
34 FreeBSD Journal

By Michael Bentkofsky and Julien Charbon

oday’s commodity servers, with
bandwidth of 10+ Gigabits per
Network Interface Card (NIC) port

and dozens of processor cores, have
sufficient network and processing
capacity to host the most demand-
ing network services on a small
server footprint.

With the popularity of web-based services, signifi-
cant attention has gone into scaling these types of
services to address issues such as the C10K problem
(http://en.wikipedia.org/wiki/C10k_problem) of the
previous decade that posed the challenge of handling
10,000 simultaneous connections on a single server.

Modern server software that handles tens of thou-
sands of simultaneous connections is implemented
using non-blocking I/O and event notification such as
kqueue(). Today’s new challenge, however, is aimed at
servicing up to a million connections concurrently on a
single server. Current generation NIC hardware can
support this, but in order to keep scaling connection
counts higher, one of the remaining challenges is to
scale the TCP connection rate that can be serviced by
a single server
(http://blog.whatsapp.com/index.php/2012/01/1-mil-
lion-is-so-2011/). This article considers several types of
TCP-based services where the primary scaling problem
is handling the highest rate of TCP connection estab-
lishment on modern server hardware. This is a differ-
ent challenge from serving content to millions of
established TCP connections. Examples of such services
include:
• DNS services over TCP (http://tools.ietf.org/html/
rfc5966),
• HTTP services with a single request and response,
such as an Online Certificate Status Protocol (OCSP)
service,
• Whois services for domain name registries.

TCP Connection Rat

T

e Scaling in FreeBSD
Of the examples above, DNS over TCP is the

type of traffic we should expect to increase on
the Internet as the adoption of DNSSEC causes
larger DNS responses (https://www.dns-
oarc.net/node/199) and as service providers use
TCP to reduce attack vectors that are associated
with connectionless protocols such as User
Datagram Protocol (UDP). To delve into this scal-
ing challenge, Figure 1 shows the packets associ-
ated with establishing a TCP connection,
exchanging the request and response data, and
tearing-down the TCP connection.

In this use case, a client is initiating a connec-
tion SYN (1), the server responds with the
SYN/ACK (2), and the client establishes the con-
nection with an ACK (3). The request data packet
from the client to the server is sent in (4) with a
response data packet from the server in (5). This
represents the exchange of a request to the server
and a response sent back to the client. The server
initiates the connection teardown
(6) while the response is
acknowledged (7). The client
tears down its side of the con-
nection (8) and the server finally
acknowledges the client’s FIN (9).
Either end can initiate the con-
nection teardown, so packets (6),
(7), and (8) could be slightly dif-
ferently sequenced. In this packet

flow we can make several observations:
• There are a total of nine packets exchanged
with five sent from the client to the server and
four sent from the server to the client.
• There is a fair bit of overhead in establishment
and teardown of connections with only two
packets of data exchanged between the
machines in (4) and (5). Although there can be
more data exchanged on the same connection,
this workflow considers small requests and
responses.
• This kind of communication will typically have
primarily small packets exchanged, depending on
the size of the request and response. For this arti-
cle, we’ll consider generally small requests and
responses, to analyze the worst-case scenarios to
scale these types of exchanges.

This packet exchange is considered the canoni-
cal form of the small request and response prob-
lem for TCP. While the packet flow can be slight-
ly different, such as the client and server both
simultaneously initiating connection teardown, or
the FIN being sent along with the data packet
from either end, those differences do not signifi-
cantly alter the nature of the scaling.

For this packet flow, we’ll consider what it
would take to scale to the NIC bandwidth capaci-
ty of currently available cards. For each packet,
there will be at least 78 bytes:
• 12-byte inter-frame gap
• 8-byte preamble + the start of frame delimiter
• 18-byte Ethernet (source and destination MAC,
type, checksum)
• 20-byte IP header (IPv4 without options)
• 20-byte TCP header at a minimum

If we assume that bandwidth will be limited
primarily by egress (response) packets, for the
canonical packet flow, we can calculate per
request egress bandwidth consumption:

May/June 2014 35

Figure 1. Typical packets, small TCP requests

Packet Type Octets Notes
(2) SYN - ACK 98 78 + MSS, SACK, wscale, timestamps
(5) PSH - ACK 90+ 78 + timestamps + response payload
(6) FIN 90 78 + timestamps
(9) ACK 90 78 + timestamps

Total Egress 368 + response payload

Additional payload, VLAN-tagging (802.1Q),
slightly different packet counts, and additional
TCP options could increase the cumulative request
size, so if we assume aggregate inbound or out-
bound packet sizes between 500 and 1,000 bytes,
a single gigabit NIC port should strive to serve
between about 125,000 and 250,000 of these
requests cumulative per second, representing
between 625,000 and 1.25 million inbound pack-
ets per second and between 500,000 and 1 mil-
lion outbound packets per second.

We measure how a multi-core server handles
this workload without any overhead introduced in
the application. The application is a simple TCP
server running under FreeBSD 10.0, with a user
space application listening on a socket in one
thread, assigning file descriptors for new connec-

tions to multiple other threads, termed “worker
threads.” All threads are cpu_set to separate cores
and there are not more user threads than total
cores. The worker threads service multiple connec-
tions with kqueue(), read the request data with a
single receive, generate the response with a single
send, and close the connection.

For the client side, multiple requests are gener-
ated from a private network using a wide range of
client source IP addresses and ports. While the
client capacity is out-of-scope for this article, the
client software has been benchmarked to create
hundreds of thousands of connections per second.

At approximately 56,000 connections per sec-
ond, or between 225 – 450 Mbits/sec of band-
width, we see the CPU utilization shown in Figure
2. The bottleneck on core 0 is due to interrupt

36 FreeBSD Journal

$ top -SHIPz

CPU 0: 0.0% user, 0.0% nice, 0.4% system, 96.1% interrupt, 3.5% idle [irq core]
…
CPU 4: 2.4% user, 0.0% nice, 20.0% system, 0.0% interrupt, 77.6% idle [accept thread]
CPU 5: 11.8% user, 0.0% nice, 63.5% system, 0.0% interrupt, 24.7% idle [worker thread}
…

PID USERNAME PRI NICE SIZE RES STATE C TIME WCPU COMMAND
12 root -92 - 0K 560K CPU0 0 8:39 75.78% [intr{irq263: ix0}]

2636 ... 85 -5 4927M 4886M CPU5 5 9:16 58.06% tcp_server
2636 ... -21 r31 4927M 4886M CPU4 4 3:00 20.26% tcp_server

Figure 2. CPU Utilization, Single Queue

CPU 0: 0.0% user, 0.0% nice, 30.5% system, 64.5% interrupt, 5.0% idle [irq core]
CPU 1: 0.0% user, 0.0% nice, 29.9% system, 64.3% interrupt, 5.7% idle [irq core]
CPU 2: 0.0% user, 0.0% nice, 30.2% system, 66.1% interrupt, 3.6% idle [irq core]
CPU 3: 0.0% user, 0.0% nice, 30.2% system, 66.4% interrupt, 3.4% idle [irq core]
CPU 4: 5.7% user, 0.0% nice, 84.4% system, 0.0% interrupt, 9.9% idle [accept() thread]
...
CPU 6: 8.3% user, 0.0% nice, 59.1% system, 0.0% interrupt, 32.6% idle [worker thread]
CPU 7: 8.9% user, 0.0% nice, 58.3% system, 0.0% interrupt, 32.8% idle [worker thread]
...

PID USERNAME PRI NICE SIZE RES STATE C TIME WCPU COMMAND
3110 ... -21 r31 4955M 4911M CPU4 4 5:12 70.26% tcp_server
12 root -92 - 0K 688K CPU1 1 7:20 66.46% intr{irq264: ix0:que }
12 root -92 - 0K 688K CPU2 2 7:21 66.26% intr{irq265: ix0:que }
12 root -92 - 0K 688K CPU3 3 7:21 66.16% intr{irq266: ix0:que }
12 root -92 - 0K 688K CPU0 0 7:20 65.87% intr{irq263: ix0:que }

3110 ... 52 -5 4955M 4911M RUN 7 4:50 65.38% tcp_server
3110 ... 86 -5 4955M 4911M CPU6 6 4:47 60.50% tcp_server

0 root -92 0 0K 304K RUN 1 0:50 8.06% kernel{ix0 que}
0 root -92 0 0K 304K RUN 0 0:49 8.06% kernel{ix0 que}
0 root -92 0 0K 304K RUN 3 0:48 8.06% kernel{ix0 que}
0 root -92 0 0K 304K RUN 2 0:49 7.96% kernel{ix0 que}

Figure 3. CPU Utilization, Multiple Queues

TCP Connection Rate Scaling

May/June 2014 37

pmcstat -c 0 -S unhalted-cycles -O sample.pmc
pmcstat -R sample.pmc -G call.graph

... [397427 samples]

64.82% [257597] __rw_wlock_hard @ /boot/kernel/kernel
99.01% [255052] tcp_input
100.0% [255052] ip_input
100.0% [255052] netisr_dispatch_src
00.91% [2346] in_pcblookup_hash
100.0% [2346] tcp_input
100.0% [2346] ip_input
00.07% [180] tcp_usr_attach
100.0% [180] sonewconn
100.0% [180] syncache_expand
00.01% [19] syncache_expand
100.0% [19] tcp_input
100.0% [19] ip_input

02.48% [9851] __rw_rlock @ /boot/kernel/kernel
26.34% [2595] vlan_input
...

Figure 4. PMC Profile, Interrupt CPU

processing for packets to and from the NIC on
CPU 0. Fortunately this bottleneck can be over-
come by using the NIC Receive-Side Scaling (RSS)
feature which distributes the traffic across multi-
ple queues and dispatches interrupt handling to
multiple CPUs via Message Signaled Interrupts
(MSI or MSI-X).

With RSS, a NIC is configured to have multiple
receive hardware queues, and MSI allows inter-
rupts from the NIC to be directed to particular
CPU cores that are lightly loaded. The NIC directs
packets to receive queues based upon a hash
function of packets, often a hash of the source
and destination IPs and ports. In FreeBSD, this
configuration is set partially in the device driver
initialization, and then interrupt processing can
be pinned to particular cores using cpuset. With a
properly configured driver and smart selection of
CPUs to handle interrupts, we should expect to
see the processing workload shift more to the
lightly loaded cores.

If all packet processing could be done in paral-
lel, we would expect to see the capacity scale lin-
early with the number of receive queues and CPUs
dedicated to receive processing, until the next bot-
tleneck was reached. The results from such a test
however are inconsistent with that, as shown in
Figure 3, with 62,000 connections per second, or
250 to 500 Mbits/sec of bandwidth. In this config-
uration there are four NIC queues with affinity to
four CPUs. An additional thread is added in the
user space application to handle requests since
Figure 2 suggested that CPU 5 was highly loaded.
We note that interrupt processing has consumed
all of the four dedicated CPUs and there are indi-

cations that both the threads accepting new con-
nections and the two threads handling requests
consume significant system time.

To analyze why distributing the TCP input pro-
cessing workload on multiple MSI receiving
queues did not scale as expected, we used
Performance Monitoring Counter (PMC) profiling
on one of the CPUs handling interrupt process-
ing, as shown in Figure 4.

According to this profile, more than 50 percent
of the CPU time of this core was spent in
__rw_wlock_hard() and this kernel function was
predominantly called from tcp_input().

__rw_wlock_hard() is part of the reader/writer
kernel lock implementation [rwlock(9)], and more
precisely this function aims for an exclusive access
on the lock. Details about contended locks have
been provided by running kernel lock profiling
[LOCK_LOCK_PROFILING(9)] and sorting results
by the total accumulated wait time for each lock
(wait_total) in microseconds, shown in Figure 5.

The main contention point for this workload is
on the rw:tcp lock. If we look at the top call
points for this lock, we see in rank order:
1. sys/netinet/tcp_input.c:1013: tcp_input()
2. sys/netinet/tcp_input.c:778: tcp_input()
3. sys/netinet/tcp_usrreq.c:635: tcp_usr_accept()
4. sys/netinet/tcp_usrreq.c:984: tcp_usr_close()
5. sys/netinet/tcp_usrreq.c:728: tcp_usr_shutdown()

The first two locks in tcp_input() are called by
the kernel on each TCP packet whereas the latter
three calls correspond to socket system calls from
the user-space TCP server. The per-packet lock is
acquired in tcp_input() under these
conditions:

38 FreeBSD Journal

• Any of the SYN, FIN, or RST TCP flags are set
• The TCP connection state is any state other
than ESTABLISHED

Looking at the packets exchanged and corre-
sponding TCP connection states (shown in the
table below), we see that four of the five pack-
ets received cause the exclusive write lock rw:tcp
to be acquired. As this lock is global to all TCP
sockets, this contention appears to be a large
factor in limited scaling through RSS.

In Figure 6, we see that the contention points
on rw:tcp include tasks originated from inter-
rupts driven from the NIC and packet processing,
from user space system calls, and from other
periodic timer tasks such as the TCP TIME-WAIT
timer.

The rw:tcp lock protects the global data struc-
tures defined for the TCP state including:

The hash table (struct inpcbinfo.ipi_hashbase)
to search among the structures (struct inpcb)

The global list to scan the structures (struct
inpcbinfo.ipi_listhead)

Layer 4 specific additional structures including
the list of sockets in the TIME-WAIT state for TCP.

The lock is defined as a readers-writer lock so
multiple read tasks may be simultaneously
searching, but only one task may be updating
while also blocking all readers. When an inpcb
structure is added or removed, the writers lock is
held. In the context of TCP this occurs when a
connection is established with ACK(3) that com-
pletes the connection and when the connection
is entirely torn down and TIME-WAIT has com-

pleted.
In addition to the global rw:tcp lock, each

inpcb has a lock named rw:tcpinp. This lock is
held when per-connection information is updat-
ed. With long-running connections, each
rw:tcpinp lock may be held and released several
times, although this only causes per-connection
contention, not across all connections. While
rarely causing contention for short-lived connec-
tions, multiple locks necessitate a well-estab-

lished lock order to avoid deadlock. This well-
established order is rw:tcp (the global lock) must
be locked before a rw:tcpinp (the per-connection
lock) is locked when both locks are to be held.
As previously noted, the TCP state transitions on
four of the five received packets lead to both
locks being held.

There are cases where the rw:tcp lock is held
other than normal packet processing considered
here and the user-space system calls. Other
examples include inbound packets with the TCP
RST flag set, conditions where resources can’t be
allocated or system configured limits are
reached, and even unusual cases such as when
the TCP congestion control algorithm is reconfig-
ured. Careful attention must also be given to
these other processing paths to avoid possible
deadlock or global structure corruption whenev-
er considering changes to the locking strategy to
scale connection rate. While complex, there
appear to be several opportunities to reduce
contention on the global rw:tcp lock. Analyzing
the paths where the lock is acquired shows sev-

Figure 5. Lock Profiling the TCP Workload

sysctl debug.lock.prof.stats | head -2; sysctl debug.lock.prof.stats | sort -n -k 4 -r | head -6

max wait_max total wait_total count avg wait_avg cnt_hold cnt_lock name

210 660 2889429 7854725 568650 5 13 0 562770 …/tcp_input.c:1013 (rw:tcp)
79 294 3346826 7309124 642543 5 11 0 541026 …/tcp_input.c:778 (rw:tcp)
9 281 109754 4907003 321270 0 15 0 284203 …/tcp_usrreq.c:635 (rw:tcp)
6 204 174398 1484774 321267 0 4 0 284754 …/tcp_usrreq.c:984 (rw:tcp)
17 207 1252721 1195551 321268 3 3 0 241000 …/tcp_usrreq.c:728 (rw:tcp)
210 197 3828100 315757 1606362 2 0 0 90016 …/in_pcb.c:1802 (rw:tcpinp)

Packet In Packet Out State, Before State, After rw:tcp locked
in tcp_input()?

1 SYN (1) SYN + ACK (2) None SYN-RECEIVED Yes, WLOCK
2 ACK (3) SYN-RECEIVED ESTABLISHED Yes, WLOCK
3 PSH (4) PSH (5): ESTABLISHED ESTABLISHED No
4 FIN (6) ESTABLISHED FIN-WAIT-1
5 ACK (7) FIN-WAIT-1 FIN-WAIT-2 Yes, WLOCK
6 FIN (8) ACK (9) FIN-WAIT-2 TIME-WAIT Yes, WLOCK

TCP Connection Rate Scaling

40 FreeBSDJournal

Figure 6. Lock Contention Points for rw:tcp

eral promising ways to:
1. Avoid the rw:tcp lock altogether, particularly
driven from user-space system calls,
2. Add new finer-grained locks where the
rw:tcp lock is currently used,
3. Switch to rw:tcp read locks to permit concur-
rency in critical code paths.

As an example of the first contention mitigation
approaches, an implementation that avoids locking
rw:tcp lock during the accept() system call has
been adopted for future versions of FreeBSD
(http://www.freebsd.org/cgi/
query-pr.cgi?pr=183659). There appear to be
other similar opportunities.

As an example of the second mitigation
approach, an alternative implementation is also
being adopted for expiring connections in the
TIME-WAIT state
(http://svnweb.freebsd.org/base?view=revision&revi
sion=264321). Instead of locking the rw:tcp lock
to manage the global TIME-WAIT list, a new lock
rw:tcptw is created. While the rw:tcp lock is still
used to finally destroy the inpcb structures, it is
only held briefly and not while iterating the expira-
tion list.

Early performance results using the two cited
patches show that the techniques help scale con-
nection rate. With accept() system call avoidance
and a separate fine-grained lock for TIME-WAIT,
we see the connection-rate increase from 62,000
connections per second to 69,000 connections per
second. While modest, there appear to be further
applications of these two techniques.

This work will continue to explore the possibility
of allowing more parallelism in packet processing.
Although in early development, the third tech-
nique looks promising. Early performance results
suggest this technique could exceed 120,000 con-
nections per second utilizing 480 – 960 Mbits / sec
of bandwidth.

While high connection rates may be atypical for
many networked services including streaming
media or services with long-standing connections,
such applications are present. The challenge of han-
dling a high rate of connections that could utilize a
single Gigabit NIC is within reach, although more
work needs to be done to achieve that goal. •

Julien Charbon is a Software Development
Engineer at Verisign, Inc. Julien has worked
on the company’s high-scale network service
ATLAS platform and related high-scale net-
work services. Julien has worked with
FreeBSD to perform tasks including porting
software, developing fixes and patches, and
network performance studies.

Michael Bentkofsky is a Principal Software
Engineer at Verisign, Inc. and leads the
development of their ATLAS platform. He
has been part of teams implementing high-
scale, always-available TCP services includ-
ing DNS and Whois services for the .COM
and .NET top-level domains, and the Online
Certificate Status Protocol (OCSP) for certifi-
cate validation.

