
28 FreeBSD Journal

The Utilization, Saturation, and Errors
(USE) method addresses this problem, and is
intended for those—especially systems
administrators—who perform occasional
performance analysis. It is a process for
quickly checking system performance early
in an investigation, identifying common bot-
tlenecks and errors. Instead of beginning
with the tools and their statistics, the USE
method begins with the questions we’d like
answered. That way, we ensure that
we don’t overlook things due
to a lack of familiarity with
tools or a lack of the tools
themselves.

WHAT IS IT?
The USE Method can be summarized in a
single sentence: For every resource, check
Utilization, Saturation, and Errors. Resources
are any hardware in the datapath, including
CPUs, memory, storage devices, network
interfaces, controllers, and busses. Software
resources, such as mutex locks, thread
pools, and resource control limits, can also
be studied. Utilization is usually the portion

The hardest part of a performance investigation can be
knowing where to start: which analysis tools to run first,
which metrics to read, and how to interpret the output.
The choices on FreeBSD are numerous, with standard tools
including top(1), vmstat(8), iostat(8), netstat(1), and more
advanced options such as pmcstat(8) and DTrace. These
tools collectively provide hundreds of metrics, and can be
customized to provide thousands more. However, most of
us aren’t full-time performance engineers and may only
have the time to check familiar tools and metrics,
overlooking many possible
areas of trouble.

O

U

R R RO

U

StheUSEmethod

?

E

by Brendan Gregg

T I L I Z A T I
A

U
R
A
T
I

N

July/August 2014 29

S
of time a resource was busy servicing work, with
the exception of storage devices where utilization
can also mean used capacity. Saturation is the
degree to which a resource is overloaded with
work, such as the length of a backlog queue.

Usually individual resource statistics also need to
be investigated. Averaging CPU utilization across

32 CPUs can hide individ-
ual CPUs that are running
at 100%, and the same
can also be true for disk
utilization. Identifying
these is the target of the
USE method, as they can

become systemic bottlenecks.
I employed the USE method recently during a

performance evaluation, where our system was
benchmarked and compared to a similar one run-
ning Linux. The potential customer was dissatisfied
with how ZFS performed in comparison, despite it
being backed by SSDs in our system. Having
worked both ZFS and SSD pathologies before, I
knew that this could take days to unravel, and
would involve studying complex behaviors of ZFS
internals and SSD firmware. Instead of heading in
those directions, I began by performing a quick
check of system health using the USE method,
while the prospect’s benchmark was running. This
immediately identified that the CPUs were at
100% utilization, while the disks (and ZFS) were
completely idle. This helped reset the evaluation
and shifted blame to where it was due (not ZFS),
saving both my time and theirs.

Employing the USE method involves developing
a checklist of combinations of resource
and USE statistics, along with the tools in
your current environment for observing
them. I’ve included examples here, devel-
oped on FreeBSD 10 alpha 2, for both
hardware and some software resources.
This includes some new DTrace one-liners
for exposing various metrics. You may

copy these to your own company documentation
(wiki), and enhance them with any additional tools
you use in your environment.

These checklists include a terse summary of the
targets, tools, and metrics to study. In some cases,
the metric is straightforward reading from com-
mand line tools. Many others require some math,
inference, or quite a bit of digging. This will hope-
fully get easier in the future, as tools are developed
to provide USE method metrics more easily.

[1] e.g., using per-CPU run queue length as the

R S

O N

InterExpo Congress Center,
147, Tsarigradsko shose blvd, Sofia, Bulgaria.

September 27-28th
FOR MAIN CONFERENCE

September 25-26th
FOR TUTORIALS

http://eurobsdcon.org
• Talks & Schedule

More Information on the Conference Planning

• Travel & Stay
Upcoming Details on Transportation and Hotels

• Venue & Location
Information and Directions to the Conference Location

• Spouses Track and Trip
Visit the Historic City of Plovdiv, and Tour Rila Monastery

EuroBSDcon is the premier European conference on the Open Source
BSD operating systems attracting highly skilled engineering profes-
sionals, software developers, computer science students, professors,

and users from all over the world. The goal of EuroBSDcon is to
exchange knowledge about the BSD operating systems, facilitate

coordination and cooperation among users and developers.

Call for Papers
Send Your Proposal to:

submission@eurobsdcon.org

Become a Sponsor
Contact Us Via:

oc-2014@eurobsdcon.org

2014 EuroBSD
Conference
in Sofia, Bulgaria!

30 FreeBSD Journal

saturation metric: dtrace -n ‘profile-99 { @[cpu]
= lquantize(`tdq_cpu[cpu].tdq_load, 0, 128, 1);
} tick-1s { printa(@); trunc(@); }’ where > 1 is
saturation. If you’re using the older BSD sched-
uler, profile runq_length[]. There are also the
sched:::load-change and other sched probes.

[2] For this metric, we can use time spent in
TDS_RUNQ as a per-thread saturation (latency)
metric. Here is an (unstable) fbt-based one-
liner: dtrace -n ‘fbt::tdq_runq_add:entry {
ts[arg1] = timestamp; } fbt::choosethread:return
/ts[arg1]/ { @[stringof(args[1]->td_name), “runq
(ns)”] = quantize(timestamp - ts[arg1]); ts[arg1]
= 0; }’. This would be better (stability) if it can
be rewritten to use the DTrace sched probes. It
would also be great if there were simply high
resolution thread state times in struct rusage or
rusage_ext, eg, cumulative times for each state
in td_state and more, which would make read-

ing this metric easier and have lower overhead.
[3] e.g., for swapping: dtrace -n

‘fbt::cpu_thread_swapin:entry,
fbt::cpu_thread_swapout:entry { @[probefunc,
stringof(args[0]->td_name)] = count(); }’ (NOTE,
I would trace vm_thread_swapin() and
vm_thread_swapout(), but their probes don’t
exist). Tracing paging is tricker until the vminfo
provider is added; you could try tracing from
swap_pager_putpages() and swap_pager_get-
pages(), but I didn’t see an easy way to walk
back to a thread struct; another approach may
be via vm_fault_hold(). Good luck. See thread
states [2], which could make this much easier.

[4] e.g., sampling GEOM queue length at 99
Hertz: dtrace -n ‘profile-99 { @[“geom qlen”] =
lquantize(`g_bio_run_down.bio_queue_length,
0, 256, 1); }’

[5] This approach is different from storage

COMPONENT TYPE METRIC

CPU utilization system-wide: vmstat 1, “us” + “sy”; per-cpu: vmstat -P; per-process: top, “WCPU”
CPU saturation system-wide: uptime, “load averages” > CPU count; vmstat 1, “procs:r” > CPU cou
CPU errors dmesg; /var/log/messages; pmcstat for PMC and whatever error counters are suppor

Memory capacity utilization system-wide: vmstat 1, “fre” is main memory free; top, “Mem:”; per-process: top -o
“RSS” is resident set size (Kbytes), “VSZ” is virtual memory size (Kbytes)

Memory capacity saturation system-wide: vmstat 1, “sr” for scan rate, “w” for swapped threads (was saturated,
Memory capacity errors physical: dmesg?; /var/log/messages?; virtual: DTrace failed malloc()s

Network Interfaces utilization system-wide: netstat -i 1, assume one very busy interface and use input/output “byt
Network Interfaces saturation system-wide: netstat -s, for saturation related metrics, eg netstat -s | egrep ‘retrans|d
Network Interfaces errors system-wide: netstat -s | egrep ‘bad|checksum’, for various metrics; per-interface: ne

Storage device I/O utilization system-wide: iostat -xz 1, “%b”; per-process: DTrace io provider, eg, iosnoop or ioto
Storage device I/O saturation system-wide: iostat -xz 1, “qlen”; DTrace for queue duration or length [4]
Storage device I/O errors DTrace io:::done probe when /args[0]->b_error != 0/
Storage capacity utilization file systems: df -h, “Capacity”; swap: swapinfo, “Capacity”; pstat -T, also shows sw
Storage capacity saturation not sure this one makes sense - once its full, ENOSPC
Storage capacity errors DTrace; /var/log/messages file system full messages
Storage controller utilization iostat -xz 1, sum IOPS & tput metrics for devices on the same controller, and compa
Storage controller saturation check utilization and DTrace and look for kernel queueing
Storage controller errors DTrace the driver

Network controller utilization system-wide: netstat -i 1, assume one busy controller and examine input/output “by
Network controller saturation see network interface saturation
Network controller errors see network interface errors

CPU interconnect utilization pmcstat (PMC) for CPU interconnect ports, tput / max
CPU interconnect saturation pmcstat and relevant PMCs for CPU interconnect stall cycles
CPU interconnect errors pmcstat and relevant PMCs for whatever is available

Memory interconnect utilization pmcstat and relevant PMCs for memory bus throughput / max, or, measure CPI and
Memory interconnect saturation pmcstat and relevant PMCs for memory stall cycles
Memory interconnect errors pmcstat and relevant PMCs for whatever is available

I/O interconnect utilization pmcstat and relevant PMCs for tput / max if available; inference via known tput from
I/O interconnect saturation pmcstat and relevant PMCs for I/O bus stall cycles
I/O interconnect errors pmcstat and relevant PMCs for whatever is available

PHYSICAL RESOURCES

July/August 2014 31

for weighted and recent usage; per-kernel-process: top -S, “WCPU”
nt; per-cpu: DTrace to profile CPU run queue lengths [1]; per-process: DTrace of scheduler events [2]
rted (eg, thermal throttling)

o res, “RES” is resident main memory size, “SIZE” is virtual memory size; ps -auxw,

, may not be now); swapinfo, “Capacity” also for evidence of swapping/paging; per-process: DTrace [3]

tes” / known max (note: includes localhost traffic); per-interface: netstat -I interface 1, input/output “bytes” / known max
drop|out-of-order|memory problems|overflow’; per-interface: DTrace
etstat -i, “Ierrs”, “Oerrs” (eg, late collisions), “Colls” [5]

op (DTT, needs porting)

wap space;

re to known limits [5]

ytes” / known max (note: includes localhost traffic)

treat, say, 5+ as high utilization

m iostat/netstat/...

C

P

U

device (disk) utilization. For controllers, percent
busy has much less meaning, so we’re calculat-
ing utilization based on throughput (bytes/sec)
and IOPS instead. Controllers typically have lim-
its for these based on their busses and process-
ing capacity. If you don’t know them, you can
determine them experimentally.

PMC == Performance Monitoring Counters,
aka CPU Performance Counters (CPC),
Performance Instrumentation Counters (PICs),
and more. These are processor hardware coun-
ters that are read via programmable registers
on each CPU. The availability of these counters
is dependent on the processor type. See pmc(3)
and pmcstat(8).

pmcstat(8): the FreeBSD tool for instrument-
ing PMCs. You might need to run a kldload
hwpmc first before use. To figure out which
PMCs you need to use and how, it usually

takes some serious time (days) with the proces-
sor vendor manuals; eg, the Intel 64 and IA-32
Architectures Software Developer’s Manual,
Volume 3B, Appendix A-E: Performance-
Monitoring Events.

DTT == DTraceToolkit (http://www.brendan-
gregg.com/dtrace.html#DTraceToolkit) scripts.
These are in the FreeBSD source (http://svn-
web.freebsd.org/base/head/cddl/contrib/dtrace-
toolkit/) under cddl/contrib/dtracetoolkit, and
dtruss is under /usr/sbin. As features are added
to DTrace see the freebsd-dtrace mailing list
(https://lists.freebsd.org/mailman/listinfo/
freebsd-dtrace), more scripts can be ported.

CPI == Cycles Per Instruction (others use IPC
== Instructions Per Cycle).

I/O interconnect: this includes the CPU to I/O
controller busses, the I/O controller(s), and
device busses (eg, PCIe).

32 FreeBSD Journal

lockstat: you may need to run kldload ksyms before
lockstat will work (otherwise: “lockstat: can’t load
kernel symbols: No such file or directory”).

[6] e.g., showing adaptive lock block time totals
(in nanoseconds) by calling function name: dtrace
-n ‘lockstat:::adaptive-block { @[caller] =
sum(arg1); } END { printa(“%40a%@16d ns\n”,
@); }’

IN PRACTICE
You may notice that many metrics are difficult to
observe, especially those involving pmcstat(8),
which could take days to figure out. In practice,
you may only have time to perform a subset of the
USE method, studying those metrics that can be
determined quickly, and acknowledging that some
remain unknown due to pressures of time.
Knowing what you don’t know can still be enor-
mously valuable: there may come a time when a
performance issue is of vital importance to your
company to resolve, and you are already armed
with a to-do list of extra work than can be per-
formed to more thoroughly check resource per-
formance.

OTHER TOOLS
I didn’t include procstat, sockstat, gstat or others,
as the USE method is designed to begin with
questions, and only uses the tools that answer
them. This is very different from making a list of all
the tools available and then trying to find a way to
use them all. Those other tools are useful for other
methodologies, which can be used after this one.

It’s hoped that more tools are developed
to make the USE method easier, expanding
the subset of metrics that you have time to
regularly check. If you are a FreeBSD devel-
oper, then you may be the first to develop a

bustop, for example, which could be a PMC-based
tool for showing busses and interconnects, and
their utilization, saturation, and errors.

CONTINUED ANALYSIS
The USE method is intended as an early methodol-
ogy to identify common bottlenecks and errors.
These may then be studied using other method-
ologies, such as drill-down analysis and latency
analysis. There are also performance issues which
the USE method will miss entirely, and it should be
treated as only one methodology in your toolbox.

REFERENCES
Thinking Methodically about Performance,
Brendan Gregg, ACM Queue, vol. 10, no. 12,
2012
• The USE Method: FreeBSD Performance

Checklist summary on my blog
• FreeBSD source code and

man pages
• FreeBSD Wiki PmcTools
• FreeBSD Handbook

Brendan Gregg is a senior
performance architect at Netflix. He is the
author of the book Systems Performance
(Prentice Hall, 2014), primary author of DTrace:
Dynamic Tracing in Oracle Solaris, Mac OS X,
and FreeBSD (Prentice Hall, 2011), and recipi-
ent of the USENIX 2013 LISA Award for
Outstanding Achievement in System

Administration. He was previously a per-
formance lead and kernel engineer at Sun
Microsystems where he developed the ZFS
L2ARC and various DTrace providers.

SOFTWARE RESOURCES

COMPONENT TYPE METRIC

Kernel mutex utilization lockstat -H (held time); DTrace lockstat provider
Kernel mutex saturation lockstat -C (contention); DTrace lockstat provider [6]; spinning shows u
Kernel mutex errors lockstat -E (errors); DTrace and fbt provider for return probes and error

User mutex utilization DTrace pid provider for hold times; eg, pthread_mutex_*lock() return t
User mutex saturation DTrace pid provider for contention; eg, pthread_mutex_*lock() entry to
User mutex errors DTrace pid provider for EINVAL, EDEADLK, ... see pthread_mutex_lock(

Process capacity utilization current/max using: ps -a | wc -l / sysctl kern.maxproc; top, “Processes:
Process capacity saturation not sure this makes sense
Process capacity errors “can’t fork()” messages

File descriptors utilization system-wide: pstat -T, “files”; sysctl kern.openfiles / sysctl kern.maxfile
File descriptors saturation I don’t think this one makes sense, as if it can’t allocate or expand the
File descriptors errors truss, dtruss, or custom DTrace to look for errno == EMFILE on syscalls

I N

C

P
A
C
K
E
T

P

W
I
F

July/August 2014 33

up with dtrace -n ‘profile-997 { @[stack()] = count(); }’
r status

to pthread_mutex_unlock() entry
o return times
(3C) etc.

” also shows current

es; per-process: can figure out using fstat -p PID and ulimit -n
e array, it errors; see fdalloc()
s returning fds (eg, open(), accept(), ...)

I
M
E
T
R
I
C

F A CT E

P

JOURNAL

DYNAMIC
EDITION!

NOW AVAILABLE AS A

The Dynamic Edition format
offers subscribers the same

features as the App, but
permits viewing the Journal

through your favorite browser.

www.
freebsdfoundation.com

Read It Today!

The DE, like the App, is an individual
product. You will get an email notification

each time an issue is released.
A one-year subscription is $19.99, and a single copy

is $6.99—the same pricing as the App version.

$19.99

$6.99
YEAR SUB

SINGLE COPY

TM

TM

TM

