandbox, but most users
simply execute “make install” as root on their
machines directly, and even if a port is not mali-
cious in nature, it can still suffer from flaws in
its construction that lead to unintended conse-
quences.

3. I mixed the process of installing software
with the process of building software. At the time,
it seemed like the last logical step in the build
process was to support the actual installation of
the software (otherwise, what would be the
point?), but that didn't really properly distinguish
between the responsibilities of a build framework
and a package-management framework. | later
did some hacky impedance matching between the
package tools and the Ports Collection such that
either “make install” or “make package; pkg_add

<resultingpackage>" would yield the same result,
and leave behind the same registration informa-
tion, but what | should have done in the first
place was just make the output of the Ports
Collection always be packages and never actually
touch the host system, leaving that task entirely to
the package management system.

DL Looking to the future, what are your
thoughts on software management? Do you
see ports as part of that future?

Well, if | had to do it all over again today,
| would probably describe a port in some
machine-parseable format so that large-scale

modifications of the tree could be done with less
pain. | would make it possible for ports to be a bit
more object-oriented (with inheritance and mix-
ins). | would make the build machinery always
execute in some kind of sandbox, with a variety of
possible targets, e.g., not necessarily the same
host architecture or release version of the builder.
The end-result would always be a package, and |
would also only allow packages to execute some
finite set of actions at install (or uninstall) time,
e.g., not just let them execute arbitrary, un-
auditable shell commands. That would mean all of
the metadata for a package would be essentially
“passive” until explicitly acted upon by the pack-
age management machinery, which could then
also implement various security policies about
which packages (or users) were allowed to do cer-
tain things.

I would also give a lot more thought to the
actual runtime environment of the software being
packaged. It's not the same Internet we had in the
1990s, obviously, and we can't just arbitrarily trust
third-party software anymore—coding errors, bad
actors, the whole security environment has
changed. This means we need to establish prove-
nance for everything we install on our machines,
and even once we've established provenance, we
need to still sandbox the heck out of it such that
it can only access its own data, or that data to
which we carefully grant it access, and not just
run wild with our own permissions, or worse, on
the system. All of those requirements are going to
affect how software is audited, built, signed, dis-
tributed, and installed, and all the tools that
FreeBSD is using need to evolve accordingly.

DL Any other points of interest or trivia
regarding ports or software management?

H If software ecosystems like the Ports
Collection have taught us anything, |
think it's that some of our fundamental notions

July/August 2014

41

about software husbandry need a serious re-
think. If you look at the Ports Collection today,
it's a forest of individual software dependencies
and versions, many of which are mutually incom-
patible, and even a well-organized junkyard is
still a junkyard. It just keeps getting bigger and
less wieldy as time goes on, and I'm not sure
how much further it can scale out before it starts
to collapse under its own weight. Some might
argue that such collapse is already under way.

Moreover, by making it trivially easy to link
things together in arbitrary ways, we've also only
encouraged the perpetuation of some of the
software industry’s worst practices. Linking
together lots of disparate software components
into a single address space to create an applica-
tion, whether it's targeted at some embedded
role or running in a feature-rich environment like
a desktop, might be easy and rather tempting to
do, particularly when you're coding to a dead-
line, but it's also obviously fragile and fraught
with potential peril.

The recent events with OpenSSL have amply
demonstrated this, as if we needed more
demonstration, and as significant as the fallout
from the Heartbleed vulnerability has been, |

think we've really only seen the tip of that ice-
berg. We're going to have even wider-spread vul-
nerabilities, and suffer even more pain before the
industry stops thinking of dynamic libraries and
loadable modules as “handy software ICs” and
more as scary things for which they need to use
opto-isolators everywhere. Software packages
like OpenSSH and Postfix have been using multi-
process, privilege-separated models for years
now, but we need to think of ways to get every-
one to do this as a matter of course, even if it
requires the creation of fast and secure IPC
mechanisms (and handier APIs that make those
things easier to use) to facilitate it.

In that kind of world, it's just possible that
software management frameworks like the Ports
Collection could actually be part of the process
of driving such best practices rather than the cur-
rent worst practices. One can only hope! @

oo

Dru Lavigne is Director of the
FreeBSD Foundation and Chair of
the BSD Certification Group.

Missing Something?

BACK ISSUES ARE AVAILABLE AT YOUR FAVORITE APP STORE NOW.

@ rreetsp

¥ FreeBSEroma:

3 .,:;

MOVING FOR

A MODERN PACKA E AGEMENT SYSTEM

Freeagg'gL

:wofk'\ng

d s
t [l hwpme(s)

Q‘H?;;é:gzﬁ ‘
K.q‘, i
1"“ genont ‘

ToN

“‘“:g\ "’c pisTHBY
‘DNSSECS J

42| FreeBSD Journal

P FreeBSEs A

FreeBSD in the Amazon

Te schrology
USING bhyve

= Hypervisor

